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Resumen— El análisis de cambios estructurales en el cerebro por medio de imágenes de resonancia magnética (MRI, del 

inglés Magnetic Resonance Imaging) aporta información útil para el diagnóstico y el tratamiento clínico de pacientes con 

patologías tales como enfermedad de Alzheimer y demencia. Aunque la complejidad alcanzada por lo equipos que generan las 

MRI es cada vez más alto, la cuantificación de estructuras y tejidos no ha sido completamente resuelta. En el presente trabajo, la 

segmentación de MRI es abordada a través de un nuevo método de clasificación llamado Type-2 Label-based Fuzzy Predicate 

Classification (T2-LFPC). A partir de datos etiquetados (píxeles de diferentes tejidos de interés seleccionados por expertos 

médicos) se define una partición aleatoria generando subconjuntos de datos que posteriormente son analizados con el fin de 

descubrir grupos con propiedades similares, llamados prototipos de clases. Utilizando estos prototipos, se generan funciones de 

pertenencia tipo 2 de intervalos y predicados difusos y se optimizan los parámetros relacionados a éstos. Luego, los predicados 

difusos generados son aplicados sobre píxeles sin etiquetar, segmentando las MRI y calculando posteriormente el volumen 

ocupado por los tejidos de interés dentro de la cavidad intracraneal. Se comparan los resultados obtenidos con los de métodos de 

clasificación conocidos. Un método para medir la atrofia progresiva y posibles cambios permitiendo comparar efectos 

terapéuticos debería ser esencialmente automático y, por lo tanto, independiente del radiólogo. Los resultados muestran que el 

desempeño del método propuesto es altamente aceptable como una contribución para el requerimiento previo. Se discuten las 

ventajas del enfoque propuesto. 

Palabras clave— Volumen encefálico, Predicados difusos, Lógica difusa tipo 2 de intervalos, Imagen de resonancia magnética, 

segmentación. 

 

 

Abstract— The analysis of structural changes in the brain through Magnetic Resonance Imaging (MRI) provides useful 

information for diagnosis and clinical treatment of patients with pathologies like Alzheimer disease and dementia. While 

complexity achieved by the MRI equipment is high, quantification of structures and tissues has not been entirely solved. In the 

present paper, MRI segmentation is discussed using a new classification method called Type-2 Label-based Fuzzy Predicate 

Classification (T2-LFPC). From labeled data (pixels of different tissues selected by medical experts) a random partition is 

defined and the obtained subsets are analyzed discovering groups with similar properties called class prototypes. Using theses 

prototypes, interval type-2 membership functions and fuzzy predicates are defined. Parameters regarding the fuzzy predicates 

are optimized. Fuzzy predicates are applied on unlabeled pixels performing the segmentation and volumes occupied for the 

tissues into the intracranial cavity are computed. Results are compared to those of known methods. A method of measuring the 

progressive atrophy and possible changes compared to a therapeutic effect should be essentially automatic and therefore 

independent of the radiologist. Results show that the performance of the proposed method is highly acceptable as a contribution 

for this requirement. Advantages of this approach are presented throughout this paper.  

Keywords— Brain volume, fuzzy predicates, interval type-2 fuzzy logic, magnetic resonance image, segmentation.  

 

 

I. INTRODUCTION 

agnetic Resonance Imaging (MRI) is currently the 

preferred imaging diagnosis method for the 

assessment of pathologies of the Central Nervous System 

(CNS). 

The MRI allows obtaining images in multiples views, 

having high anatomic resolution and the ability of 

characterizing the brain tissues and their pathologies. These 
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features make MRI clearly superior to other medical 

imaging types. 

The determination of volumes is a useful practice for 

several diagnoses of nosological entities. Knowing 

alterations of the standard measurements of the brain 

volume is very interesting for the differential diagnosis of 

different pathologies, for assessment of progression and 

treatment efficacy and monitoring for prognostic evaluation 

[1]. 

Volume decreasing can be subjectively assessed, but it is 

common to find inter-observer discrepancies [2]. Brain 

MRI allows detecting increase in volumes of the 

intracranial spaces, normally occupied by Cerebrospinal 

Fluid (CSF). This increasing is related to the deepening of 

M 
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sulcus of the brain convexity.  

Some neurological diseases may require MRI-based 

brain volumetric support, such as: 

• Alzheimer disease: volumetric alterations can be observed 

a few years before clinical symptoms coming from typical 

cognitive alterations appear, like progressive memory 

loss. Hippocampal atrophy, cingulate and entorhinal 

cortex atrophy and the later cortical frontoparietal 

compromise allow recognizing all the stages of the 

pathology and, therefore, early and advanced neurological 

affectation relating to them [3]. 

• Multiple sclerosis: inflammation and demyelinating 

associated to neurodegenerative processes are the 

precursors in the probable brain volume loss related to 

this pathology. Volume loss is bigger than expected in 

same-age individuals. This volume reduction globally 

supports some prediction of the disease progress, which 

makes volume measurement relevant. It begins 

prematurely and involves not only White Matter (WM), 

but also cortical Gray Matter (GM) and basal ganglia. A 

high grade of initial atrophy will lead to diminishing 

motor and cognitive capacities. No differences are seen 

between atrophy patterns in different sub-groups of 

multiple sclerosis [1].  

• Frontotemporal dementia: determination of focal atrophy 

in the anterior sector of frontal and temporal lobes 

constitutes a marker for the diagnosis of this disease. 

Subjective observation does not allow assess the low 

initial volume loss, but it can be properly characterized by 

volumetric measurements in RM. Two types of 

frontotemporal dementia develop different atrophy 

patterns that can be recognized via segmental volumetric 

assessment, even in early stages, allowing differential 

diagnosis of entities like Alzheimer disease [4]. 

