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1 Introduction

Tachyon condensation in string theory is a long-standing problem, as it is a phenomenon

rather difficult to apprehend both from the conceptual and from the computational points

of view. On the one hand, this phenomenon has drastic effects on the spacetime itself,

which makes the whole picture difficult to capture. On the other hand, this demands to

deal with exact, time-dependent solutions of string theory, which are available only in a

few special cases.

The physics of tachyon condensation has been first and better understood in the context

of open string theory [1–4], as well as in some scenarios involving localized closed string

tachyons [5–8]. In the case of the bosonic open string, a method that resulted fruitful to

address the problem was resorting to exact conformal field theories (CFT) that admit the

interpretation of a string σ-model on a tachyonic background. In the case of homogeneous

tachyonic background, this is typically given by a timelike version of Liouville field theory

coupled to c = 1 matter; that is, by the theory governed by the action

S =
1

8π

∫

d2z
(

∂X1∂̄X1 + ∂ϕ∂̄ϕ+ (b+ 1/b)Rϕ+ 8πµ e
√
2bϕ

)

(1.1)

analytically continued to ϕ → X0 = −iϕ, b → b̂ = ib, which has central charge c =

2− 6(b̂− 1/b̂)2.

For open strings, such CFT description in terms of timelike Liouville theory with

boundaries has been studied in references [9–12]; see references therein and thereof. Apart
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from this continuous approach, the problem has also been studied with other formalisms,

like the matrix model approach [13, 14].

In the case of closed string theory, describing homogeneous tachyon condensation in

terms of exact time-dependent solutions of the worldsheet CFT is also feasible, and this has

been studied, for instance, in references [15–17]. This approach has made possible to achieve

important progress in understanding the physical process, as well as it contributed to get a

better understanding of the worldsheet CFT itself, leading to very interesting discussions

about which is the adequate procedure to analytically extend the standard spacelike Li-

ouville theory in order to produce its timelike version. These technical discussions were

mostly in relation to the 3-point function [15, 16]. More recently, the timelike1 Liouville

theory –and in particular its correlation functions– has been reconsidered in [18–25].

A worldsheet description is also available in the case of non-homogeneous tachyon

condensation, which is the problem we will be concerned with here. This has been originally

discussed in [8], where a CFT worldsheet description was proposed to be given by the

analytic continuation of the so-called Sine-Liouville theory; namely by the theory governed

by the action

S =
1

8π

∫

d2z
(

∂X1∂̄X1 + ∂ϕ∂̄ϕ+ bRϕ+ 8πµ e
1√
2b

ϕ
cos(

√

k/2X̃1)
)

(1.2)

analytically continued to ϕ → X0 = −iϕ, b ≡ 1/
√
k − 2 → b̂ = ib. X̃ here represents

the T-dual direction associated to X. The theory defined in this way has central charge

c = 2− 6b̂−2.

The interpretation of the timelike version of the model (1.2) as describing a non-

homogeneous rolling tachyon of bosonic closed string theory has been reconsidered in [26],

where the model was studied in terms of its T-dual counterpart, the gauged H+
3 =

SL(2,C)/SU(2) Wess-Zumino-Witten (WZW) theory.

Sine-Liouville theory (1.2) is dual to the gauged H+
3 WZW theory2 with level

k = 2 + b−2. This is known as the Fateev-Zamolodchikov-Zamolodchikov (FZZ) dual-

ity [27–29], which is a kind of T-duality [30]. If one extends the FZZ conjecture to negative

values of b2, which correspond to the values for which the timelike version of (1.2) is

defined, then one is led to state that non-homogeneous tachyon condensation is governed

by the WZW action at subcritical level k < 2; that is, values of the Kac-Moody level that

are below the Coxeter number. In particular, this implies that the problem of computing

string observables in the time (and X) dependent tachyon background would reduce to

the problem of computing correlation functions in the subcritical WZW theory. This

represents indeed an advantage because, for reasons we will comment below, computing

WZW correlators is simpler than computing them in presence of the Sine-Liouville

1There is an abuse of terminology here: although the theory is usually referred to as timelike, what is

motivated by its Lagrangian representation, it was argued in [18] that a careful analysis of the spectrum

reveals that the theory with c < 1 is actually spacelike. Moreover, the authors of [18] explained that a

timelike theory would lead to a ill-defined OPE. This, however, does not prevent one from analytically

continuing the theory to c < 1.
2More precisely, the duality holds with the H+

3 /U(1) coset model. However, the relevant part of the

functional dependence of the correlators is captured by the H+
3 model.
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deformation.3 Then, the idea is simple: extending the WZW 3-point function to k < 2.

The problem is similar to that of extending the Liouville 3-point function to values of

the central charge c < 1; i.e. to solve the timelike model. The timelike Liouville 3-point

function was discussed in [19, 20, 31–34]. In particular, in [19] Harlow, Maltz, and

Witten showed that a proposal for the timelike 3-point function made by Zamolodchikov

in [31] can also be computed by the original Liouville path integral evaluated on a new

integration cycle. In ref. [20], it was shown that the expression found in [19] can also be

obtained in the Coulomb gas approach by means of the adequate analytic extension of

the Selberg type integrals involved. This reproduces the exact result, including the right

normalization. Encouraged by this, in this paper we undertake the type of computation

of [20] in the case of WZW 3-point function. This amounts to adapt the calculations of

reference [35–37] to the range4 0 < k < 2. This, as we will see, yields an unexpected result.

The main reason why the computation based on the WZW theory is more convenient

than the one in Sine-Liouville theory is that, in the former, as it happens in the undeformed

Liouville theory, a Coulomb gas realization of the 3-point function amounts to deal with the

multiple Selberg type integrals of the class computed by Dotsenko and Fateev in the context

of the Minimal Models [41], and it has been understood in [20] how to extend such formulae

to the timelike case. In contrast, the computation in the representation (1.2) requires

either generalizations of such integrals that are only known in some special cases [42], or

duality relations between different multiple integrals that make the calculation notably

more involved [43]. Here, we will solve the problem in quite efficient way: in section 2, we

will review the free field representation of the H+
3 WZW model and the computation of

the correlation functions in the Coulomb gas approach. In section 3, we will perform the

analogous computation at the subcritical level k < 2. This will demand a careful analysis

of the analytic extension. In section 4, we will rewrite our result in a convenient way, in

terms of Jacobi θ1-function. This will enable us, in section 5, to perform a comparison

with other proposals for the subcritical 3-point function that appeared in the literature.

