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ABSTRACT

Here we investigate the accuracy of the overlap criterion when applied to a simple near-integrable model
in both its 2D and 3D versions. To this end, we consider, respectively, two and three quartic oscillators
as the unperturbed system, and couple the degrees of freedom by a cubic, non-integrable perturbation.
For both systems we compute the unperturbed resonances up to order ()(¢?), and model each resonance
by means of the pendulum approximation in order to estimate the theoretical critical value of the
perturbation parameter for a global transition to chaos. We perform several surface of sections for the
bi-dimensional case to derive an empirical value to be compared to our theoretical estimation. Although
both values are of the same order of magnitude, there is a significant difference between them. For the
3D case a numerical estimate is attained that we observe matches quite well the critical value resulting
from theoretical means. This confirms once again that calculating resonances up to ()(¢?) suffices in order

the overlap criterion to work out.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Though the stability problem of Hamiltonian systems has been
almost completely elucidated by a rigorous sequence of theorems
that build up the so called KAM theory (see for instance [1,2,6],
together with the original references therein: [3-5]), the application
of the results of the KAM theory to a specific system is far from
being an easy task. In fact, it turns out to be much simpler to take
advantage of the heuristic overlap criterion, which seems to provide
similar estimations to those resulting from the KAM theory.

The overlap criterion due to Chirikov (see [1]) has been largely
used in many different fields, its probably most popular application
being the study of instabilities in the Solar System as well as in
other planetary models (see for example [7-9]). In any case, since
the widespread model for a resonance is the pendulum approxima-
tion, the overlap criterion applies directly to the intersection of their
associated unperturbed separatrices (or heteroclinic intersections).

In his pioneer work on the standard map [1] Chirikov shows
that the application of the overlap criterion to primary resonances
overestimates the actual value of the critical parameter, K., and
only when high order resonances are considered, does the overlap
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criterion succeed in providing a more accurate value for Ke. In fact,
the author shows that on including the third harmonic resonances,
the overlap criterion leads to K. ~ 1, rather close to the empirical
value.

In the present effort we address a similar analysis to that per-
formed by Chirikov, but using a 2D and a 3D near-integrable Hamil-
tonian systems, namely, two and three uncoupled quartic oscillators
perturbed by a cubic term. The 3D version of this model has been
studied in [10,12], where the authors numerically investigate the
global dynamical properties of the model and estimate the critical
value &: beyond which the system is globally chaotic, i.e. for which
less than the 10% of the energy surface corresponds to invariant tori.
By means of the overlap criterion we derive such a critical value for
the perturbative parameter ¢ on considering not only primary but
also high order resonances, and the perturbation Fourier series trun-
cated at (/(2372) in their coefficients. We then compare, for each
case, the theoretical critical value with that obtained by numerical
means.

The paper is organized as follows. The dynamical system under
study in its 2D version is described in Section 2 and its relevant res-
onances at /(&) are obtained in Section 3, their widths being deter-
mined in Section 4. The resonances at (/(¢2) are provided in Section
5, where an estimate of the critical value of the perturbative param-
eter is provided. For the sake of comparison, an empirical estimate
of such a value is obtained in Section 6 by recourse of performing
several surfaces of section (SOS) for the system. The 3D model is ad-
dressed in Section 7, whose resonances at order (/(¢) and ()(&2) are
given in Sections 8 and 9, respectively. Section 10 is devoted to the
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theoretical estimate of the critical parameter, which is shown to be
in good agreement with the one given in [12]. A final discussion is
provided in Section 11.

2. The 2D dynamical system

Here we will be concerned first with a 2D perturbed quartic os-
cillator. In cartesian coordinates the system is described by the fol-
lowing Hamiltonian (see [10]):

Hp.q)= 50} +p) + §(x* +y*) + ex?y, (1)

where ¢ is a perturbative parameter that controls the strength of
the perturbation. On setting ¢ = 0 we recover the integrable quartic
oscillator’s Hamiltonian (see [10,11] and references therein), whose
solutions are given by

X(t)=xo(h1) ) o cos((2n — 1oy (h1)t),

n=1

J’(f)ZJ’O(hz)i“n cos((2n — 1wz (h2)t), (2)
n=1

where we have used the following definitions:

xo(h1) =4ph;",

volh2) = 4ph}/*,

wih)=v2ph1*, i=1,2

1
= Cosh((n — 1/2)r)’

B =m/2K(1/~/2) ~ 0.847, (3)

where K(k) denotes the complete elliptic integral, and the coeffi-
cients in the Fourier expansions (2) satisfy

On+1 ~ l
o 23°

The third equation in (3) reveals the dependence of the frequen-
cies on the unperturbed energies, enabling us to get the functional
relationship between the latter and the unperturbed action variables,
namely, h; = A, with A = (3f/2v2)"°.