By means of image processing techniques, objective 

volume measurements can be done in MRI, once brain 

parenchyma could be discriminated from non-parenchyma 

content. Whether regions of the brain corresponding to the 

different tissues, i.e. CSF, WM, and GM, are identified, the 

volume of each tissue can be computed. 

There exist some methods to compute brain volumes. 

Recently an online software was released, named volBrain 

[5], based on multi-atlas label fusion technology. This aims 

to compute volumes of the intra cranial cavity and those 

covered by the different tissues. It presents a pipeline 

including denoising and inhomogeneity correction and the 

segmentation is based on 50 MRI volumes manually 

segmented. A discussion of previous approaches for the 

volume computation can be found in the same work. 

Given the previous motivation of brain MRI-based 

diagnosis, in the present paper brain MRI segmentation is 

addressed by means of an automatic classification method 

based on interval type-2 Fuzzy Logic (FL), which is called 

Type-2 Label-based Fuzzy Predicate Classification (T2-

LFPC). From some examples of the different brain tissues 

(pixels labeled by medical experts), the T2-LFPC method 

automatically generates a FL predicate system which is 

used to perform the whole MRI sequence segmentation, 

detecting pixels of WM, GM, and CSF. Once all pixels are 

classified, volume of different tissues are computed. 

Comparisons with other existing classification methods are 

done, including volume estimation comparison against to 

the volBrain software. In addition, considerations of noise 

and inhomogeneity field are covered in the FL properties, 

since it has been proved its robustness to these undesirable 

effects, considered as data uncertainty [6]. 

In the next Section, the proposed approach for pixel 

classification and brain volume estimation is explained and 

the image acquisition process is described. Then, in Section 

3, results are presented and discussed. 

II. MATERIALS AND METHODS 

A. Data classification using interval type-2 fuzzy 

predicates 

FL was introduced by Lofti Zadeh in 1965 [7], [8], 

extending Boolean (classic) logic in order to deal with 

vague or imprecise linguistic expressions, considering truth 

values between 0 (false) and 1 (true). FL provides an 

effective conceptual framework for dealing with knowledge 

representation in environments of uncertainty and 

imprecision like human reasoning and Pattern Recognition 

[9] and it was successfully applied in image segmentation 

[6], [10]. 

The main limitation concerning to traditional FL, called 

type-1 FL, is that truth values are limited to single values in 

the [0,1] interval which may not be appropriate for solving 

problems with great imprecision or when data are affected 

by noise [9], [11], [12], [13]. In contrast, interval type-2 

FL, or interval-valued FL which is the same, provides 

additional grades of freedom to define truth values using 

intervals called intervals of truth values [9], [13]. Defining 

truth values through intervals allows to deal with the effects 

of noise and to consider opinions of different experts [9], 

[13]. In previous works, interval type-2 FL was used for 

Pattern Recognition showing better performance than 

equivalent models based on type-1 FL [6], [11], [13]–[15]. 

As it was previously mentioned, in the present work, 

interval type-2 FL is used for modelling truth values of 

fuzzy predicates generated by means of the T2-LFPC 

method, allowing MRI segmentation. In the remainder of 

the present Section, basics of interval type-2 FL will be 

introduced in order to provide the necessary notation and 

concepts for the rest of this paper. 

Definition #1. An interval of truth values is an interval 

 ,L RA a a , with 0 1L Ra a    [9], [13]. It defines the 

truth value of a logic expression when interval type-2 FL is 

used. 

Definition #2. An interval type-2 membership function 


A  on a discourse universe U  is a function :U 

A , 

where   is the set of all the closed intervals contained in 

 0,1 , i.e. the set of all the possible intervals of truth 

values, being A a property (an attribute) [9], [13]. For a 

specific value u U ,  u
A

 is an interval of truth values 

     ,u u u     
  

A AA
 which defines the truth value 

in which u  satisfies the property A . The functions 

 : 0,1U
 

A

 and  : 0,1U
 

A

 are strictly type-1 

membership functions called respectively the lower and the 

upper membership functions of A  [13]. 

In FL, a predicate is defined as a property that a variable 

or a finite collection of variables can have and it is typically 

assumed as the equivalent of a membership function. In this 
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work, a fuzzy predicate ( )p x  is adopted to be the 

following: 

Definition #3. A fuzzy predicate ( )p x , where x 

indicates an object or a variable, is a declarative sentence 

which assigns one or more properties to x. Considering 

interval type-2 FL, the value taken by ( )p x  for a specific 

value 'x x , noted by ( ( '))p x x  , is an interval of truth 

values ( ) ( ), ( ),,p p Lx x xp RA a a    , with 
( ), ( ),0 1p L p Rx xa a   . 

As in general fuzzy predicates can relate one or more 

objects or variables with properties, fuzzy predicates can be 

both simple or compound. Simple predicates directly 

associate a variable with an attribute and their truth values 

are usually obtained using membership functions. On the 

other hand, compound fuzzy predicates logically combine 

two or more simple predicates using conjunctions (  ), 

disjunctions (  ) and complements ( ), which in a wide 

sense are known as fuzzy aggregation operators. In interval 

type-2 FL, values of truth of compound predicates are 

computed using fuzzy conjunctions    : 0,1 0,1
n

C  , 

disjunctions    : 0,1 0,1
n

D  , and complements 

   : 0,1 0,1c  , applied on the ends of the interval of truth 

values [9], [13]. In the literature, a wide set of different 

fuzzy conjunctions, disjunctions and complements have 

been proposed. Selecting different fuzzy operators should 

be made according to the properties of each operator and 

how predicates are interpreted and evaluated by the experts 

in each application. In the case studied in this paper, 

considering previous results obtained in Pattern 

Recognition [13], [14], [16]–[18], both MIN-MAX 

triangular norms and compensatory FL operators are 

considered [19], [20]. 

