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Abstract 
The control of polymerization processes has central importance because operational 
conditions affect the processing and end-use properties of the product. The nonlinear 
controllers based upon rigorous models make use of the on-line state estimates obtained 
from the available measurements. For polymerization processes, the Unscented Kalman 
Filter has shown a rewarding performance for state estimation. Because the presence of 
outliers distorts the behaviour of the filter, Robust Statistics-based approaches have 
been proposed to reduce their detrimental effect on variable estimates. Until now, only 
Huber type M-estimators have been used as loss function of the estimation problem. In 
this work, the ability of other types of M-estimators to improve estimate robustness 
without introducing numerical problems is analysed. The performances of the M-
estimators are compared for a copolymerization process within the framework of a 
filtering technique based on the Unscented Transformation, which uses a reformulation 
of the covariance of measurements errors. 
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1. Introduction 
The dynamic operation of polymerization processes is an extremely complex task. They 
usually exhibit highly exothermic reactions and changes in viscosity which cause 
complex heat-transfer dynamics and flow patterns. Moreover, those processes are 
strongly nonlinear. 

The problem of state estimation in nonlinear systems has been covered extensively in 
the past. A widespread estimation technique in process control is the Extended Kalman 
Filter, but this strategy may present linearization errors when the nonlinearity is strong. 
The Unscented Kalman Filter (UKF) has been developed for this type of processes. It 
applies the Unscented Transformation (Julier and Uhlmann, 2004), which is a way to 
calculate the statistics of a random variable when it undergoes a nonlinear 
transformation. The state estimation of polymerization processes has been successfully 
addressed using the UKF (Galdeano et al., 2011). 

Because the presence of outliers distorts the quality of state estimates, nonlinear 
filtering techniques based on Robust Statistics are devised to obtain reliable estimates 
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within the framework of the UKF. All of them use the Huber function as an M-
estimator. Some of them apply a linearized approximation of the nonlinear measurement 
function (Wang et al., 2010), but the linearized method bears many drawbacks, such as, 
low accuracy, cumbersome derivation and evaluation of the Jacobian matrices, etc. 
Others strategies use the nonlinear measurement function directly and a reformulation 
of the covariance of the measurement errors (Chan et al., 2012). 

In this work, the ability of redescending M-estimators to be used as loss functions for 
the derivative-free UKF algorithm is analyzed. The study is carried out for the state 
estimation of the methyl methacrylate (MMA) and vinyl acetate (VA) copolymerization 
process. Results show the disadvantages of using the Huber M-estimator, and the effect 
of parameter settings on the efficiency and robustness of the state estimates. 

2. Robust Unscented Kalman Filtering 
Let us consider that a dynamic system can be represented by the following state space 
model 

11 kkk wxfx  (1) 

kkk vxhy  (2) 

where xk is the n-dimensional vector of states at time step k, yk is the m-dimensional 
measurement vector, f(.) is the process model function, h(.) is the measurement model 
function, wk-1 is the process noise caused by disturbances and modelling errors, and vk is 
the measurement noise. 

To make a robust inference about the state vector given the model and the 
measurements obtained until time k (x̂kǀk), the following nonlinear regression model is 
formulated at first:  
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 (3) 

It combines Eq.(2) and the relationship between the true state vector xk and its 
prediction taking into account the observations got until time k-1, x̂kǀk-1. The residual 
covariance of the nonlinear regression model is  
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where Rk and Pkǀk-1 are the covariance of the measurements and estimate prediction 
errors, respectively. The result of the Cholesky factorization of Mk, SMk, is used to 
decorrelate the nonlinear regression model by multiplying Eq.(3) by SMk

-1. The final 
model equation is  

1478 



Unscented Kalman Filter. Application of the robust approach to polymerization 
processes.  
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where 
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An efficient and robust solution of the regression problem can be achieved solving the 
following optimization problem 

( )
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k

m n
i

k k
x i

x r            (7) 

where  is the Loss Function (LF) of an M-estimator and rk
(i) is the i-th component of 

the residual. If ρ(rk
(i)) is differentiable, its derivative is the Influence Function (IF), , 

i.e. ρ'(r) = ψ(r). Furthermore, the weight function w is related to the IF as follows  

( ) 0( )
(0) 0
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The weight matrix Wk is defined using the weights w(rk
(i)) as diagonal elements 
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The atypical measurements receive smaller weights. That matrix is used to reformulate 
Mk (Chang et al., 2012) as follows 
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By considering that ek|k-1=0, the reformulation only affects the covariance of the 
measurement errors, that is, the values of Rk in Mk are replaced by those corresponding 
to R̃k in . Matrix  is applied in the measurement update step of the standard UKF. 
For the sake of brevity, no more details about the UKF algorithm are provided in this 
work, but they can be found elsewhere (Julier and Uhlmann, 2004). 

3. Robust M-Estimators 
Robust Statistics aims at providing reliable estimates not only when the data follow a 
given distribution exactly, but also when this happens only approximately. Therefore 
there is a trade-off between efficiency and robustness. 

Let us assume that the distribution of an estimate  is approximately N(μ0, v/N) when 
the number of samples N increases, then is asymptotically normal with asymptotic 
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value μ0 and asymptotic variance v. The asymptotic efficiency of is defined as the 
ratio v0/v, where v0 is the asymptotic variance of the optimal solution of Eq.(7) if the LF 
is the Least Square estimator, and measures how near  is to the optimum (Maronna et 
al., 2006). To ensure a high asymptotic efficiency at the normal distribution, for 
example 95 %, the parameters of the M-estimator functions can be properly tuning 
using the jackknife procedure (Llanos et al., 2015). 