With this relation in mind, and taking into account that the angle
variables are 6; = w;(h;)t,i=1, 2, the complete Hamiltonian, in terms
of the action-angle variables of the unperturbed Hamiltonian, can be
recast as

H(I,0) = Ho(I) + eV(I,0), (4)
where

Ho(l) =AY +133),

o0

VILO)=V(I) Y opmiicos(2(n +m —1)0; % (2k — 1)6;)
n,mk=1
+ cos(2(n —m)0y £ (2k — 1)03)} (5)

With tpypy = onotmoy, and V(I) = 25/23ﬁ41f/31;/3, the + sign meaning
that both terms are included in the series.

3. Resonances at ()(e)

A glance at the perturbation series given in Eq. (5) reveals that the
number of resonant terms at first order in the perturbative parameter

Table 1

Harmonics in the Fourier expansion (5) at ¢(g, 1/23%)

Vector No Nq N, Vector No Ny N,
(2,1) 1 1 0 2,-1) 1 1 0
(0,1) 1 0 1 (0,-1) 1 0 1
(2,3) 0 1 1 (2,-3) 0 1 1
(0,3) 0 1 0 (0,-3) 0 1 0
(2,5) 0 0 1 (2,-5) 0 0 1
(0,5) 0 0 1 (0,-5) 0 0 1
(4,1) 0 2 1 (4,-1) 0 2 1
(=2,1) 0 1 0 (=2,-1) 0 1 0
(43) 0 0 2 (4,-3) 0 0 2
(-2,3) 0 0 1 (=2,-3) 0 0 1
(6,1) 0 0 3 (6,-1) 0 0 3
(-4,1) 0 0 1 (-4,-1) 0 0 1

is unbounded, which is a drawback to take into account the width
of every resonance at such an order.

However, the strong dependence of the Fourier amplitudes on
(n + m + k), through the quantities oy, ~ 1/23M*k=3) gives us a
good hint on how to gather the (/(¢) resonances and where to cut
the series, our attempt being to keep terms only up to (/(1/232).

All the possible combinations of n, m and k verifying that n+m+
k<5, yield 24 different vectors which are listed in Table 1, together
with the number of times they appear in a term with coefficient
onmi Of @ given order in 2]—3 Thus, No denotes the number of times
the vector appears with coefficient oy, = o3, Ny the number of
times it arises with coefficient oc% o (~ oc?/23), and N, corresponds to
either the coefficient o103 or aZo3 (which are approximately o3/232).
From now on, these vectors will be appointed as harmonics at order
0(e,1/232).

On applying the resonance condition m-w=0, withm ¢ Zz/{O}, to
the unperturbed system, the following relation between the energies
in each degree of freedom is obtained:

mihl/* + mahy* = o, (6)

which implies that the resonance structure in energy and action
space consists of straight lines (with positive slope) given by

4
m
hy = —Ln} 7
2 m421 1 ( )
and
3
m
L=|—1, 8
2 m% 1 ( )
respectively.

Moreover, Eq. (6) indicates that mym, <0, whence, those vectors
having both components with the same sign must be discarded.
Let us notice, however, that not all of the remaining harmonics at
order (¢, 1/23%) are actually resonant, as it will be discussed in the
forthcoming section.

4. Width of the resonances at (/(¢)

On computing the width of resonances, the pendulum’s approxi-
mation (see for instance [1,13]) provides a suitable description when-
ever each resonance is assumed to be isolated from the rest.

It should be noted that, before proceeding to estimate the width of
a given resonance, all the coefficients o, associated with the same
trigonometric function are to be added together into a single one.
Indeed, for each given vector m, we should define the coefficient:

tm= Y

m4n+k <5

Anmks
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where n, m and k are natural numbers that combine to form the
vector m in any of the four ways displayed in Eq. (5). Let us remark
that om ~ 03 (No + N1/23 + N»/23%).