In Pattern Recognition using fuzzy predicates, one or 

more fuzzy compound predicates combine logically the 

properties that a datum must meet to belong to a label. By 

computing the truth value of each predicate explaining the 

different labels for a datum, the truth value in which the 

datum belongs to each label is obtained [9], [13]. Label 

assignment is performed by determining the label for which 

the datum belongs with highest truth value. In the case of 

interval type-2 FL, the comparison between truth values 

requires comparing intervals of truth values and defining 

which one has the highest truth value. 

In [13], a novel methodology for comparing intervals of 

truth values was proposed, which is based on the concept of 

measure of interval of truth values. It consists in combining 

the mean value and the maximum value of an interval in 

order to obtain a number that globally characterizes the 

truth value of the interval. In the present paper, this 

methodology is applied for assigning labels to data 

representing pixels, performing the MRI segmentation. The 

concept of measure of interval of truth values is now 

recalled: 

Definition #4. (Measure of intervals of truth values). 

Let   be the set of all the closed intervals contained in 

 0,1 , i.e. the set of all the possible intervals of truth values, 

the measure of interval of truth values [13] is the function 

:f    defined as: 

     ,
2

L R

L R R

a a
f A f a a a


  ,  (1)  

where  ,L RA a a  is an interval of truth values. The 

function f  describes, with a number, the truth value of the 

interval of truth values, mapping from the interval space to 


. The higher the value of  f A , the higher the truth 

value. The reasons of combining the mean value and the 

maximum of the interval to its characterization are: a) if 

two intervals have the same mean value, then those with 

higher maximum value (closer to 1) represents a higher 

truth value, and b) in the case of two intervals with the 

same maximum, those with a lower mean value represents a 

lower truth value.  

Considering all the previous definitions, classifiers based 

on fuzzy predicates are formed by K  fuzzy compound 

predicates, noted by   
1,...,i i K

p x


, each one associated 

with one of the possible classes  1,...,k K . Given a 

datum 
dx  to be assigned to a class, where d  is the 

dimension of the space of patterns, the truth values of the 

K  predicates for x  are computed, defining the set 

   
1,...,

i
i K

p x


, where    ( ), ( ),,
i ixi p L Rxpp x a a      (an 

interval of truth values). The measure of interval of truth 

values is applied on each    , 1,...,ip x i K  , resulting in 

    
1,...,

i
i K

f p x


. The label assigned to the datum x  is 

the one whose corresponding fuzzy predicate has the 

highest measure of interval of truth values, i.e. the class k  

is assigned to datum x  if for the class k : 

         
1,...

maxk i
i K

p x f p x  


 .  (2)  

Based on the concepts defined in this Section, in the next 

one the T2-LFPC is explained in detail. 

B. Method Type-2 Fuzzy Predicate Classification (T2-

LFPC) 

As it was previously introduced, brain MRI segmentation 

is addressed in the present paper using the method T2-

LFPC, assigning each pixel of a MRI to one of the classes 

WM, GM, and CSF. Once pixels are classified with the T2-

LFPC, volume estimation is done by each entire MRI 

sequence. In the present application, each pixel is 

associated to a data vector composed by a unique variable 

(its gray level intensity in the T1 sequence) and the 

different tissues and the background act as labels. Pixel 

intensity is represented by the gray level of each pixel in 

each slice. 

The next explanation of the method T2-LFPC is 

presented considering a general classification problem, i.e. 

not limited to image segmentation. Data to be labeled are 

represented by  1,1
d

 X , where N is the number of data 

and d the number of features, and a datum x X  is a d-

uple  1 2, ,..., dx x x . In addition, 

   
1,...,

, 1,..,r rr N
y y K


 Y  is the vector of labels (gold-

standard) for the data in X , i.e. X  and Y  define the 

training dataset for the classification problem, being K the 

number of classes (labels). 
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The Type-2 Label-based Fuzzy Predicate Classification 

(T2-LFPC) method was originally proposed and used in 

[14] in order to design nonlinear morphological operators 

(window morphological operators) for binary images. In 

the present paper, we propose an improvement of our 

original method which allows data classification. 

Considering that the present improvement became the 

previous method in a general and complete classification 

method, including the original application of the 

morphological operator design, we keep the original name, 

of T2-LFPC. Next, the new T2-LFPC method is explained 

in detail. 

The T2-LFPC method consists of four stages: A) 

Random partition of the data, B) Extraction of class 

prototypes, C) Generation of the fuzzy system, and D) 

Optimization. From the training dataset, a classification 

system based on fuzzy predicates is automatically 

generated. At Stage A, a random partition of the data is 

performed. Data contained in each of the obtained subsets 

are then analyzed at Stage B, applying clustering on data 

corresponding to each label in order to discover groups of 

data with similar properties. At Stage C, in each label, the 

obtained groups are subsequently combined with the other 

subsets defining interval type-2 membership functions and 

fuzzy predicates. Finally, at Stage D, parameters of the 

fuzzy system are optimized. In Fig. 1, the pipeline of the 

method is shown. Each stage is described in detail in the 

remainder of this subsection. 

1) Stage A: Random partition of the data 

From the training dataset defined by X  and Y , first, a 

random partition is performed on X , obtaining 2M   

disjoint data subsets noted as  
1,...,m m M

 , where 

1 2... M   X . Such random partition is made 

simultaneously on the label vector Y , given as a result that 

each m  can be written as ,1 ,2 ,...m m m m K      , 

where 
,m k  contains the data in m  that belong to the label 

k ,  1,..,k K . The partition is done in such a way that 

each label has approximately the same quantity of data in 

the different subsets. 