Section 6 contains our conclusions.

2 The H
+

3 WZW model revisited

We start by reviewing the H+
3 WZW model in the Coulomb gas approach. The purpose

is collecting the main formulae and introduce the ingredients for the computation of the

3-point function and its extension to values k < 2. In order to facilitate the comparison,

we will follow closely the conventions of refs. [35–37]. We refer to those papers for details.

3Furthermore, being the consistency of the Lagrangian representation (1.2) in the timelike case unclear,

this can be thought of as the very definition of what the timelike theory actually means.
4It is probable that our result is still valid for negative level k. The reason why we mention the lower

bound here responds to our believe that stating the validity for values k < 0 would demand a better

understanding of the limit k → 0, which seems to be peculiar in many respects [38]. However, it was

argued by Sylvain Ribault [39] that there is no obvious obstruction to consider the result also in the range

−∞ < k < 2; see also [40].
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In a particular representation, the action of the WZW theory is given by

Sµ =
1

8π

∫

d2z

[

σ∂φ∂̄φ−
√
2

α+
Rφ+ β∂̄γ + β̄∂γ̄ − 8πµββ̄e−(2/α+)φ

]

. (2.1)

where5 α2
+ = 2σ(k − 2). The introduction of σ = ±1 in the Lagrangian enables us to

switch between the standard (spacelike) version of the model, corresponding to k > 2, and

its timelike version, which is equivalent to considering 0 < k < 2. The sign of σ is such

that the dilatonic background charge and the exponential potential remain real for both

ranges. In this sense, the transition from k > 2 to k < 2 is equivalent to a change in the

signature of the field φ, which in the free theory (µ = 0) has the correlator

〈φ(z)φ(w)〉 = −σ ln(z − w). (2.2)

In other words, the case k < 2 corresponds to σ = −1, while the case k > 2 corresponds

to σ = +1; and the WZW model with σ = −1 can be obtained from the standard case,

σ = +1, by going to imaginary values of the background charge α+ → iα+ and, at the

same time, Wick rotating the field as φ → iφ. The theory also involves a β − γ ghost

system, which is unaffected by the Wick rotation and in the free theory yields

〈γ(z)β(w)〉 = − 1

(z − w)
. (2.3)

The holomorphic component of the stress tensor of the theory is given by

T (z) = −1

2
σ∂φ(z)∂φ(z)− 1

α+
∂2φ(z) + β(z)∂γ(z), (2.4)

and analogously for its complex conjugate counterpart T̄ (z̄).

The vertex operators, Vj,m,m̄(z, z̄), are in correspondence with Kac-Moody primary

states |j,m, m̄〉 = limz→∞ Vj,m,m̄(z, z̄)|0〉, which are labeled by SL(2,R)× SL(2,R) unitary

representations.6 These operators are Virasoro primaries with respect to (2.4), and are es-

sential elements of the theory. We will be interested in computing their correlation functions

Aj1,j2,...jn
m1,m2,...mn

=
〈

n
∏

i=1

Vji,mi,m̄i
(zi, z̄i)

〉

Sµ

=

∫

DγDβDφ e−Sµ

n
∏

i=1

Vji,mi,m̄i
(zi, z̄i), (2.5)

defined with the action (2.1). A suitable representation of the vertex operators is given by

Vj,m,m̄(z, z̄) = γ(z)j−mγ̄(z̄)j−m̄e
2

α+
jφ(z,z̄)

. (2.6)

In the Coulomb gas formalism, the n-point correlation functions (2.5) are defined by

adding, apart from the n operators (2.6), extra operators that play the role of screening

the background charge in (2.1). These screening operators are given by

S1 =

∫

d2wβ(w)β̄(w̄)e
− 2

α+
φ(w,w̄)

, (2.7)

5The reason why the level k does not appear as an overall factor here is that the field φ suffers a

renormalization by a factor
√
k − 2 and absorb a shifted k → k − 2 factor emerging through quantum

corrections. See [46] for details.
6In defining the H+

3 model, the isospin index j takes the values of the continuous principal series,

j = −1/2 + iλ with λ ∈ R and m ∈ R.
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and

S2 =

∫

d2w(β(w)β̄(w̄))(k−2)e−σ(α+φ(w,w̄)). (2.8)

These are marginal operators, meaning that they commute with the Kac-Moody currents

that generate the affine symmetry of the theory and have conformal dimension (1,1) with

respect to the stress tensor (2.4).

There are some advantages in considering S2 over S1, and the use of any of them leads

to the same result [37]. In particular, when one faces the problem of extending the WZW

model to k < 2, the advantage of using the operator S2 is that the amount of them to be

inserted in such case, say s, is a function of the states momenta ji and k that does not

depend on whether the level is grater or lower than the critical value 2. This is given by

s = (1 + j1 + j2 + j3)/(k − 2).

The situation is similar in Liouville field theory, where there also exist two dimension-

one operators that can be used as screening charges. From the instrumental point of view,

the use of either (2.7) or (2.8) should merely be regarded as a computational trick since, as

said, it has been explicitly shown in [37] that the use of any of them eventually leads to the

same result. This is a consequence of the weak-strong duality that the theory exhibits under

the interchange k − 2 ↔ 1/(k − 2) at quantum level.7 From the conceptual point of view,

however, the interpretation of the screening operators (2.7) and (2.8) is quite different,

being that of the latter more subtle due to its dependence with k in the exponential and

the higher-order form its β-dependent part takes when bosonizing the ghost system. The

physical interpretation of the operator (2.8) in the k > 2 WZW theory has been given

in [44], where it was identified as the operator responsible for finite-k effects associated to

worldsheet instantons [45].

