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ABSTRACT: The effect of temperature on sperm dynamic parameters in ectotherms in general, and reptiles
in particular, remains poorly understood due to the lack of consistent evidence. As a group, snakes show
considerable variability regarding mating systems, male reproductive behavior, thermoregulatory behavior,
and preferred temperatures. Additionally, snakes present significant variability in sperm competition levels,
which is determined by the species mating system. Because sperm longevity, motility, and velocity are
positively related to reproductive success in both competitive and noncompetitive conditions, the sperm
physiology of ectothermic organisms may functional optimally at ecologically relevant temperatures. The
objective of this work was to analyze the effect of an ecologically plausible range of temperatures on sperm
dynamic parameters of two species of snakes with contrasting mating systems and sperm competition levels:
Boa constrictor occidentalis and Waglerophis merremii. To accomplish this, an in vitro incubation approach
was used: sperm dynamic parameters (i.e., motility and velocity) were measured on sperm solution aliquots
incubated at 25uC, 30uC, and 37uC for up to 10 h by means of a phase contrast video microscopy system.
Results suggested that although an increase in temperature has a general negative impact on sperm motility
and velocity, the two species studied present different degrees of sensitivity to high incubation temperatures.
Moreover, these differences can be explained by the dissimilar thermal conditions that the sperm of the two
species would experience during their reproductive seasons, which are a consequence of the differences in
their reproductive behavior. In conclusion, sperm motility and swimming velocity respond mainly to
environmental conditions imposed by mating systems rather than to selection by sperm competition.
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SNAKES are ectothermic organisms that
occur in a great variety of climates and are
exposed to a wide range of temperatures; even
species with sympatric distribution show
differences in thermoregulation and preferred
temperatures (Llewelyn et al., 2005; Luiselli
and Akani, 2002; Moore, 1978). To function
over a wide range of temperatures, snakes
display a diversity of physiological and behav-
ioral adaptations that optimize numerous
physiological processes and biochemical reac-
tions at different temperatures (reviewed by
Shine et al., 2003b).

In addition, snakes display considerable
variability in reproductive traits among species
(see Zug et al., 2001, for a partial analysis),
exhibiting a wide range of mating systems and
male reproductive behaviors (Duvall et al.,
1992; Rivas and Burghardt, 2005; Shine,
2003). Those behaviors include extremes such
as males that traverse long distances searching
for spatially unpredictable females (Bertona

and Chiaraviglio, 2003; Rivera et al., 2006)
and males that participate in explosive mating
aggregations with highly spatially predictable
females (Shine et al., 2001, 2003a). Moreover,
snakes present significant variability in sperm
competition (competition between sperm of
rival males to fertilize a given set of ova),
which is associated with male–male and male–
female encounter rates determined by the
mating system (Tourmente et al., 2009).

Sperm competition has been reported to
promote an increase in sperm length in
several groups (reviewed in Gomendio and
Roldan, 2008). It has been proposed (Gomen-
dio and Roldan, 1991) that a longer flagellum
would increase propelling force, thus resulting
in faster sperm. Although snake sperm struc-
ture has been studied in several works (Al
Dohki, 2004; Cunha et al., 2008; Oliver et al.,
1996; Tavares-Bastos et al., 2007, 2008), most
of them considered it only as a source of
phylogenetic information. In contrast, Tour-
mente et al. (2006, 2008) described the
spermatozoa of Boa constrictor occidentalis,3 CORRESPONDENCE: e-mail, maxitour@gmail.com
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Bothrops alternatus, and B. diporus; proposed
several ultrastructural traits as adaptations to
increase motility or longevity under sperm
competition and storage conditions; and
related them to male reproductive ecology in
these species. More importantly, Tourmente
et al. (2009) found that an increase in sperm
competition (determined by mating system)
was associated with an increase in total sperm
length, which was accounted for mainly by an
elongation of the midpiece.

Under sperm competition, a higher propor-
tion of motile sperm (higher motility) would
improve fertilization success and a higher
swimming velocity would increase the proba-
bility of reaching the ovum and fertilizing it
before rival sperm (Parker, 1998). In this
regard, previous studies have found positive
relationships between sperm competition and
sperm motility (Firman and Simmons, 2010;
Møller, 1988) and velocity (Fitzpatrick et al.,
2009; Gomendio and Roldan, 2008).