2) Stage B: Extraction of class prototypes 

In order to define fuzzy predicates and membership 

functions, it is required an analysis of the properties that 

presents the data contained in each subset 
,m k  generated 

at Stage A. Data corresponding to the same class into a 

partition do not necessarily share the same properties, i.e. 

they are not necessarily close in the pattern space. 

In order to discover groups with similar properties in 

,m k , a clustering algorithm is used, discovering groups of 

data inside of each 
,m k . Due to the appropriate number of 

groups for each subset is not known a priori, a clustering 

approach combining Fuzzy C-Means (FCM) clustering [21] 

and the Bayesian Information Criterion (BIC) is used [22]. 

This clustering approach allows defining the proper number 

of clusters for a dataset , being successfully applied in [13], 

[14]. As a result, each subset 
,m k  for a label k , is divided 

in ,m k  clusters. 

Formally, the clustering obtained on ,m k  can be written 

as: 

 
,, , ,1 , , , ,... ...

m km k m k m k j m k      , (3)  

where , ,m k j  represents data in the cluster j  obtained for 

the data of the label k in the subset m, being 1,...,k K  

and 1,...,m M . The set of centroids obtained in this stage 

is noted by  
,

1,...,
, , 1,...,

1,..., m k

m M
m k j k K

j 





 . 

It is important to note that , ,m k j  represents close data in 

a label  1,..,k K  in the subset m , which were 

automatically grouped by means of the FCM-BIC 

clustering approach. Given two subsets 
1, ,m k j  and 

2, ,m k j  

with 1 2j j , they contain data of m  with label k  which 

are not close in the pattern space. 

Finally, the data in  
,

1,...,
, , 1,...,

1,..., m k

m M
m k j k K

j 





 are re-grouped in 

order to determine the class prototypes. The centroids 

 
,

1,...,
, , 1,...,

1,..., m k

m M
m k j k K

j 





 are used as data and they are clustered 

according with their proximity. As a result, the data in 

 
,

1,...,
, , 1,...,

1,..., m k

m M
m k j k K

j 





  are clustered again, but this time 

considering the group assigned to their respective centroids. 

Explicitly, considering class by class, the subsets 

Random partition
of the data

Stage BStage A Stage C Stage D

Generation of 
the fuzzy system OptimizationExtraction of

class prototypes

M subsets µ and  computation for 
the prototypes.
Interval type-2 

membership funtions and 
fuzzy predicates are 

defined.

σ

Class #1

Class #K
Class #1

Class #K

Determination of optimal 
fuzzy aggregation 

operators.

Clustering of the data in  
each class for each 

subset. Class prototypes 
are determined.  

Fig. 1.  Processing pipeline of the method T2-LFPC used for brain MRI segmentation. 
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,

1,...,
, , 1,...,

1,..., m k

m M
m k j k K

j 





  are re-clustered according to their centroids 

, ,m k j , with m  varying in 1,..., M  and j  varying in 

,1,..., m k  for a class k , generating k  clusters of centroids.  

Following the previous procedure, the class prototypes 

can be determined. The set of class prototypes is noted by 

 
,

1,...,
, , 1,...,

1,...,
k

s k

k K
k s n s

n







 , where k  is one of the labels  1,.., K , s  is 

an index which represents some of the clusters previously 

obtained for the centroids and n  is another index, which 

corresponds to one of the data subset 

, , ,, 1,..., , 1,...,m k j m km M j    , whose centroid was re-

assigned to the centroid group s  in the previous step, with 

 1,..., ks  . 

Using the steps described here, the prototypes in , ,k s n  in 

a fixed k  are data of the training dataset X  which belong 

to the class k . All the data of the class k  are in one of the 

sets  
,

1,...,, ,
1,...,

k

s k

sk s n
n







 . Likewise, , ,k s n  for specific k  and s , 

contains ,s k  clusters of data, each near to each other, 

where each group of data contains examples of the class k  

which share same properties, i.e. they are close in the 

pattern space. 

3) Stage C: Generation of the fuzzy system 

From stages A and B, the data of each class were 

clustered in subsets having similar properties and resulting 

in class prototypes. In the present stage, the prototypes in 

 
,

1,...,
, , 1,...,

1,...,
k

s k

k K
k s n s

n







  are analyzed, defining interval type-2 

membership functions and fuzzy predicates generating a FL 

system which allows to classify data. 

First, for each set of class prototype , ,k s n , with 

,1,..., s kn   and fixed k  and s , a Gaussian type-1 

membership function is found. Centroids of the 

membership functions noted by , ,k s n  are obtained as the 

centroid of the data in each , ,k s n . As a result, for a label k  

in a prototype group s , ,s k  type-1 membership functions 

are defined for each feature  1,...,i d . Widths of the 

membership functions are computed as the standard 

deviation of the data in , ,k s n  for each class k  in each 

group 1,..., ks  . The standard deviation is a parameter, 

controlling how the truth value of the membership 

functions decreases when the values move away from the 

centroid found for the class prototypes. The type-1 

membership functions are noted by  
,

1,...,
1,...,, , ,
1,...,
1,...,

k

s k

i d
k Ki k s n
s
n




 




. 

As it was previously mentioned, the class prototypes 

, ,k s n  share the same properties for fixed values of k and 

s . After type-1 membership functions are defined, these 

are aggregated varying the parameter n , as follow: 

       
, , ,

ˆ , , , 1,...,
min , 1,1

i k s s k
i k s n n

x x x
 




     ,  (4)  

       
, , ,

ˆ , , , 1,...,
max , 1,1

i k s s k
i k s n n

x x x
 




     ,  (5)  

 1,1x   ,  1,...,i n ,  1,...,k K , 1,..., ks  , where  

   
, ,

ˆ : 1,1 0,1
i k s

    and    
, ,

ˆ : 1,1 0,1
i k s

    are 

respectively the lower and the upper membership functions 

of an interval type-2 membership function 

 , ,
ˆ : 1,1i k s   , defining with what truth value the 

feature i  of a datum belong to the class k  according to the 

set of prototypes s . As it is easy to note,  , ,
ˆ

i k s x  is the 

interval of truth value    
, , , ,

ˆ ˆ,
i k s i k s

x x
 

   
 

. 