These non-perturbative operators (2.8) in the timelike theory happen to scale in the

same manner as how the dual cosmological constant operator of Liouville theory, e
√
2ϕ/b,

scales in the c < 1 case: while under the Wick rotation (b, ϕ) → (ib,−iϕ) the operator e
√
2bϕ

transforms into itself, the dual operator e+
√
2ϕ/b changes to e−

√
2ϕ/b. That is, in the timelike

case both operators blow up in opposite directions of the field space. The same occurs in the

WZW through the Wick rotation (α+, φ) → (iα+, iφ), where the operator (2.8) takes the

form (ββ̄)−α2
+/2e+α+φ. This sign difference in the exponential with respect to the spacelike

case is relevant for the spacetime interpretation and for the validity of the perturbation

theory. Typically, the presence of the Liouville type potential barriers prevents the strings

to explore the zone of strong-coupling, where the linear dilaton grows dangerously. Unlike

what happens in the theory with k > 2, in the subcritical WZW theory the operators (2.7)

blows up when φ → −∞ while (2.8) blows up in the opposite direction φ → +∞. It is

the operator (2.8) the adequate one to perform the Coulomb gas computation of the k < 2

correlators perturbatively.8

7Although connected, this strong-weak duality is different from the duality of Liouville theory under

b ↔ 1/b, for instance in that the former does not leave the WZW central charge invariant. Still, the

observables exhibit such a symmetry, which is usually regarded as Langlands duality.
8The situation of the two screening operators in the subcritical WZW theory is totally analogous to that

of timelike Liouville field theory. In fact, it is worth mentioning that the relation between the coupling

constants of operators (2.7) and (2.8) is not arbitrary in the WZW theory, but is given by a formula

– 5 –
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In the Coulomb gas approach, s is the amount of integrals to be solved. Therefore, the

resulting expressions in principle only make sense for s ∈ Z≥0, and an analytic extension is

needed in order to gather configurations that correspond to other values of s. On the other

hand, s being an integer number, such analytic extension is not unique. Here, we will give

a precise prescription. The standard procedure to deal with this problem, which has been

shown to work well in diverse setups, is to first assume kinematic configurations yielding

s ∈ Z≥0, perform the integration over the worldsheet variables, and eventually extend the

final result to more general values of s.

Using the vertex operator (2.6) and the screening operator (2.8), for n = 3 we can

write

Aj1,j2,j3
j1,m2,m3

=µsσΓ(−sσ)

∫ sσ
∏

t=1

d2wt

〈

e2j1φ̃(0)/α+e2j2φ̃(1)/α+e2j3φ̃(∞)/α+

sσ
∏

t=1

e−σ(α+φ̃(wt,w̄t))

〉

S0

×
〈

γj2−m2(1)γj3−m3(∞)

sσ
∏

t=1

β(wt)
(k−2)

〉

S0

〈

γ̄j2−m̄2(1)γ̄j3−m̄3(∞)

sσ
∏

t=1

β̄(w̄t)
(k−2)

〉

S0

(2.9)

where, invoking projective invariance, we have fixed the insertions as (z1, z2, z3) = (0, 1,∞).

The tilde over φ refers to the fluctuations φ̃ = φ − φ0 around the zero-mode φ0. The

subindex in S0 refers to the fact that the expectation values are defined by the action (2.1)

with µ = 0. For simplicity, we have chosen j1 = m1 = m̄1. This is merely to simplify

the combinatorics when Wick contracting the ghost fields. The factor µsσΓ(−sσ) in (2.9)

arises through the integration over the zero mode φ0 [51].

Let us briefly comment on the spacetime interpretation of a given amount of screening

operators in a correlator that is meant to describe a string scattering amplitude. This has

been lucidly discussed in reference [52] by di Francesco and Kutasov for the case of string

theory in 1+1 dimensions, which involves a spacelike Liouville part. Also there, the n-point

amplitudes exhibit a prefactor Γ(−s), with s being the amount of screening operators to

be inserted when realizing the worldsheet correlators in the Coulomb gas approach. Such

factor has exactly the same mathematical origin as the one we obtain here in (2.9), i.e.

it appears through the zero-mode of the field φ. For s > 0 the Liouville amplitudes are

dominated by the region ϕ → −∞ in the zero-mode integral, which is in the region far

from the Liouville wall. In contrast, those with s < 0 receive their main contribution

from the region where the presence of the wall is felt. From the spacetime point of view,

amplitudes corresponding to values s ∈ Z>0 represent scattering processes that take place

in the bulk and, as such, are not very sensitive to the details of the wall. Such processes

can be interpreted as resonances with the Liouville wall tachyonic composites. A similar

interpretation holds in the WZW theory and, likely, it also applies in the case of the

timelike theory, although the spacetime picture in the latter is substantially more elusive.

In any case, the Γ(−s) prefactor in (2.9) has an analogous origin and one can think of the

analogous to the one that relates the standard and the dual cosmological constants in Liouville theory.

This has been derived in [37]. Therefore, the interesting discussion of [23] about the presence of the dual

operator for special values of b applies here as well. We will not repeat the discussion here because we are

interested in generic values of the central charge. We rather refer to section 8 of reference [23].

– 6 –
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correlators with kinematic configurations such as s < 0 as representing processes that take

place in the bulk when the tachyon condensate is not dominant.