Inasmuch the pendulum’s approximation has been applied to
this single resonant term, the new (resonant) Hamiltonian turns out
to be

2
Hi(p1.y1) = % + eV(I" Yotm cOs Y4 (9)

with

o’ o’

M—lzmianmj=m2 Lo I=I"+mp,, Y,=m-0, (10)
J

bar
where the sum over repeated indexes should be understood.

Let p, be the maximum variation of p; within the oscillation
regime, then

1/2

3..—1

m:m

MMy 2 12 (/8
e/co e () )7°.

= 2(eMV(I" Yoty )2 = 2712 g1
Dr ( ( ) nmk) ﬁ m?"‘mg

(11)

As a consequence of the simple pendulum dynamics, the maxi-
mum displacement of the unperturbed action variables depends on
m and p; in the fashion: (AI)" = (I — I") 4 = prm.

Furthermore, the maximum displacement of the unperturbed en-
ergy is given by |(Ah;)p,| = |w[(Al;),|; and it is the maximum ampli-
tude attained in the oscillation of any of the unperturbed energies
that measures the width of the resonance.

Let us now recall that in any 2D problem the energy conservation
condition h=h; +h;, together with the resonance condition m; h}/‘l +

mzh;/4 =0 allow both h} and h, to be written in terms of the total
unperturbed energy h. Thus, the amplitude can be recast in terms of
my, my, &, o4y and h as follows:

Im1>2ima® 1 12,08
‘(Ahl);n|:24ﬂ3/278/ o h778,
Im$ + m3|11/8

I(Ah2 )| = 1(Ah1 )yl (12)

The last identity in (12) is due to the fact that in presence of a
single resonance, the motion of the system is tangent to the unper-
turbed energy surface, and for this particular model such a surface
is given by h = hy + hy, which leads to Ah, = —Ah;.

We note that the width of the resonances at (¢, 1/23%) depends
on the harmonic numbers in the manner shown in Fig. 1, so that
those resonances with values of y=my/m; out of the range [0.5,2.5]
should be narrow.

A glance at both Eq. (12) and Fig. 1 reveals that those harmonic
vectors with any of its components equal to zero do not change
the energies, and consequently, they should not be considered as
resonant vectors.

Further, since the perturbation terms are even, if m is a resonant
vector then —m is also a resonant one (both corresponding to the
same resonance). Hence, for each resonance just one representative
resonant vector can be considered, encompassing into its concomi-
tant coefficient the contribution corresponding to its opposite vector
as well. All the relevant data required to compute the width of each
resonance at (/(¢, 1/23%) are displayed in Table 2, where we have
also included the value of h} corresponding to a total unperturbed
energy of h = l/(4[f4) ~ 0.485 (the one used in [10]).

We have computed the resonance widths corresponding to ¢ in
the range [0, 0.5]. Fig. 2 displays both the maximum and minimum
values of h; for each resonance vs. the perturbative parameter ¢;
the total unperturbed energy being h = 1/(4ﬁ4). We observe that for
¢~ 0.15,the (6,-1),(4,-1),(2—1) and (4, —3) resonances do overlap,

0.4 T T T T
0.35
0.3 }
®
T. 025 |
At
i
= 02+t
o
i 0.15
z
0.1
0.05 +
0 \ \ \ \
0 1 2 3 4 5
y=my/m;
Fig. 1. Dependence of the resonance width on m,/m;.
Table 2
Resonant vectors at @(¢) up to (/(1/23?%)
Vector No N, N, h;
(2,-5) 0 0 1 0.4729
(2,-3) 0 1 2 0.4050
(4,-3) 0 0 2 0.1166
(2,-1) 1 2 0 0.0285
(4,-1) 0 2 2 0.0019
(6,-1) 0 0 3 0.0004
0.5
4
0 \\\\‘\7
0.3 t
< 02}
0.1 - - —_— S
0 —
0 0.1 0.2 0.3 0.4 0.5
€

Fig. 2. Widths of those resonances at (/(¢) up to ((1/23?), in terms of &.

but lie far away from the (2, —-3) and (2, —5) resonances. Therefrom
we could infer that the energy surface presents two unconnected
regions of chaotic motion, so that a global transition to chaos does
not take place for £<0.5, which leads to a critical theoretical value
for the perturbation parameter & > 0.5.