The obtained interval type-2 membership functions 

, ,
ˆ , 1,..., , 1,..., , 1,...,i k s ki d k K s     are then smoothed, 

using a numerical interpolation, trying to eliminate possible 

peaks generated by the MIN-MAX aggregation. This 

procedure defines new interval type-2 membership 

functions   1,...,
, , 1,...,

1,..., k

i d
i k s k K

s 

 



 [23]. 

Finally, fuzzy predicates for each class  1,...,k K  are 

defined by logically operating, according to the index i  

which represents the feature, with the truth values 

described by the membership functions   1,...,
, , 1,...,

1,..., k

i d
i k s k K

s 

 



. 

Considering the class k , k  compound fuzzy predicates 

are defined, each one associated with properties of the data 

belonging to the class k  in the training dataset X . These 

predicates are: 

 

, 1, , 1 2, , 2 , ,( ) ( ) ( ) , , ( ),

                                               1, 2, , ,

1,..., ,

k s k s k s d k s d

k

p x x x

k K

s

  



    

 



x

  (6)  

where x  is a datum and the value of , ( )k sp x  defines the 

truth value in which x  belong to the class k . The 

predicates  , 1,..., k
k s s

p


 are combined in a fuzzy predicate 

( )kp x  using the disjunction operator (  ), obtaining a 

unique fuzzy predicate for each class as following: 

 
,1 ,2 ,( ) ( ) ( ) , , ( ),

                                               1, 2, ,

kk k k kp p p p

k K

    

 

x x x x
.  (7)  

As a result, interval type-2 membership functions and 

fuzzy predicates are generated, respectively noted by 

  1,...,
, , 1,...,

1,..., k

i d
i k s k K

s 

 



 and  
1,...,k k K

p


, which are obtained from the 

training dataset  ,X Y , defining a FL system. This system 

can be used both to classify the data in X  as well as other 

data resulting of the same process that generated the set X  

(generalization). 

Fuzzy predicates are evaluated using fuzzy aggregation 

operators and classes are assigned following the procedure 

detailed at the end of the Section II.A. 

4) Stage D: Optimization 

Using the training dataset  ,X Y , it is possible to 

compute the training error (or resubstitution error) [24] 

once the FL system was generated. Thus, by quantifying 

the training error it is possible to properly set parameters of 

the fuzzy system such as the aggregation operators used to 

evaluate the conjunction and disjunction in the predicates. 
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As final step, the FL system is used to classify the 

training data, testing the aggregation operators MIN-MAX 

and the compensatory ones, both based in the geometric 

mean [19] and the arithmetic mean [20]. The classification 

error is computed in each case as a percentage of 

incorrected classified data and considering as gold-standard 

the labels in Y . 

As a result, a FL system is obtained, enabling to classify 

data of the same kind that the training dataset  ,X Y . The 

FL system is formed by interval type-2 membership 

functions and fuzzy predicates, explaining the classes to be 

obtained and defining the optimal parameters for the 

predicate evaluation. Only the size of initial partition M  

must be defined, which must be determined heuristically in 

accordance with the quantity of available data [13], [14]. 

C. Volume estimation 

Volume estimation requires the following steps: 

intracranial cavity segmentation, tissue classification and 

volume computation. The performance of each stage 

influences dramatically the following ones. 

There are plenty of methods for the intracranial cavity 

segmentation. Many of them have been compared in 

previous works [25]. In this paper, a method based on the 

application of Mathematical Morphology is used, which 

consists of using  sequential filters by reconstruction with 

structuring elements of growing size [26]. Apart from 

enhancing and filtering the image, this method captures the 

interior of a closed simple curve employing geodesic 

distance. This curve represents the external brain boundary. 

Once intracranial cavity area is determined for each slice, 

an expert selects small regions in random slices to construct 

a training dataset, i.e. a gold-standard. The expert selects 

regions for the different classes: GM, WM, and CSF. 

Background, i.e., pixels that does not belong to any of the 

considered tissues, is not selected in this stage due to this 

was previously removed during the segmentation of the 

intracranial cavity. 

As a result, a training dataset is defined  ,X Y , formed 

by the intensities of the pixels defined by the MRI in the T1 

sequence and the corresponding labels defined by the 

expert. Then, the method T2-LFPC is applied assigning 

pixels to one and only one of the classes GM, WM, and 

CSF. 

Once FL system is generated from the examples defined 

in the training dataset  ,X Y , the system is used to classify 

all the pixels in the entire volume. 

In order to compute the volume of each issue, first, the 

volume of a single voxel is determined, considering the 

distance inter-slices (slice thickness) and the pixel spacing 

(in both directions), assuming that each pixel represents a 

voxel. The product between these three values is the unitary 

voxel volume represented by one pixel. Finally, the volume 

occupied by each tissue is obtained as the number of voxels 

belonging to the tissue times the unitary voxel volume. 

D. Image databases 

The method T2-LFPC was initially tested with images 

coming from Montréal Neurological Institute Simulated 

Brain Database, McGill University [27]. Only simulated 

T1-weighed images were considered in order to make 

possible an extrapolation of the results to real images. Since 

these simulations have a gold-standard, the performance of 

the classification method could be assessed by a quality 

measure. Dimensions for the volume were 181x217x181 

voxels, noise levels: 0%, and levels of intensity non-

uniformity (INU): 0%. 