Computing the Wick contractions using the free field propagators (2.3), one finds [35]

Aj1,j2,j3
j1,m2,m3

= µsσΓ(−sσ)

∫ sσ
∏

t=1

d2wt |wt|4j1 |1−wt|4j2
∏

t<r

|wt−wr|−2σα2
+

× lim
w

(n)
t →w

(1)
t =wt

P−1 ∂(k−2)sσP
∂w

(1)
1 ...∂w

(k−2)
1 ...∂w

(1)
sσ ...∂w

(k−2)
sσ

× c.c. , (2.10)

where

P =

sσ
∏

t=1

(k−2)
∏

n=1

(1− w
(n)
t )m2−j2

sσ
∏

t<r

(k−2)
∏

p=1

(k−2)
∏

q=1

(w
(p)
t − w(q)

r ), (2.11)

and where c.c. stands for its complex conjugate counterpart9

P̄ =

sσ
∏

t=1

(k−2)
∏

n=1

(1− w̄
(n)
t )m̄2−j2

sσ
∏

t<r

(k−2)
∏

p=1

(k−2)
∏

q=1

(w̄
(p)
t − w̄(q)

r ). (2.12)

This yields

P−1 ∂(k−2)sσP
∂w

(1)
1 . . . ∂w

(k−2)
1 . . . ∂w

(1)
sσ . . . ∂w

(k−2)
sσ

=
Γ(−j2 +m2 + (k − 2)sσ)

Γ(m2 − j2)

sσ
∏

t=1

(1− wt)
−(k−2).

(2.13)

Putting all together, and assuming for simplicity that m2,3 = m̄2,3, one finds

Aj1,j2,j3
j1,m2,m3

= µsσΓ(−sσ)(−1)σsσα
2
+/2γ(j2 −m2 + 1)γ(j3 −m3 + 1)

×
∫ sσ

∏

t=1

d2wt |wt|4j1 |1− wt|4j2−σα2
+

∏

t<r

|wt − wr|−2σα2
+ , (2.14)

where we have defined10 γ(x) = Γ(x)/Γ(1− x). See [35] and [37] for details.

The integral in (2.14) can be performed by using the Fateev-Dotsenko formula [41]

(see formulas (B.9) and (B.10) therein). The result reads

Aj1,j2,j3
j1,m2,m3

= µsσπsσΓ(−sσ)Γ(1 + sσ)(−1)σsσα
2
+/2γ(j2 −m2 + 1)γ(j3 −m3 + 1)

×
(

γ(−σα2
+/2)

)−sσ
sσ−1
∏

t=0

γ(−(t+ 1)σα2
+/2)γ(−1− 2j1 − 2j2 + (sσ + t)σα2

+/2)

γ(−2j1 + tσα2
+/2)γ(−2j2 + (1 + t)σα2

+/2)
(2.15)

Let us now recall how to compute this 3-point function in the standard case k > 2.

We do this with the purpose of spotlighting the steps in the analytic extension in s, which

is the key point to understand the difference with respect to the subcritical case k < 2.

When k > 2, we have to calculate (2.15) for the case σ = +1. The strategy is, as said,

starting with the assumption s+ = 2(1 + j2 + j2 + j3)/α
2
+ ∈ Z>0 and, then, analytically

9To be precise, this is not exactly the complex conjugate part as it involves m̄ instead of m.
10Do not mistake this function for the ghost fields γ(z).
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extend the result to complex values s+ ∈ C by a controlled systematic procedure. The

assumption s+ ∈ Z>0 is of course necessary to make sense out of the products appearing

in (2.15). This is at the root of the difference with the case k < 2, where we have to deal

with expressions with s− = −s+. More concretely, when going from k > 2 to k < 2 the

products that appear in the Coulomb gas realization transform as follows

s+
∏

i=1

f(i) →
−s+
∏

i=1

f(i) . (2.16)

The analytic extension of (2.15) to other values of s+ demands to take care of the

different factors appearing in that expression, one by one. A first simple observation is

that, assuming s+ ∈ Z>0,

s+−1
∏

t=0

γ(1 + 2j1 − tα2
+/2) = γ(1 + 2j1)

s+−1
∏

t=1

γ−1(−2j1 + tα2
+/2), (2.17)

and

s+−1
∏

t=0

γ(1 + 2j2 − (t+ 1)α2
+/2) = γ(j2 − j1 − j3)

s+−1
∏

t=1

γ−1(−2j2 + tα2
+/2). (2.18)

Next, using basic properties of the Γ-function and the definition of the function Gk

given in appendix A, one can write

s+
∏

t=1

γ
(

−tα2
+/2

)

= lim
ǫ→0

1

Γ(ǫ)
γ(−1− j1 − j2 − j3)

Gk(−j1 − j2 − j3 − 2)

Gk(−1)

(

α2
+

2

)η−

. (2.19)

with η− = −s+ − s+(s+ − 1)α2
+/2. The divergent factor Γ(0) appearing in the denominator

eventually cancels out with other contribution when assembling the different pieces.

One also finds

s+−1
∏

t=1

γ(−j1−j2+j3+tα2
+/2)

2
∏

i=1

γ(1+2ji−tα2
+/2) =

3
∏

i=1

Gk(2ji − j1 − j2 − j3 − 1)

Gk(−1− 2ji)

(

α2
+

2

)η+

(2.20)

with η+ = 1− s+ + s+(s+ − 1)α2
+/2.

Putting all together and considering other properties of the Γ-function, in particular

that for n ∈ Z≥0 one has

lim
ǫ→0

Γ(1− n+ ǫ)Γ(n− ǫ)

Γ(−ǫ)
= (−1)n, (2.21)

one finally obtains [37]

Aj1,j2,j3
j1,m2,m3

= µs+πs+(−1)s+α2
+/2

(

α2
+/2

) (

γ(α2
+/2)

)s+ γ(j2 −m2 + 1)γ(j3 −m3 + 1)

×γ(−1− j1 − j2 − j3)γ(1 + 2j1)γ(−j1 − j2 + j3)γ(j2 − j1 − j3)

×Gk(−2− j1 − j2 − j3)

Gk(−1)

3
∏

i=1

Gk(2ji − j1 − j2 − j3 − 1)

Gk(−1− 2ji)
, (2.22)
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which is the k > 2 H+
3 WZW 3-point function involving a highest-weight state of the

SL(2,R) representation in the so-called m-basis.