Relatively few studies have focused on
snake sperm motility (Fahrig et al., 2007;
Mengden et al., 1980; Schulte-Hostedde and
Montgomerie, 2006; Zacariotti et al., 2007),
and all of them have estimated this para-
meter in a subjective manner. Only one study
(Tourmente et al., 2007) has thoroughly
described the basic sperm dynamic parame-
ters (velocity and motility) of a snake species.

It is widely accepted that the regulation of
sperm motility and fertilizing ability depends
on the interaction of several factors, among
which temperature is of vital importance
(Ashizawa and Wishart, 1994). Still, the effect
of temperature on sperm dynamic parameters
in ectotherms in general (Costanzo et al.,
1998; Crockett, 1998; Hellriegel and Blanck-
enhorn, 2002; Iguchi et al., 2007; Johnson and
Yund, 2004), and reptiles in particular (Fahrig
et al., 2007; Gist et al., 2000), remains poorly
understood due to the lack of consistent
evidence. To date, the only information
available about the effects of temperature on
snake sperm physiology comes from studies
related to the effects of cold preservation on
motility (Fahrig et al., 2007; Mengden et al.,
1980), which have been performed at tem-
peratures that are not expected to be experi-
enced by the species in their natural environ-
ment.

Nevertheless, it is intuitive to think that,
because sperm motility and velocity are the
main determinants of male reproductive
success both in competitive (Birkhead et al.,
1999; Gage et al., 2004) and noncompetitive
(Froman et al., 1999; Levitan, 2000; Malo et
al., 2005) conditions, sperm physiology in
ectothermic organisms may be adapted to
function optimally at temperatures that are
more frequently experienced in their repro-
ductive seasons (i.e., ecologically relevant
conditions) regardless of sperm competition
pressures.

This study involved two snake species, Boa
constrictor occidentalis (Boinae) and Wagle-
rophis merremii (Xenodontinae), which share
a large portion of their distribution in central
Argentina. Although these two species are not
close phylogenetically, they represent oppo-
site extremes of male investment in sperm
production and morphology, sperm competi-
tion levels, and mating systems (Tourmente et
al., 2009).

Boa constrictor occidentalis (Philippi, 1873)
is a viviparous, large-sized (females over 3 m
length in some cases), nonvenomous snake
(Bertona and Chiaraviglio, 2003; Cei, 1993).
This species has relatively small testes in
relation to body size (testes represent 0.47%
of body weight) and short spermatozoa, which
indicate low levels of sperm competition
(Tourmente et al., 2009). The reproduc-
tion of B. c. occidentalis is marked by the
formation of mating groups composed of one
female and one to three males (Bertona and
Chiaraviglio, 2003; Chiaraviglio et al., 2003).
Although these groups appear during the dry
season from midautumn to late winter (Ber-
tona and Chiaraviglio, 2003; Chiaraviglio et
al., 2003), copulations are presumed to take
part in mid- to late winter (Bertona and
Chiaraviglio, 2003) because they have only
been observed in the lab during this season
(M. Tourmente, personal observation). Sper-
matogenesis has been reported as prenuptial
for this species, occurring through the autumn
(Ibargüengoytı́a et al., 2006). Studies of the
reproductive ecology of B. c. occidentalis have
demonstrated that reproductive females alter
their thermoregulatory behavior to maintain
high and stable body temperatures (around
28uC with a maximum of 33uC; Bertona, 2003;
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Chiaraviglio, 2006). Additionally, B. c. occiden-
talis has a prolonged-mate-search mating sys-
tem in which males travel long distances in high
temperatures to search for dispersed females
(Bertona and Chiaraviglio, 2003; Cardozo and
Chiaraviglio, 2008; Rivera et al., 2006); the
males reach a mean active body temperature of
27uC and a maximum of 36uC (Bertona, 2003).