The second image database came from a diagnostic 

imaging center, considering real cases, patients with known 

pathologies and MRI in T1 sequence. Images were 

acquired in a Philips equipment, 1.5 Tesla. Dimensions for 

the volume were 320x320x160 voxels, resolution 12 bits, 

in sagittal view. Pixel spacing was 0.8 x 0.8 millimeters and 

slice thickness was 1 millimeter, defining a unitary voxel 

volume of 0.64 cubic millimeters (0.64x10-3 cubic 

centimeters). Volumes were processed considering slices in 

axial view. 

In this case, gold-standards are not available for the 

entire volume, but a gold-standard was made by experts 

considering some pixels taken of some slices and labeling 

them as GM, WM, or CSF, defining the training dataset. 

Volume results were compared against the results of the 

online software volBrain [5]. Classification performance is 

detailed in the next Section.  

E. Quality measurements 

In order to assess the segmentation results, accuracy was 

chosen as quality measurement, defined as the percentage 

of pixels correctly classified. Accuracy was computed 

considering the generalization abilities of the classifiers: 

once trained the classifiers, accuracy was computed with 

the output of the classifiers for new data not contained in 

the training dataset. 

In the simulated MRI volume, first, 100 pixels per tissue 

were randomly selected of the entire volume, defining the 

training dataset. Then, the classifier was applied to segment 

the first slice of the volume (considered as test dataset), 

computing the accuracy for that slice. This procedure was 

repeated for each slice in the volume, defining in each case 

a new training dataset. The average of the obtained 

accuracies is reported, including the standard deviation. 

As it was pointed-out before, for the real MRI volumes 

gold-standards were not available for the whole slices, but 

quality measures were computed for the pixels in the 

training set. From the total of pixels labeled by the medical 

experts, 200 pixels per tissue were randomly selected, 

defining the training dataset with 600 data. A 10-fold cross 

validation was considered in order to estimate the 

generalization abilities of the classifiers [28]. Then, the 

entire volume was processed using all the training dataset. 

III. RESULTS 

In this Section, results for slice segmentation and volume 

computation are presented, considering both the simulated 

and the real MRI volumes. 

In Fig. 2, results obtained using T2-LFPC for three slices 

(corresponding to #22, #35 and #100) for the simulated 

images are shown. In this case, as gold-standards were 

available, these are included in the third column for visual 

purposes. A comparison against to known classification 

methods was performed, considering the K-nearest 

Neighbor Algorithm (KNN), MultiLayer Perceptron 

(MLP), Probabilistic Neural Networks (PNN) and a similar 

method to the T2-LFPC, but using type-1 FL, called Type-
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1 Label-based Fuzzy Predicate Classification (T1-LFPC). 

Unlike the T2-LFPC, type-1 membership functions are not 

aggregated. Instead, these are directly used generating a 

type-1 FL system. These methods were heuristically 

parametrized, testing different setting. Reported results are 

the best results obtained for each classifier, considering the 

average accuracy for the different setting parameters. 

Accuracy results for the segmentation are shown in 

Table I. Standard deviations were computed along the 

slices. MLP gave the best in terms of mean accuracy and 

standard deviation. However, the method T2-LFPC 

presents a good trade between accuracy and computation 

times and differences were not statistically significant after 

computing P using the non-parametrical Wilcoxon test. 

Besides, previous deeper studies allowed concluding that 

T2-LFPC showed the best performance considering noise 

and distortion in images. In addition, methods based on 

fuzzy predicates allow to give a deeper understanding about 

the classification obtained, which could be helpful for 

image interpretation [13]. However, these discussions are 

far beyond the scope of this paper. 

 
T1 Segmented Gold-Standard 

   

   

   

Fig. 2. Segmentation obtained for three slices in simulated MRI 

volumes. The first column shows T1 images after intracranial cavity 

extraction, second column shows the results obtained by using the T2-

LFPC method and the last column shows the gold-standards. 

 

In Fig. 3, three slices of the real MRI images, 

corresponding to the slices #44, #100 and #200, are 

presented. In the third column of this figure, segmentation 

was superimposed to the original images. The method T2-

LFPC is compared to KNN, MLP, PNN, and T1-LFPC, 

considering different setting parameters in each case. 

Results presented correspond to the best performance for 

each method, determined according to the accuracies 

estimated using 10-fold cross validation applied on the 

pixels in the training set. The estimated accuracies and its 

standard deviation are shown in Table II. Differences 

among the different methods were statistically not 

significant, showing KNN the best performance. 

For the MRI volume presented in Table II and Fig. 3, 

volume of the intracranial cavity and volumes and 

percentages covered by the different tissues were computed 

for the T2-LFPC method and the test methods, comparing 

the results against to the results of the online software 

Volbrain [5]. These results are presented in Table III. 

T1 Segmented Original+Segmented 

   

   

   

Fig. 3. Segmentation obtained for three slices of the real MRI volume. 

The first column shows T1 images before intracranial cavity extraction, 

second column shows the results obtained from the method T2-LFPC 

and third column shows results superimposed to original images. 

TABLE I 

ACCURACY FOR THE SIMULATED MRI VOLUME. 

 T2-LFPC KNN MLP PNN T1-LFPC 

Mean 0.975 0.976 0.981 0.977 0.972 

Standard 

deviation 
0.009 0.009 0.007 0.008 0.010 

Computation 

time [s] 
65 28 550 141 57 

T2-LFPC: Proposed method. KNN: K-Nearest Neighbor. MLP: 

MultiLayer Perceptron. PNN: Probabilistic Neural Network. T1-LFPC: 

Method similar to T2-LFPC using type-1 FL. Computation time includes 

training and segmentation of the entire volume. 