Up to the present time, only the Huber (Hub) M-estimator has been used as LF for all 
robust UKF algorithms reported in the literature. The Huber M-estimator is a convex 
function and therefore unbounded. It has the advantage that the solution of Eq.(7) has a 
unique local minimum. In consequence, the starting values of the iterative solution 
procedure may influence the number of iterations but not the final outcome. However, 
Huber M-estimator is sensitive to very large outliers, and therefore may have a low 
efficiency for heavy-tailed error distributions.  

In contrast, redescending estimators can be made very efficient for heavy-tailed data, 
but require a good starting point to ensure attaining the “good” solution. The LF of 
redescending estimators can be of two types. The first one is unbounded but its IF tends 
to zero at infinity. Therefore, the matrix Wk can be inverted. The second type of LF is 
bounded but its (r) is strictly equal to zero for ǀrǀ>parameter. In this case, the 
reformulation of the covariance of the measurement errors cannot be used because 
numerical problems arise. The Welsch (Wel) and Correntropy (Cor) LFs have the 
required features to apply the aforementioned technique. The IF of the first one 
asymptotically approaches zero for large values of ǀrǀ. The second estimator is the 
Gaussian kernel function, whose parameter CCor is the kernel width, and its IF tends 
quickly to zero for large values of ǀrǀ>CCor.  

The LFs and their parameters for an asymptotic efficiency equal to 95 % are presented 
next for the Hub, Wel and Cor M-estimators. 
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4. Case study 
The process selected as case study is the copolymerization of MMA and VA in a 
continuous stirred tank reactor with a recycle loop. The fresh stream contains the MMA 
and VA monomers, azoisobutyronitrile (AIBN) as initiator, benzene (B) as solvent, 
acetaldehyde as chain transfer agent (CTA). Also some inhibitor (INH) could be 
present. 
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The mathematical model of the process comprises a set of differential algebraic 
equations for the mass and energy balances of the system. A detailed description of the 
process and its mathematical model can be found elsewhere (Congalidis et al., 1989). 
The model involves the following state vector: 

* *
0 1 2, , , , , , , , , ,MMA VA AIBN B CTA MMA VA rC C C C C T          (14) 

where C is a molar concentration, λ* is a molar concentration of the monomer in the 
copolymer, γj the jth-order moment of the copolymer molecular weight distribution, and 
Tr is the reactor temperature. 

Critical process and quality variables, such as the total conversion (ConvTotal) and the 
weight-average molecular weight (M̅W) can be expressed in terms of some the states in 
the state vector. The present work assumes that variables Tr, ConvTotal and M̅W are the 
on-line measurements available from the process. The first measurement could be 
obtained by a thermocouple; measurements of conversion and M̅W could be obtained 
from on-line sensors that include empirical correlations. (Hashemi et al., 2013). Hence, 
the measurement vector yk is: 

T
k r Total W ky T Conv M          (15) 

5. Results and Discussion 
Ten thousand simulations of the dynamic behaviour of the process were performed. At a 
certain time, a perturbation occurs in the reactor feed stream leading to a transition from 
an initial steady state to a final one. The Mean Square Error (MSE) of each 
measurement is calculated as the average of the differences between its true value and 
the estimated one using the filtering technique. Table 1 displays the results for the 
different methodologies when outliers are present and when they are not.  

Table 1. Mean Square Errors for different M-estimators 

Methodology 
MSE without Outliers MSE with Outliers 

Tr ConvTotal M̅W Tr ConvTotal M̅W 

CUKF 1.08E-06 4.60E-01 3.75E+04 4.94E-06 1.91E+00 1.83E+05 

UKF-Hub 1.43E-06 5.62E-01 5.22E+04 1.51E-06 6.07E-01 5.30E+04 

UKF-Wel 1.28E-06 5.11E-01 4.66E+04 1.30E-06 5.25E-01 4.73E+04 

UKF-Cor1 1.17E-06 4.87E-01 4.02E+04 1.21E-06 4.92E-01 4.18E+04 

UKF-Cor2 1.38 E-06 5.50E-01 5.04E+04 1.44E-06 5.78E-01 5.12E+04 

Results are provided for the Classic UKF (CUKF), and the robust derivative-free 
algorithms that use as M-estimators the Hub (UKF-Hub), Wel (UKF-Wel) and Cor 
function. Two different approaches are applied to calculate the parameter CCor. For 
UKF-Cor1, the jackknife procedure is used to satisfy an asymptotic efficiency equal to 
95 %. In contrast, the methodology UKF-Cor2 applies an adaptive technique based on 
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the residual values to update the parameter value, and assumes that any residual equal to 
or greater than 2√2 contributes very little to the estimates (Muñoz et al., 2012). 

The results show that when no outliers are present, UKF-Cor1 behaves well in 
comparison to CUKF, which is the best estimator. The contrary happens for UKF-Hub 
and UKF-Cor2. Under the presence of outliers, the MSEs for the redescending M-
estimators are lower than the one obtained for the Hub function because their IF tend to 
zero for very large outliers. Also, UKF-Cor1 outperforms UKF-Wel for state 
estimation, and the methodology to set the parameters used for UKF-Cor1 provides 
better results than the one used for UKF-Cor2. 

6. Conclusion 
In this work, the application of redescending M-estimators whose LF is unbounded but 
its IF tends to zero at infinity is analysed in the framework of derivative-free UKF 
algorithms. It is remarkable that better estimates are obtained for the copolymerization 
process in comparison with the ones provided by the current methodologies, which are 
based on the Hub function. Also no numerical problems arise using that specific type of 
redescending M-estimators. It is noticeable that the adaptive parameter setting of the 
Cor function does not yield a real improvement in performance.  
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