Waglerophis merremii (Wagler, 1824) is an
oviparous, midsized (females reaching 1 m
length in some cases), nonvenomous snake
(Cei, 1993; Giraudo, 2001). Compared to B. c.
oddidentalis, W. merremii has a roughly 10
times higher (4.09%) relative testes size and
extremely long spermatozoa, which suggests a
mating system with high levels of sperm
competition (Tourmente et al., 2009). This
species has an annual and associated repro-
ductive cycle, with mating taking place in the
spring coincident with peaks in gonadal
activity and sexual hormones (Chiaraviglio,
1993). However, it is remarkable that the
males of this species have a second peak of
testicular and hormonal activity in the winter,
during which they are not active (Chiaraviglio,
1993). This pattern suggests the occurrence of
spermatogenesis in the winter, coupled with
male sperm storage until the mating season.
During the mating season, females are avail-
able only briefly (because hatchlings must
emerge at the same time as juvenile anurans)
and have high spatial predictability (in asso-
ciation with water bodies; Chiaraviglio, 1993;
Leynaud et al., 2008). In this situation, which
is similar to an explosive mating aggregation,
the male–female encounter rate would be
increased and males would not be forced to
travel long distances to find females, and
hence could avoid exposure to extreme
temperatures. Moreover, there is no evidence
indicating that females of this species possess
thermoregulatory behaviors that generate
high temperatures inside their bodies. Finally,
thermoregulatory studies in other reptile
species (Grigg et al., 1979; Manning and
Grigg, 1997) have demonstrated that frequent
immersion in water would produce rapid
cooling in animals that are similar in size to
W. merremii.

In this context, two working hypotheses
could be formulated: (1) B. c. occidentalis
spermatozoa are capable of maintaining their

performance during prolonged periods of high
temperatures (while males are searching for
mates and inside females prior to fertili-
zation), whereas W. merremii spermatozoa
would instead show maximum performance
at cooler temperatures and (2) at optimum
temperatures, the species with higher levels of
sperm competition would show higher sperm
motility and velocity values. The objective of
this work was to analyze the effect of an
ecologically plausible range of temperature on
sperm dynamic parameters of these two
species of snakes with contrasting levels of
sperm competition (inferred from relative
testes mass, sperm length, and predicted
mating system), using an in vitro incubation
approach.

MATERIALS AND METHODS

Specimens and Sperm Collection

Waglerophis merremii.—Thirteen sexually
mature males were obtained from Córdoba
Province (central Argentina) during the mat-
ing season of this species, from early Novem-
ber to late December (see Chiaraviglio [1993]
for maturity criteria). The animals were
euthanized by decapitation following anes-
thetic overdose with ketamine hydrochloride
and xylazine. Semen samples were obtained
from the caudal section of the vas deferens.
Because snakes store mature sperm in the vas
deferens and do not posses sexual accessory
glands (Sever, 2004), the extracted semen
would be equivalent to ejaculated semen.

Boa constrictor occidentalis.—Thirteen sex-
ually mature males were captured in the
district of Loreto (Santiago del Estero Prov-
ince, Argentina) during the mating season,
from late July to early October. The repro-
ductive condition of these animals was deter-
mined in situ using ultrasound images (porta-
ble ecographer Sonosite 180 Plus, 7.5 Mhz
transductor; see Chiaraviglio et al. [1998] for
details on the procedure and Bertona and
Chiaraviglio [2003] for maturity criteria), after
which the animals were moved to the
laboratory. Because B. c. occidentalis is a
threatened species (CITES, 2008), semen
samples were extracted from living animals.
This has been achieved in other snake species
by manual stimulation of the cloacal zone
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(Mattson et al., 2007; Mengden et al., 1980;
Schulte-Hostedde and Montgomerie, 2006)
and electroejaculation (Quinn et al., 1989).
However, the high muscular development of
these snakes made these procedures unreli-
able. Consequently, we decided to explore the
following surgical procedure: The animals
were anesthetized with intramuscular injec-
tions of ketamine hydrochloride (40 mg/kg)
and xylazine (0.6 mg/kg; Carpenter et al.,
2001; Mader, 2005). Subsequently, males
were immobilized with adherent hypoaller-
genic tape and a 5-cm incision was made
approximately 10 cm anterior to the cloaca.
The semen samples were extracted from the
caudal section of one of the deferent tubes. To
close the wound, a double suture was
performed at muscular and dermal levels.
The animals were maintained and observed
for at least 15 d and then released into the
wild. All animals survived the procedure and
none of them exhibited any behavioral or
physiological signs associated with pain or
distress (IACUC, 2002) during the observa-
tion period. For each specimen, a semen
sample was obtained that was both contami-
nation-free and of sufficient volume for the
experiment. This fact, together with the
survival of all the individuals, indicates that
this technique is acceptable for regular use in
large snakes.