TABLE II 

ACCURACY FOR THE REAL MRI VOLUME.  

 T2-LFPC KNN MLP PNN T1-LFPC 

Mean 0.943 0.950 0.948 0.942 0.938 

Standard 

deviation 
0.027 0.021 0.029 0.029 0.026 

Computation 

time [s] 
0.449 0.133 13.064 1.057 0.349 

T2-LFPC: Proposed method. KNN: K-Nearest Neighbor. MLP: 

MultiLayer Perceptron. PNN: Probabilistic Neural Network. T1-LFPC: 

Method similar to T2-LFPC using type-1 FL. Computation time includes 

training and segmentation of one slice. 

The determination of the intracranial cavity is crucial to 

estimate the percentages of each tissue. In the methods 

considered in this paper, this volume is constant because 

the same method for intracranial cavity segmentation was 

applied in all cases. 

An objective comparison of these results is a difficult 

task, because there is no gold-standard. But the observed 

consistency between results and the subjective expert 

assessment of the segmented slices are good evidence about 

the reliability of the results. 

IV. CONCLUSION 

In this paper, the method Type-2 Label-based Fuzzy 

Predicate Classification (T2-LFPC) is presented and is 

applied to segmentation of brain magnetic resonance 

images. Results for slice segmentation and volume 

computation were presented, considering both simulated 

and real MRI volumes. A comparison against other known 

methods was performed, considering the k-nearest neighbor 

algorithm, multilayer perceptron, probabilistic neural 

networks, and a similar method to the T2-LFPC but using 

type-1 FL (T1-LFPC). The method T2-LFPC showed a 

good trade between accuracy and computation times, and 
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differences with the test methods were not statistically 

significant considering the non-parametrical Wilcoxon test. 

The comparison allowed concluding that the method T2-

LFPC showed good performance considering noise and 

distortion in images. In addition, methods based on fuzzy 

predicates give a deeper understanding about the 

classification obtained, which could be helpful for image 

interpretation. 

A method of measuring the progressive atrophy and 

possible changes compared to a therapeutic effect should be 

essentially automatic and therefore independent of the 

radiologist. The approach of the method followed in this 

paper is a valuable contribution to achieve this ambitious 

goal. Future work will include a major analysis of the stage 

involve in the method T2-LFPC as well as tests on new real 

MRI volumes and comparisons against methods 

specifically adjusted for brain MRI segmentation. 

ACKNOWLEDGEMENT 

Diego S. Comas acknowledges support from Consejo 

Nacional de Investigaciones Científicas y Técnicas 

(CONICET) from Argentina. 

REFERENCES 

[1] M. P. Wattjes, M. D. Steenwijk, and M. Stangel, “MRI in the 

Diagnosis and Monitoring of Multiple Sclerosis: An Update.,” Clin. 

Neuroradiol., vol. 25 Suppl 2, pp. 157–65, Oct. 2015. 

[2] C. W. Kanaly et al., “A novel, reproducible, and objective method 

for volumetric magnetic resonance imaging assessment of enhancing 

glioblastoma.,” J Neuosurg, vol. 76, no. 6, pp. 1–7, 2014. 

[3] K. A. Johnson, N. C. Fox, R. A. Sperling, and W. E. Klunk, “Brain 

imaging in Alzheimer disease.,” Cold Spring Harb. Perspect. Med., 

vol. 2, no. 4, p. a006213, Apr. 2012. 

[4] J. D. Rohrer, “Structural brain imaging in frontotemporal dementia,” 

Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1822, no. 3, pp. 325–

332, 2012. 

[5] J. V. Manjón and P. Coupé, “volBrain: An Online MRI Brain 

Volumetry System,” Front. Neuroinform., vol. 10, p. 30, Jul. 2016. 

[6] D. S. Comas, G. J. Meschino, J. I. Pastore, and V. L. Ballarin, “A 

survey of medical images and signal processing problems solved 

successfully by the application of Type-2 Fuzzy Logic,” J. Phys. 

Conf. Ser., vol. 332, p. 12030, 2011. 

[7] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, pp. 338–353, 1965. 

[8] L. A. Zadeh, “The Concept of a Linguistic Variable and its 

Application to Approximate Reasoning,” Inf. Sci. (Ny)., vol. 8, pp. 

199–249, 1975. 

[9] D. S. Comas, J. I. Pastore, A. Bouchet, V. L. Ballarin, and G. J. 

Meschino, “Type-2 Fuzzy Logic in Decision Support Systems,” in 

Soft Computing for Business Intelligence, vol. 537, no. 537, R. A. 

Espin Andrade, R. Bello Pérez, Á. Cobo, J. Marx Gómez, and A. 

Racet Valdés, Eds. Heidelberg, Germany: Springer Berlin 

Heidelberg, 2014, pp. 267–280. 

[10] G. J. Meschino, R. A. Espin Andrade, and V. L. Ballarin, “A 

framework for tissue discrimination in Magnetic Resonance brain 

images based on predicates analysis and Compensatory Fuzzy 

Logic,” Int. J. Intell. Comput. Med. Sci. Image Process., vol. 2, no. 

X, pp. 1–16, 2008. 

[11] P. Melin and O. Castillo, “A review on the applications of type-2 

fuzzy logic in classification and pattern recognition ,” Expert Syst. 

Appl., vol. 40, no. 13, pp. 5413–5423, 2013. 

[12] J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE 

Comput. Intell. Mag., vol. 2, no. 1, pp. 20–29, 2007. 

[13] D. S. Comas, G. J. Meschino, A. Nowé, and V. L. Ballarin, 

“Discovering knowledge from data clustering using automatically-

defined interval type-2 fuzzy predicates,” Expert Syst. Appl., vol. 68, 

pp. 136–150, 2017. 