It is convenient to write expression (2.22) in terms the function Υb which is usually em-

ployed to write the Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ) formula of Liouville

theory [47, 48]. This is achieved by considering the relation

Gk(x) = b−b2x2−(b2+1)xΥ−1
b (−bx), (2.23)

with b−2 = k − 2; see appendix A. In terms of this function, the result reads

Aj1,j2,j3
j1,m2,m3

= (−1)b
−2s+γ(1+j2−m2)γ(1+j3−m3) I(j1,j2,j3,b−2). (2.24)

I(j1,j2,j3,b−2) = µs+πs+b−4
(

γ(b−2)
)s+Db(j1,j2,j3). (2.25)

Db(j1,j2,j3) = γ(−1−j1−j2−j3)γ(1+2j1)γ(j2−j1−j3)γ(j3−j1−j2)Cb(j1,j2,j3), (2.26)

Cb(j1,j2,j3) =
b−2b2(

∑3
i=1ji+1)+3Υb(b)

Υb(b(2+j1+j2+j3))

3
∏

i=1

Υb(b(2ji+1))

Υb(b(j1+j2+j3−2ji+1))
. (2.27)

This expression for Cb(j1, j2, j3) exactly reproduces the formula for the WZW structure

constants obtained in ref. [49]. To see this explicitly, one has to take eq. (64) in [49],

consider the Weyl reflection j → −1 − j, and perform the Mellin transform from the

x-basis to the m-basis. This exactly reproduces (2.22); see [37] for details.

3 The subcritical theory

Consider now the continuation of the 3-point function to values k < 2. As we will see,

the answer is far from being obvious. In fact, we will observe here a phenomenon similar

to what happens in Liouville field theory, where the spacelike and the timelike 3-point

functions are, roughly speaking, one the inverse of the other.

Let us go back to expression (2.15) and consider now σ = −1. Namely, consider

Aj1,j2,j3
j1,m2,m3

= µs−πs−Γ(1 + s−)Γ(−s−)(−1)−α2
+s−/2γ(j2 −m2 + 1)γ(j3 −m3 + 1) (3.1)

×
(

γ(α2
+/2)

)−s−
s−−1
∏

t=0

γ
(

(t+ 1)α2
+/2

)

γ(−1− 2j1 − 2j2 − (s− + t)α2
+/2)

γ(−2j1 − tα2
+/2)γ(−2j2 − (t+ 1)α2

+/2)
,

with s− = −2(1 + j1 + j2 + j3)/α
2
+.

The 3-point function (2.24)–(2.27) for a k > 2 theory was obtained by starting from

the case s+ = 2(1 + j1 + j2 + j3)/α
2
+ ∈ Z>0. In the case k < 2, taking into account

that s− = −2(1 + j1 + j2 + j3)/α
2
+ = −s+ ∈ Z<0, a natural proposal would be trying to

analytically extend the multiple products appearing in expression (3.1) to negative integers

values of s− = −s+ ∈ Z≤0. This proposal is similar to the one used in [20] to solve the

timelike Liouville theory, which was shown to reproduce the correct expression [31]. Then,

the question reduces to that of how making sense out of the products in (3.1) for negative

values of s−. This question is actually not new in the context of CFT. A similar problem

appears, for instance, in Minimal Models coupled to 2D gravity. In ref. [50], Dotsenko
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proposed a trick to making sense out of the product of a negative amount of screening

charges. This follows from extending the basic property

P (l) ≡
l

∏

i=1

f(i) =

∏∞
i=1 f(i)

∏∞
i=l+1 f(i)

=
P (∞)

∏∞
i=1 f(i+ l)

, (3.2)

which is obviously valid for positive integer l ∈ Z>0, to negative values of l by simply ex-

trapolating the functional properties of P (l). Then, as in [50], one may consider extending

the definition of the function P (l) to values l = − |l| by defining

P (l) ≡
|l|−1
∏

i=0

1

f(−i)
for l ∈ Z<0. (3.3)

This trick, which has been used in many different examples before, can also be applied

succesfully to our case. In this way, we can give meaning to the Coulomb gas formulas for

the subcritical 3-point correlation function.

Making use of (3.3) and iterating the shift properties of the Γ-function and Gk-function,

we can rewrite each of the factors in (2.15) in terms of the latter function. For instance,

using

Gk(x− α2
+/2) = γ(1 + x)Gk(x)

(

α2
+

2

)−2x−1

, (3.4)

the first multiple product in the numerator of the second line of (2.15) can be written as

s−−1
∏

t=0

γ((t+ 1)α2
+/2) = γ(−1− j1 − j2 − j3)

Gk(−1)

Gk(j1 + j2 + j3 + 1)

(

α2
+

2

)η0

(3.5)

with η0 = (α2
+/2)(s

2
− − s−)− s− + 1. Analogously, we can write

s−−1
∏

t=0

γ(1 + 2j1 + tα2
+/2) =

γ(1 + 2j1)Gk(2j1)

Gk(−j1 + j2 + j3)

(

α2
+

2

)η1

with η1 = s−+4j1(s−−1)+(α2
+/2)(s

2
−− s−)−1. Considering that γ−1(1− j2+ j1+ j3) =

γ(j2 − j1 − j3), one can express

s−−1
∏

t=0

γ(1 + 2j2 + (t+ 1)α2
+/2) =

γ(j2 − j1 − j3)Gk(2j2)

Gk(−j2 + j1 + j3)

(

α2
+

2

)η2

with η2 = s− + 4j2(s− − 1) + (α2
+/2)(s

2
− − s−)− 1; and using that γ−1(1− j3 + j1 + j2) =

γ(j3 − j1 − j2), one finds

s−−1
∏

t=0

γ(−1− 2j1 − 2j2 − (s− + t)α2
+/2) =

γ(j3 − j1 − j2)Gk(2j3)

Gk(−j3 + j1 + j2)

(

α2
+

2

)η3

with η3 = s−+4j3(s−−1)+(α2
+/2)(s

2
−−s−)−1. Notice that η0+η1+η2+η3 = −2(s−−1).
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Combining all this, we eventually find

Aj1,j2,j3
j1,m2,m3

= µs−πs−Γ(−s−)Γ(1 + s−)(−1)s−(1−α2
+/2)

(

α2
+/2

)2
(

γ(−α2
+/2)

)s−

×γ(j2 −m2 + 1)γ(j3 −m3 + 1)γ(−1− j1 − j2 − j3)γ(1 + 2j1)γ(j2 − j1 − j3)

×γ(j3 − j1 − j2)
Gk(−1)

Gk(j1 + j2 + j3 + 1)

3
∏

i=1

Gk(2ji)

Gk(j1 + j2 + j3 − 2ji)
, (3.6)

which is our main result: this is the 3-point correlation function for the subcritical WZW

theory.