Capture, surgery, maintenance, and release
procedures were carried out according to the
American Society of Ichthyologists and Her-
petologists’ guidelines for use of live amphib-
ians and reptiles in field and laboratory
research (ASIH, 2004). Euthanasia and anes-
thesia were carried out according to the
Institutional Animal Care and Use Committee
(IACUC) guidelines. Specimens were col-
lected with permission of the Agencia Córdo-
ba Ambiente (Córdoba, Argentina), and the
Government of the Santiago del Estero
Province (Santiago del Estero, Argentina).

For both species, the semen samples were
collected in 1.5-mL plastic tubes containing
approximately 450 mL of phosphate-buffered
saline 31. Finally, snout–vent length (SVL;
cm), body weight (g), testes length and width
(mm), and testes weight (TW; g) were
measured for each animal. Testes volume
(mm3) was calculated using the equation for

the volume of an ellipsoid (Méndez and
Villagrán, 1998). For B. c. occidentalis, testes
weight was calculated using a linear regression
of testes mass against testes volume (Tour-
mente et al., 2009).

Influence of Incubation Temperature on
Sperm Dynamic Parameters

For both species, sperm concentration was
estimated using a Neubauer chamber and the
samples were diluted to a concentration of 1
3 106 cells/mL in Biggers, Whitten, and
Wittingham culture medium (Biggers et al.,
1971) supplemented with 4% bovine serum
albumin. After dilution, 100-mL aliquots of
these samples were fixed for photography with
a solution of 2% formaldehyde in water. The
samples were examined at 3400 magnifica-
tion using phase-contrast microscopy. Micro-
photographs of the samples were taken using a
Sony DSCW50 digital camera with a 36
zoom. The lengths (mm) of sperm head,
midpiece, and principal piece, and total sperm
length were measured for a minimum of 20
spermatozoa per sample using software Im-
ageJ v. 1.38 (U.S. National Institutes of
Health). Mean trait values for each species
were calculated from the means from each
individual of that species.

In order to determine the effects of
incubation temperature on sperm traits,
aliquots (5 mL) of the diluted sperm samples
were transferred to 15-mL plastic tubes and
incubated at 25uC, 30uC, and 37uC in
thermally stable water baths. The tubes were
partially open to allow airflow. Total time
elapsed between semen collection and begin-
ning of incubation (0 h) was never greater
than 10 min. All semen extraction and dilution
procedures were performed at room temper-
ature (25uC).

The selection of ecologically relevant incu-
bation temperatures (25uC, 30uC, and 37uC)
was based on two factors. (1) Previous studies
on the thermal biology of B. c. occidentalis
(Bertona, 2003; Chiaraviglio, 2006; Chiaravi-
glio and Bertona, 2007) indicated that males
of this species have mean body temperatures
near 27uC when they are moving, but are
capable of reaching maximum body temper-
atures of 36uC in the mating season. (2)

March 2011] HERPETOLOGICA 61



Because data on thermal biology of W.
merremii are not available, we performed a
bibliographic search for field studies of
thermoregulation in snakes of the families
Viperidae, Colubridae, Pythonidae, and Elap-
idae (Beck, 1996; Blouin-Demers and Weath-
erhead, 2001; Brown and Weatherhead, 2000;
Isaac and Gregory, 2004; Llewelyn et al.,
2005; Luiselli and Akani, 2002; Moore, 1978;
Peterson, 1987; Rosen, 1991; Shine et al.,
2003b; Slip and Shine, 1988; Withaker and
Shine, 2002). These studies included a wide
range of body sizes, oviparous and viviparous
species, and species that live in temperate and
tropical habitats. We only excluded three
species because they were reported to be
mainly nocturnal (Llewelyn et al., 2005). The
mean values of field body temperatures
provided by these studies ranged from ap-
proximately 25uC in the diamond python
(Morelia spilota; Slip and Shine, 1988) to
32.4uC in male Natriciteres fuliginoides (Lui-
selli and Akani, 2002). A review by Peterson et
al. (1993) suggested that, in most cases,
temperatures of active snakes have a modal
value in the range of 28–32uC.