[14] D. S. Comas, G. J. Meschino, M. Brun, and V. L. Ballarin, “Label-

based Type-2 Fuzzy Predicate Classification applied to the design of 

morphological W-operators for image processing,” in First Latin 

American Congress on Computational Intelligence, 2014, pp. 55–60. 

[15] D. S. Comas, G. J. Meschino, A. Nowe, and V. L. Ballarin, 

“Knowledge discovering in data clustering by self-discovered type-2 

fuzzy predicates,” in Fifth international workshop on Knowledge 

Discovery, Knowledge Management and Decision Support (Eureka 

2015), 2015. 

[16] G. J. Meschino, D. S. Comas, V. L. Ballarin, A. G. Scandurra, and L. 

I. Passoni, “Using SOM as a Tool for Automated Design of 

Clustering Systems Based on Fuzzy Predicates,” in 9th Workshop on 

Self-Organizing Maps (WSOM 2012), 2012, pp. 85–94. 

[17] G. J. Meschino, D. S. Comas, V. L. Ballarin, A. G. Scandurra, and L. 

I. Passoni, “Automatic design of interpretable fuzzy predicate 

systems for clustering using self-organizing maps,” Neurocomputing, 

vol. 147, no. 1, 2015. 

[18] D. S. Comas, G. J. Meschino, and V. L. Ballarin, “Discovering type-

2 fuzzy predicates in data guided by automatic clustering 

algorithms,” in Eureka International Virtual Physical Meeting 2014, 

2014. 

[19] R. A. Espin Andrade, G. MazcorroTéllez, E. Fernández González, J. 

Marx-Gómez, and M. I. Lecich, “Compensatory Logic: a fuzzy 

normative model for decision making,” vol. 27, no. 2, pp. 178–193, 

2006. 

[20] A. Bouchet, J. I. Pastore, R. E. Andrade, M. Brun, and V. Ballarin, 

“Arithmetic Mean Based Compensatory Fuzzy Logic,” Int. J. 

Comput. Intell. Appl., vol. 10, no. 2, pp. 231–243, 2011. 

[21] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means 

clustering algorithm,” Comput. Geosci., vol. 10, no. 2–3, pp. 191–

203, 1984. 

[22] C. Fraley and A. E. Raftery, “How Many Clusters? Which Clustering 

Method? Answers Via Model-Based Cluster Analysis,” Comput. J., 

vol. 41, no. 8, pp. 578–588, 1998. 

[23] D. S. Comas, J. I. Pastore, A. Bouchet, V. L. Ballarin, and G. J. 

Meschino, “Interpretable interval type-2 fuzzy predicates for data 

clustering: A new automatic generation method based on self-

organizing maps,” Knowledge-Based Syst., vol. 133, pp. 234–254, 

Oct. 2017. 

[24] C. Sima, S. Attoor, U. Brag-Neto, J. Lowey, E. Suh, and E. R. 

Dougherty, “Impact of error estimation on feature selection,” Pattern 

Recognit., vol. 38, no. 12, pp. 2472–2482, 2005. 

[25] G. Ridgway, J. Barnes, T. Pepple, and N. Fox, “Estimation of total 

intracranial volume; a comparison of methods,” Alzheimer’s 

Dement., vol. 7, no. 4, pp. S62–S63, 2011. 

TABLE III 

COMPARISON OF RESULTS OBTAINED BY THE PROPOSED METHOD AGAINST TO THOSE OBTAINED WITH OTHER CLASSIFICATION METHODS AND THE ONLINE 

SOFTWARE VOLBRAIN [5]. VOLUMES ARE EXPRESSED BOTH IN CM
3
 AND IN PERCENTAGE 

 T2-LFPC KNN MLP PNN T1-LFPC Volbrain 

White Matter 

(WM) 
400.22 (22.93%) 376.39 (21.57%) 397.29 (22.77%) 413.75 (23.71%) 371.22 (21.27%) 408.42 (23.63%) 

Grey Matter 

(GM) 
760.48 (43.58%) 786.50 (45.07%) 734.95 (42.11%) 727.52 (41.69%) 816.00 (46.76%) 759.28 (43.92%) 

Cerebro Spinal 

Fluid 

(CSF) 

584.44 (33.49%) 582.25 (33.36%) 612.91 (35.12%) 603.87 (34.60%) 557.92 (31.97%) 561.06 (32.45%) 

Brain 

(WM + GM) 
1160.70 (66.51%) 1162.89 (66.64%) 1132.24 (64.88%) 1141.27 (65.40%) 1187.23 (68.03%) 1167.70 (67.55%) 

Intracranial Cavity 

(IC) 

1745.14 

(100.00%) 

1745.14 

(100.00%) 

1745.14 

(100.00%) 

1745.14 

(100.00%) 

1745.14 

(100.00%) 

1728.74 

(100.00%) 

 



 REVISTA ARGENTINA DE BIOINGENIERÍA, VOL. 21(2), 2017 19 

 

 

[26] J. I. Pastore, E. G. Moler, and V. L. Ballarin, “Segmentation of brain 

magnetic resonance images through morphological operators and 

geodesic distance,” Digit. Signal Process., vol. 15, no. 2, pp. 153–

160, 2005. 

[27] B. Aubert-Broche, A. C. Evans, and L. Collins, “A new improved 

version of the realistic digital brain phantom.,” Neuroimage, vol. 32, 

no. 1, pp. 138–45, Aug. 2006. 

[28] E. R. Doughtery, H. Jianping, and M. L. Bittner, “Validation of 

computational methods in genomics.,” Curr. Genomics, vol. 8, no. 1, 

pp. 1–19, Mar. 2007. 

  