As we did for the case k > 2, we can easily express (3.6) in terms of the Υb-functions.

Denoting b̂ = ib, which means ŝ− = −b̂2(j1 + j2 + j3 + 1), this yields

Âj1,j2,j3
j1,m2,m3

= (−1)(−b̂−2)ŝ
−γ(1+j2−m2)γ(1+j3−m3)Î(j1,j2,j3,−b̂−2). (3.7)

Î(j1,j2,j3,−b̂−2) = µŝ
−πŝ

− b̂−4
(

γ(−b̂−2)
)ŝ

−

D̂
b̂
(j1,j2,j3). (3.8)

D̂
b̂
(j1,j2,j3) = γ(−1−j1−j2−j3)γ(1+2j1)γ(j2−j1−j3)γ(j3−j1−j2)Ĉb̂

(j1,j2,j3), (3.9)

Ĉ
b̂
(j1,j2,j3) = b̂2+2b̂2+2b̂2(

∑
3

i=1
ji)

Υ
b̂
(−b̂(j1+j2+j3+1))

Υ
b̂
(b̂)

3
∏

i=1

Υ
b̂
(b̂(2ji−j1−j2−j3))

Υ
b̂
(−b̂(2ji))

, (3.10)

where we have used (2.21) and have excluded the divergent factor Γ(0). The same type of

divergence appears in timelike Liouville field theory [20].

The remarkable fact is that (3.10) is, roughly speaking, the inverse of (2.27) and not

the simple extension b → b̂ that one could have naively expected. In fact, one observes the

remarkable factorization11

Cb(j1, j2, j3)Ĉb(−1− j1,−1− j2,−1− j3) = b5−6b2−4b2
∑3

i=1 ji . (3.11)

This type of inversion phenomenon had already been observed by Zamolodchikov in

the case of Liouville theory coupled to Generalized Minimal Models [31], where the 3-point

functions also factorize in a similar way. This is also behind the surprising cancellation

that superstring amplitudes12 in AdS3 × S3 backgrounds exhibit [53–55].

Expression (3.11) manifestly shows the non-trivial form that the 3-point function takes

when analytically extending from b ∈ R to ib. At classical level, the extension to imaginary

values of b is straightforward, but this is not the case at quantum level where the problem

of defining the correct integration cycle in the path integral is subtle [19]. In contrast to the

3-point function, the 2-point function does admit a straightforward extension from real to

imaginary values of b. Consequently, this raises the question as to how the 2-point function

can be recovered from the timelike structure constants (3.10) in the appropriate limit. In

the case b ∈ R this smoothly follows from the functional property

lim
ε→0

Gk(j2 − j3 + ε)Gk(j3 − j2 + ε)

Gk(−1)Gk(1− 2ε)
= 2πi

Γ
(

1 + 1
k−2

)

Γ
(

1− 1
k−2

) δ(j2 − j3) (3.12)

11The b-dependent contribution on the right hand side is irrelevant, as it can be absorbed in the normal-

ization of the vertices.
12As explained in [53], supersymmetry is crucial for this simplification to occur in string theory on

AdS3 × S3 × T 4 NS-NS backgrounds.
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which leads to reobtain the reflection coefficient13 Aj2,j3
m2,m3 ∼ B(j2)δ(j2− j3) as the limit of

the structure constant limj1→0C(j1, j2, j3). In the timelike theory, in contrast, and due to

the special dependence of the Gk-functions in (3.6), the relation between the 2- and the 3-

point function is different and somehow arbitrary, exactly as it occurs in the Liouville theory

with c < 1. In particular, this arbitrariness manifests itself in that the timelike Liouville 3-

point function evaluated on momenta α1 = 0, α2 6= 0 6= α3 does not develop a delta function

∼ δ(α2 − α3) (see appendix B). This peculiar feature has been discussed, for instance, in

reference [19] (see discussion in section 7.1 therein), and this had been previously discussed

in references [15] and [23]. In [23], this feature was taken as evidence that in the c < 1

Liouville theory the 2-point function is genuinely non-diagonal in the conformal dimension.

This raises the question as to whether or not the theory should be regarded as an actual

CFT. In [19] a possible interpretation for this phenomenon was given: it was suggested

there that the limit α1 → 0 of the 3-point function should probably not be interpreted as

the limit in which one of the vertex operators tends to the identity operator, but rather as

the limit in which an alternative dimension-zero operator emerges in the correlator. For a

non-unitary CFT this is certainly a possibility, and the same interpretation is possible in

our sine-Liouville computation. On general grounds, and even when we are unable to give

a final resolution of this problem, we certainly expect that the explanation to this peculiar

feature in sine-Liouville theory will be the same as in Liouville theory. Notice that in sine-

Liouville theory, as well as in its FZZ dual, there are natural candidates for such non-trivial

dimension-zero operator, given by the conjugate identities j = ±m = ±m̄ = −k/2 that,

according to Fateev, Zamolodchikov, and Zamolodchikov are essential elements to construct

the spectrum of the theory [27]. In any case, the non-diagonal form that the 2-point function

takes in zero-momentum limit of the 3-point function requires further investigation.

4 Modular functions

With the intention of comparing our result (3.10) with what happens in the process of

analytically extending Liouville theory to values c < 1, let us express the 3-point func-

tion (3.10) in terms of the function

Hb(x) = Υb(x)Υib(−ix+ ib), (4.1)

introduced in [31]. This will allow us to write, as it happens in Liouville theory, the quotient

of the timelike and spacelike formulas in terms of Jacobi functions.