At 0, 2, 4, 6, 8, and 10 h of incubation, a
20-mL aliquot of sperm suspension was taken
for each incubation temperature and placed
in a plastic observation chamber and covered
with a coverslip. Measurement of dynamic
parameters was carried out at room temper-
ature (25uC) using a video microscopy system
composed of a phase contrast microscope
(Zeiss) equipped with a video camera (Pana-
sonic CCTV WVBL90) and a digital capture
card (Pinnacle Studio 500 PCI). The software
used to capture the digital videos was
Virtualdub v.1.6.16 (Avery Lee). The samples
were recorded at 3100 magnification for
5 min, with a random change of the micro-
scope field every 5 s. Subsequently, indi-
vidual sperm tracks were followed for 3 s
in 50 cells/sample and transformed to a
matrix of Cartesian coordinates using ImageJ
v.1.38 and its plug-in MtrackJ v. 1.1.0 (Eric
Meijering). The following sperm dynamic
parameters were calculated from this matrix
using Spermtrack v. 4.2 (Universidad Nacio-
nal de Córdoba, Argentina): percentage of
cells with progressive motility (MOT), linear
velocity (VSL; mm/s), curvilinear velocity

(VCL; mm/s), and linearity (LIN; LIN 5
VSL/VCL).

Data Analysis

The data were analyzed with a two-factor
repeated-measures analysis of variance for
each species, using incubation temperature
and time as factors (with three and six levels,
respectively). Differences between conditions
were analyzed using a post-hoc multiple-
comparisons test using the Bonferroni correc-
tion for a. To satisfy assumptions of normality,
the variable MOT was transformed to the
arcsine of the square root of the proportion of
motile sperm. The statistical analyses were
performed using SPSS Statistics (SPSS
v.17.0.0; SPSS, IBM Corporation, Somers,
New York, USA) with a significance level a 5
0.05.

RESULTS

Body (SVL, body mass, gonadosomatic
index, testes mass, and testes volume) and
sperm dimensions (head length, midpiece
length, principal piece length, and total sperm
length) for both species are listed in Table 1.
Micrographs of sperm from both species are
shown in Fig. 1. Although sperm cells of both
species were similar in morphology to the
model described by Oliver et al. (1996), they
show notable variation in component dimen-
sions (Table 1).

Influence of Incubation Temperature on
Sperm Dynamic Parameters

For both species, it was impossible to take
representative velocity measurements at 10 h
of incubation as a consequence of the low
percentage of motile cells. Due to the same
problem, no velocity measurements were
taken from aliquots of W. merremii incubated
at 37uC beyond 2 h.

Waglerophis merremii.—The MOT de-
creased significantly with increasing incuba-
tion time for the three temperatures (at 4 and
8 h for 25uC, at 2 and 6 h for 30uC, and at 2
and 8 h for 37uC). However, MOT showed an
earlier and more pronounced decrease at
higher incubation temperatures (Fig. 2a). At
earlier incubation times (2 and 4 h), there
were significant differences between MOT
values at the three temperatures (MOT25uC .
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MOT30uC . MOT37uC). At later times (6, 8,
and 10 h), the pattern was MOT25uC .
MOT30uC < MOT37uC (Fig. 2a). VCL showed
a significant increase at 25uC and 30uC (at 2
and 4 h, respectively) and a decrease at 37uC
(at 2 h; Fig. 2b). VSL presented a similar
pattern: it increased at 2 h for the aliquots
incubated at 25uC and decreased at the same
time for those at 37uC (Fig. 2c). The aliquots
incubated at 25uC showed higher values of
VCL and VSL than those incubated at 30uC
and 37uC at all times (Fig. 2b,c), with the
exception of VSL at 2 h (for which values were
similar for the aliquots incubated at 25uC and
30uC). The interaction term between incuba-
tion temperature and time was significant in
MOT, VCL, and VSL (Fig. 2). LIN did not
show a significant effect of incubation tem-

perature, only registering a slight increase at
8 h for the samples at 25uC and 30uC
(Fig. 2d).

Boa constrictor occidentalis.—The MOT
showed a low value (10.2%) at 0 h, increasing
significantly at 2 h in all incubation temper-
atures. Subsequently to this initial increase,
MOT decreased significantly at the three
incubation temperatures (at 6 h for 25uC
and 30uC, and at 4 and 6 h for 37uC; Fig. 3a).
Additionally, the aliquot incubated at 37uC
presented significantly lower MOT values
than the ones incubated at 25uC and 30uC at
all times after 2 h (Fig. 3a). VCL and VSL
showed an early increase for the samples
incubated at 25uC and 30uC (at 2 and 4 h,
respectively). Later in time there was a
decrease for the 30uC and 37uC aliquots (at
8 h for VCL and at 6 and 8 h, respectively, for
VSL; Fig. 3b,c). In the case of VCL, the values
presented by the aliquots incubated at 25uC
and 30uC were similar and higher than those
from the samples incubated at 37uC at 2, 4,
and 6 h (Fig. 3b). From 4 to 8 h, VSL values
for the samples incubated at 25uC and 30uC
were also higher than those incubated at 37uC
(Fig. 3c). The interaction term between incu-
bation temperature and time was significant in
MOT, VCL, and VSL (Fig. 3). LIN did not
show a significant incubation temperature
effect, registering only a significant decrease
at 6 h for the 37uC samples (Fig 3d).

DISCUSSION

The results of this study suggest that,
although snake spermatozoa are able to main-
tain their motility and velocity to a certain

TABLE 1.—Body and sperm dimensions of Boa constrictor occidentalis and Waglerophis merremii. Data are expressed as
6 SE. SVL: snout–vent length; GSI: gonadosomatic index 5 (testes mass/body mass) 3 100. Waglerophis merremii n 5

13 and Boa constrictor occidentalis n 5 13.

Variable B. c. occidentalis W. merremii

Corporal dimensions Body mass (g) 4161.5 6 939.9 84.7 6 26.8
SVL (cm) 179.8 6 13.6 58.9 6 6.1
Testes volume (cm3) 29.9 6 15.4 4.1 6 2.3
Testes mass (g) 20.9 6 10.8 2.6 6 1.6
GSI 0.5 6 0.2 2.9 6 1.5

Sperm dimensions Head length (mm) 11.4 6 0.3 11.3 6 0.6
Midpiece length (mm) 35.7 6 0.7 111.1 6 2.6
Principal piece length (mm) 43.5 6 1.2 35.7 6 1.6
Total sperm length (mm) 90.6 6 1.1 159.3 6 3

FIG. 1.—Phase contrast micrographs of the sperm of
two snake species. (a) Waglerophis merremii. (b) Boa
constrictor occidentalis. h: Head; mp: mipdiece; pp:
principal piece. Lines indicate the beginning and end of
the midpiece. Scale bar: 10 mm.
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degree when exposed to a wide range of
ecologically realistic temperatures, an increase
in incubation temperature has a general
negative impact on their values. Furthermore,
because the effects of temperature depended
on the length of incubation in both species,
higher incubation temperatures not only af-

fected the absolute values of sperm dynamic
parameters, but would also change the tempo-
ral curve of these parameters, accelerating the
time-related decrease in their values.

The deleterious effects of high incubation
temperatures could be due to an increase in
sperm metabolism and other cellular bio-

FIG. 2.—Effects of temperature and time of incubation on the sperm dynamic parameters of Waglerophis merremii.
(a) Percentage of motile cells (% motility). (b) Curvilinear velocity (VCL, mm/s). (c) Linear velocity (VSL, mm/s). (d)
Linearity (LIN 5 VSL/VCL). Values represented are 6 SE. Different letters indicate significant differences among
temperatures at the same time. Vertical arrows indicate significant differences relative to the previous time of incubation
at the same temperature. Values of F and P were taken from a two-factor repeated-measures analysis of variance (a 5
0.05). The significance of the differences was tested using a post-hoc multiple-comparisons test with Bonferroni
correction. Full black line: 25uC; dashed black line: 30uC; full grey line: 37uC.
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chemical processes associated with sperm
motility, which would increase energy con-
sumption and result in a general acceleration
of sperm senescence (Auger et al., 1989; Kime
et al., 1996; Makler et al., 1981).