Given the relation b̂ = ib, one finds

Ĉ
b̂
(j1,j2,j3) = eiπ(1−b2−b2

∑
3

i=1
ji)b2−2b2−2b2(

∑
3

i=1
ji)

Hb(b(
∑

iji+2))

Hb(0)

3
∏

i=1

Hb(b(−2ji+j1+j2+j3+1))

Hb(b(2ji+1))

× Υb(0)

Υb(b(2+j1+j2+j3))

3
∏

i=1

Υb(b(2ji+1))

Υb(b(−2ji+j1+j2+j3+1))
(4.2)

13To be precise, the physical interpretation of the 2-point function in the timelike case is not that of

a reflection coefficient, but that of the quantity whose modulus gives the particle production rate in the

time-dependent background [15, 26].
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where we have reinserted the divergent factor Γ(0) that combines with a Υb(b) factor and

the number Υb(0) that appear in the calculation. Notice that Υb(b) = Γ(0)Υb(0) and

Υb(0)Υb̂(b̂) = Hb(0).

On the other hand, the following relation holds

Hb(x) = e
iπ
2
(x2+xb−1−xb+b2/4−3b−2/4−1/4) θ1(xb

−1, b−2)

θ1(1/2 + b−2/2, b−2)
, (4.3)

where θ1 is the Jacobi function, whose definition can be found in the appendix A. Com-

paring this with the formula for Cb(j1, j2, j3), we find

Ĉib(j1, j2, j3)

Cb(j1, j2, j3)
=

θ1
(

j1 + j2 + j3 + 1, b−2
)

b θ1(−1, b−2)

3
∏

i=1

θ1
(

−2ji + j1 + j2 + j3, b
−2

)

θ1 (2ji, b−2)
(4.4)

where we have used the modular properties of the Jacobi function, namely θ1(x + 1, τ) =

e−iπθ1(x, τ).

We observe that expression (4.4) is analogous to eq. (7.42) of ref. [19] for the timelike

Liouville theory (see appendix B).

5 Other proposals

Before concluding, let us comment about the comparison of our formula for Ĉb̂(j1, j2, j3)

with other proposals made in the literature for the subcritical WZW 3-point function.

In [26], Hikida and Takayanagi gave such a formula by extrapolating the expressions ob-

tained by Schomerus in [16] for the c < 1 CFT. The expression of [26], however, has been

written in terms of the Hb- and Yβ-functions introduced in [16] and, thus, a little of extra

work is necessary to compare with (3.10) (see appendix A). An efficient way of verifying

the consistency between our result (3.6) and the formula for the 3-point function of [26] is

to compute for the latter the quotient between the k > 2 and the k < 2 cases and compare

this with (4.4). One might start from the 3-point function for k > 2, which corresponds

to expression (4.15) of reference [26]. Performing b → b̂ = ib, and considering (4.3) that

relates the Hb-function with the Jacobi θ1-function, one can write the ratio of the 3-point

functions as a quotient of θ1 functions. In order to compare with [26] it is necessary to

take into account the dictionary between their parameters and ours; namely, to consider

b = − i√
α
, ji = −1 + i

√
αωi. (5.1)

It is also convenient to shift the zero mode φ0 in order to set µ = Γ(1− b2)/(πΓ(1 + b2)),

which set ν(k) of [26] to 1. These definitions lead to the expression (4.17) in [26], namely14

H(w) = θ1(j, α) Y 1√
α

(w) (5.2)

where the function Yβ, which is defined in appendix A, satisfies the relation

Yβ(w) = Υ−1
β (iw + β). (5.3)

14It is also needed to take into account an extra factor 1/2 in the convention used in eq. (4.16) of [26]

when writing the function H.
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Considering these functional relations, a careful examination of the expressions revels

that our result (3.6) relates to the Hikida-Takayanagi result for the k < 2 WZW 3-point

function [26] in the same manner as how the Harlow-Maltz-Witten result for Liouville

timelike 3-point function [19] relates to the formula proposed by Schomerus in [16] for the

c < 1 theory. Actually, this is not a surprise since the expression proposed in [26] has been

constructed by following the procedure described in [16].

6 Conclusions

In this paper we have revisited the problem of non-homogeneous tachyon condensation in

bosonic closed string theory. A worldsheet theory describing this phenomenon is given by

the Lorentzian continuation of the Sine-Liouville model. We solved this model exactly, in

the sense of having provided a closed expression of the 3-point correlation functions on

the Riemann sphere at finite α′. The strategy was resorting to the T-dual description in

terms of the gauged H3
+/U(1) Wess-Zumino-Witten model at subcritical level k < 2. Using

the same Coulomb gas techniques which in the case of timelike Liouville field theory have

shown to reproduce the correct 3-point function, we derived here a formula for the WZW

correlation functions within the range 0 < k < 2. This result is given by expression (3.6),

which is our main result; see also (3.7)–(3.10). This represents an exact solution to string

theory on a time-dependent background.

Remarkably, our result for the subcritical WZW 3-point function turns out to be,

roughly speaking, the inverse of the standard (i.e. k > 2) result and not the simple

extension
√
k − 2 → i

√
k − 2 of it that one could have naively expected. This phenomenon

is, mutatis mutandis, the same that what happens in timelike Liouville theory, and which

had already been noticed by Al. Zamolodchikov in the context of Generalized Minimal

Models. In other words, our expression (3.10) relates to the standard WZW 3-point

function in a similar way as how the Harlow-Maltz-Witten 3-point function of timelike

Liouville theory relates to the analytic continuation of the Dorn-Otto-Zamolodchikov-

Zamolodchikov structure constants. On the one hand, the ratio between both correlators

admits a simple expression as a quotient of Jacobi’s θ1-functions. Their product, on the

other hand, exhibits a remarkable factorization.
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A Special functions

The Gk-function. The Barnes’ double Γ-function is given by

log Γ2(x|1, y) = lim
ǫ→0

∂ǫ





∑

n,m∈Z≥0

(x+ n+my)−ǫ −
′

∑

n,m∈Z≥0

(n+my)−ǫ



 , (A.1)

where the prime on the second sum means that the step (m,n) 6= (0, 0) is omitted.