In certain teleost species, higher tempera-
tures have been shown to increase the beat

frequency of sperm flagella (Billard and
Cosson, 1992) but decrease the duration of
sperm motility (Billard and Cosson, 1992;
Mansour et al., 2002; Van Look, 2001; Williot
et al., 2000) and viability (Mansour et al.,
2002). In this regard, the results of the present
study appear to be contradictory, because the

FIG. 3.—Effects of temperature and time of incubation on the sperm dynamic parameters of Boa constrictor
occidentalis. (a) Percentage of motile cells (% motility). (b) Curvilinear velocity (VCL, mm/s). (c) Linear velocity (VSL,
mm/s). (d) Linearity (LIN 5 VSL/VCL). Values represented are 6 SE. Different letters indicate significant differences
among temperatures at the same time. Vertical arrows indicate significant differences relative to the previous time of
incubation at the same temperature. Values of F and P were taken from a two-factor repeated-measures analysis of
variance (a 5 0.05). The significance of the differences was tested using a post-hoc multiple-comparisons test with
Bonferroni correction. Full black line: 25uC; dashed black line: 30uC; full grey line: 37uC.
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decrease in sperm motility at higher incuba-
tion temperatures was not associated with an
increase in sperm velocity. In addition, studies
in ascidian species have shown that an
increase in sperm incubation temperature
results in a decrease in sperm fertilizing
ability by diminishing sperm longevity (John-
son and Yund, 2004).

Studies in turtles have suggested that sperm
dynamic parameters (percentage of motile
cells and velocity) increase when sperm are
maintained at low temperature (Gist et al.,
2000). This pattern contrasts with the idea of
an acceleration of sperm metabolism, which
has been suggested to promote an increase in
sperm velocity, at least in endothermic
organisms (Auger et al., 1989; Hammerstedt
and Hay, 1980).

Additionally, high temperatures may cause
negative effects on sperm motility due to
enzyme denaturation (Mahi and Yanagimachi,
1973) or alteration of sperm membrane order,
fluidity, permeability, and thickness (Crockett,
1998; Müller et al., 2008). However, sperm
physiology in reptiles is insufficiently under-
stood and, to our knowledge, there is not
enough evidence in this field to draw a
consistent conclusion about the effects of high
temperatures on sperm function.

In the present study, we also show for the
first time that the sperm dynamic parameters
of the two studied snake species show
different degrees of sensitivity to high incu-
bation temperatures. Waglerophis merremii
spermatozoa register higher motility and
velocity values at 25uC than those registered
at 30uC. Moreover, incubation at 37uC is
highly deleterious to motility, precluding
accurate velocity measurements. Conversely,
the motility and velocity of B. c. occidentalis
spermatozoa show a less pronounced effect of
incubation temperature: the values of these
parameters are similar at 25uC and 30uC, only
decreasing at 37uC. Moreover, even at 37uC,
the percentage of motile sperm is high enough
to take enough velocity measures to assure a
representative sample.

From an adaptive standpoint, any organism
should ensure the maximum fertilization prob-
abilities during its reproductive time window.
Because environmental temperature has a
great influence on body temperature in most

ectotherms, it seems logical that differences in
environmental temperature experienced dur-
ing the mating season may result in animals
having different body temperatures when
mating. Thus, it would be intuitive to expect
sperm dynamic parameters of different species
to have favorable variations when subjected to
thermal conditions that are frequently experi-
enced by these snakes in their reproductive
seasons. Coincidently, evidence in amphibians
indicates that the spermatozoa of the species
that undergo regular winter freezing are able to
maintain higher fertilizing capabilities after
cryopreservation periods (Costanzo et al.,
1998). In addition, some turtle species that
mate in winter show an increase in sperm
speed and motility percentage when incubated
at low temperatures (Gist et al., 2000).

If we take in account that B. c. occidentalis
copulates during the winter (Bertona and
Chiaraviglio, 2003), whereas W. merremii
copulations occur during the spring (Chiar-
aviglio, 1993), the results appear to be
contradictory: the species that reproduces
when temperatures are colder shows a higher
tolerance to high incubation temperatures
than the species in which the mating season
occurs at warmer temperatures. However, the
results support our hypothesis that the differ-
ences between these two species in sperm
sensitivity to high incubation temperature may
be explained in terms of their differences in
reproductive mode and mating systems fea-
tures. These features could alter the environ-
mental conditions experienced by the individ-
uals of these species, consequently modifying
environmental pressures on sperm dynamics.

As a product of their prolonged mate-
search activities, males of B. c. occidentalis
would be subjected to long periods of
exposure to high temperatures, which would
result in high body temperatures (Bertona,
2003; Rivera et al., 2006). Moreover, females
of this species are able to maintain high and
stable body temperatures during mating
season (Bertona and Chiaraviglio, 2003;
Chiaraviglio, 2006). Thus, because sperm
inside these snakes would frequently be
exposed to relatively high temperatures (both
inside the males and the females), selective
forces should favor the maintenance of sperm
performance under such conditions.
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There is no accurate information on the
thermal biology of W. merremii. Nevertheless,
due to the increased male–female encounter
rates characteristic of the inferred mating
system for this species (Chiaraviglio, 1993;
Leynaud et al., 2008; Tourmente et al., 2009),
male W. merremi would not be forced to
engage in prolonged mate searching. Further-
more, the frequent exposure to water would
lower the average body temperature (Grigg et
al., 1979; Manning and Grigg, 1997).

According to theoretical predictions (Par-
ker, 1998) and previous evidence from other
taxonomic groups (Firman and Simmons,
2010; Møller, 1988), we should expect that
species with higher sperm competition exhibit
higher sperm motility. Nonetheless, our re-
sults in this regard are not conclusive:
although at 25uC W. merremii (higher sperm
competition) appears to have a higher per-
centage of motile sperm during shorter
incubation periods, this pattern disappears
with time. Moreover, the extremely deleteri-
ous effects of increasing incubation tempera-
tures on W. merremii sperm motility render
the comparison moot at 30uC and 37uC.

One last remarkable point of this compar-
ison is the fact that B. c. occidentalis, the
species with the shorter sperm and lower
sperm competition level (according to relative
testes size), also attained higher straight-line
velocity by sperm. It has been proposed that
sperm competition should select for longer
sperm flagella, because they would yield
higher propelling thrust and hence result in
faster sperm (Gomendio and Roldan, 1991).
This hypothesis has been supported by recent
studies in mammals (Gomendio and Roldan,
2008), birds (Lüpold et al., 2009), and fish
(Fitzpatrick et al., 2009). However, the results
of the present work seem in conflict with this
hypothesis. A possible explanation to the
observed results is that larger sperm could
maintain relatively stable speeds for a longer
period of time than shorter ones, without
necessarily achieving higher speeds. If we
reduce the former analysis to the last 4 h of
incubation (4, 6, and 8 h), then the effect of
time on both velocity measures ceases to be
significant for W. merremii but remains
significant for B. c. occidentalis. In this regard,
theoretical models (Parker, 1998) and empir-

ical evidence (Levitan, 2000) for external
fertilizers have pointed to the existence of an
energetic conflict between speed and duration
of sperm motility. Furthermore, Parker (1998)
proposed that larger sperm could increase
ejaculate competitiveness by increasing the
duration of sperm motility when the risk of
sperm competition increases as a function of
the time between copulation and fertilization.

In conclusion, the results of the present
study suggest that, in W. merremii and B. c.
occidentalis, sperm motility and swimming
velocity respond mainly to environmental
conditions imposed by mating systems rather
than to selection by sperm competition.
However, it is important to note that in order
to understand the different relationships
among snake sperm dynamics, life history,
and mating system features, it is necessary to
increase the number of species studied, with
focus on comparative studies that take in
account the potential for sperm competition
and the predominant conditions of species
mating systems.
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CHIARAVIGLIO, M. 1993. Señales quı́micas de comunica-
ción emitidas por las glándulas anales de Wagerophis
merremii (Wagler). Ph.D. Dissertation, Universidad
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