The function Gk is defined in terms of Γ2 as follows

Gk(x) ≡ (k − 2)
x(k−1+x)
2(k−2) Γ2(−x|1, k − 2)Γ2(k − 1 + x|1, k − 2). (A.2)

This function obeys the reflection relation

Gk(x) = Gk(−x− k + 1), (A.3)

and the translation (shift) relations

Gk(x+ 1) = γ(−(x+ 1)/(k − 2))Gk(x) (A.4)

Gk(x− k + 2) = (k − 2)−2x−1γ(x+ 1)Gk(x), (A.5)

where the function γ is defined in terms of the Γ-function as follows

γ(x) =
Γ(x)

Γ(1− x)
, (A.6)

and, thus, obeys

γ(x)γ(1− x) = 1, γ(x)γ(−x) = −x−2, (A.7)

because of the property Γ(1 + x) = xΓ(x).

The Υk-function. Function Gk- relates to the Υb-function as follows

Υb(−bx) = b−b2x2−(b2+1)xG−1
k (x), (A.8)

with b−2 = k − 2. Therefore, from (A.2) it follows that

Υb(x) = Γ−1
2 (x|b, b−1)Γ−1

2 (b+ b−1 − x|b, b−1). (A.9)

Function Υb can also be defined by

logΥb(x) ≡ ηb +

∫

R>0

dt

t

(

(b+ b−1 − 2x)2
e−t

4
− sinh2((b/2 + b−1/2− x)t/2)

sinh(bt/2) sinh(b−1t/2)

)

. (A.10)

with the constant ηb = −2 log Γ2(
b+b−1

2 |b, b−1). It obeys the following shift relations

Υb(x+ b) = γ(bx)b1−2bxΥb(x) (A.11)

Υb(x+ b−1) = γ(b−1x)b−1+2b−1xΥb(x) (A.12)
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together with the reflection relations

Υb(x) = Υb−1(x) (A.13)

Υb(x) = Υb(b+ b−1 − x), (A.14)

which follow from (A.3)–(A.5) and the definition (A.10).

A useful property of Υb-function, which comes from iterating (A.11)–(A.12), is the

following
x
∏

r=1

γ(rb2) =
Υb(xb+ b)

Υb(b)
bx(b

2(x+1)−1), (A.15)

provided x ∈ Z>0.

Function Υb has poles at x = mb+ nb−1 with m,n ∈ Z>0 and m,n ∈ Z≤0.

The Yβ-function. Interested in the case of imaginary values of b = iβ (i.e. β ∈ R, which

is also a convention frequently employed in the CFT literature to express these functions),

one finds convenient to define the function

Yβ(x) ≡ Γ2(β + ix | β, β−1)Γ2(β
−1 − ix | β, β−1), (A.16)

which also admits the definition

log Yβ(x) = hβ +

∫

R>0

dt

t

(

(b+ b−1 − 2x)2
e−t

4
− sin2((b/2 + b−2/2− x)t/2)

sinh(βt/2) sinh(β−1t/2)

)

, (A.17)

with hβ being a β-dependent constant. This function obeys

Yβ(x+ iβ) = β1−2ixβYβ(x)γ(ixβ) (A.18)

Yβ(x− iβ−1) = β−1−2ix/βYβ(x)γ(−ixβ−1). (A.19)

The Hb- and θ1-functions. Define the function

Hb(x) ≡ Υb(x)Υib(−ix+ ib), (A.20)

which obeys the relations

Hb(x+ b) = e
iπ
2
(2bx−1)Hb(x) (A.21)

Hb(x+ b−1) = e
iπ
2
(1−2b−1x)Hb(x). (A.22)

This function can be written in terms of the Jacobi’s θ1-function, namely

Hb(x) = e
iπ
2
(x2+xb−1−xb+b2/4−3b−2/4−1/4) θ1(xb

−1, b−2)

θ1(1/2 + b−2/2, b−2)
, (A.23)

with

θ1(x, τ) = i
∑

n∈Z
(−1)neiπτ(n−1/2)2+2πix(n−1/2) (A.24)

with Im(τ) > 0. Properties (A.21)–(A.22) follow from the well-known modular properties

of the Jacobi’s function, namely

θ1(x+ 1, τ) = e−iπθ1(x, τ), (A.25)

θ1(x+ τ, τ) = eiπ(1−τ−2x)θ1(x, τ) (A.26)

– 16 –
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B The timelike Liouville theory

Consider the DOZZ Formula for the standard (c > 25) Liouville theory

C(α1,α2,α3)=
[

πµγ(b2)b2−2b2
](Q−∑

iαi)/b Υ0

Υb(α1+α2+α3−Q)

3
∏

i=1

Υb(2αi)

Υb(α1+α2+α3−2αi)
,

where Q = b+ b−1, b ∈ R, and where Υ0 is a constant.

The timelike DOZZ formula proposed in [19] reads

Ĉ(α̂1, α̂2, α̂3) =
2π

b̂

[

−πµγ(−b̂2)b̂2+2b̂2
](

∑3
i=1 α̂i−Q̂)/b̂

e−iπ(
∑3

i=1 α̂i−Q̂)/b̂

×Υb̂(α̂1 + α̂2 + α̂3 − Q̂+ b̂)

Υb̂(b̂)

3
∏

i=1

Υb̂(α̂1 + α̂2 + α̂3 − 2α̂i + b̂)

Υb̂(2α̂i + b̂)
, (B.1)

where the parameters are defined as

α̂i = −iαi, b̂2 = −b2, Q̂ = −iQ. (B.2)

Writing (B.1) as a function of the spacelike parameters, one obtains

Ĉ(α̂1, α̂2, α̂3)

C(α1, α2, α3)
= 2πi

θ1(b
−1(α1 + α2 + α3), b

−2)

θ′1(0, b
−2)

3
∏

i=1

θ1(b
−1(α1 + α2 + α3 − 2αi), b

−2)

θ1(2b−1αi, b−2)

(B.3)

with θ′1(x, b
−2) = ∂

∂xθ1(x, b
−2). This is equation (7.40) of [19] and is the analog of (4.4) for

Liouville field theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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