5. Resonances at ()(€2)

In those regions of phase space which are far from any primary
resonance (i.e. where the diophantic condition holds for every pri-
mary resonance), we can introduce new cononical variables, (], @),
in such a fashion that the transformed Hamiltonian consists of a part
depending on the new momentum and a perturbation that, though
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being non-integrable, has an amplitude of ((¢2).

H, @)=HoU)+¢>

Table 3
Resonant vectors of ((&2) up to (/(1/23?)

of the canonical transformation:

FJ,0)=]-0+¢0(],0)
with @m(J) = —Vm(J)/m - (J).

A, @)=HoU)+¢* Y C(m,m',]J)

mm

where the coefficients are given by

C(m,m',J) = omoumy 123343 253

13%Hol)) 09U, 9) 32U, ¢) . VU, 9) 39U, ¢) Vs i
2 Qo  Oo; 0o i 0o; (2,-6) 04791
(2,-4) 0.4565
+ 0(&3), (13) 2,-2) 02425
(6,—4) 0.0800
where @ stands for the trigonometric part of the generatrix function (6,-2) 0.0059
o(J,0)= > ®m(J)sin(m-0) 0.5
meZ7?/0}
04
After computing the right side of expression (13) one finds - [
0.3 t+
0.2 +
x {cos((m+m')- @)+ cos((m—m')- @)} + O(e3),  (14)
01 —— — —
2/3 4/3 0
(mimyg?5> + mamy ) , , . .
(m- ox))m' - &(J) 0 0.1 0.2 0.3 0.4 0.5
€

@y PR + my R
(m” ()

2438

There are several relevant facts to be remarked: (i) On working
at ((¢) we have only considered resonances up to ((1/232) in the
Fourier coefficients; therefore, the series in Eq. (14) should actually
be replaced by a finite sum over those harmonics, m and m’, whose
associated coefficients (o4, and oy, respectively) are such that their
product is of order either o8, «8/23 or «$/232. (ii) There are many
different pairs of harmonics (m,m’) at (¢)(¢), which combine into the
same harmonic n at ((¢2). (iii) As a consequence of the evenness of
the perturbation term, if n is a resonant vector —n is also a reso-
nant one. (iv) The resonance condition implies that nyn, <0. (v) The
condition of being far from resonances at (/(¢) implies that we must
discard all those harmonics which are a multiple of any resonant
vector at ((g, 1/23%).

To cope with the situation set up by the issues (ii) and (iii), we
have added all the concomitant contributions into a single coefficient
D, namely,

=Y C(mm.]J) (15)

m,m’

where the sum extents to all the harmonics (m,m’) at O(g, 1/23%)
suchthatn=m+m’ , n=m-m’, -n=m+m’, or -n=m - m’, and
for which O(o;mou ) is not greater than oc‘f/232.

Taking into account all the above mentioned considerations, the
Hamiltonian can be written in the form:

H(J,@)=Ho(J)+ &) D(n,J)cos(n - ¢). (16)

Therefore, in the vicinity of a resonant torus J", and by recourse
of the pendulum approximation, we obtain the new resonant Hamil-
tonian:

92
:#r(¥7’1,'f’1)=2—;+%0605(ﬂ”1), (17)

Fig. 3. Width of the resonances up to ()(&?,1/23%) vs. &.

where
r
/171 = nivj’n]
Uo = 2D, J"). (18)

Thus, the maximum displacement of the unperturbed action vari-
ables is given by (A])" = (J —J )max = 20, with 2, = (m%m)w,
and the widths of the resonances at ()(¢2) are given by

|n2| n1

(A )l =24 B> B
( + nz (n% +nd)¥

Z O Ol

mm’

1/2
2(2Inq1 Pmy + InyPmy)

[nyng|(mj na| + my|nq|)

n2mymy + namym, }

(M} Ing| + mjyInq|)*

where the plus sign corresponds to n =m + m’ and the minus sign
to n=m —m’, m; ought to be written in terms of m; and n;. As a
consequence of this last expression, resonant vectors are compelled
to have no null components.

The harmonics satisfying all the stated conditions for the per-
turbation at order &2 turn out to be just five, which are listed in
Table 3. They will be referred to as resonant vectors at (/(g2,1/232%).
We have computed the concomitant resonance widths for ¢ in the
range [0, 0.5]. The results are presented in Fig. 3, where also the res-
onances corresponding to ()(¢) have been included. Let us recall that
the adopted value for the total unperturbed energy is h = 1/4/34.

From Fig. 3 and Table 3 we notice that the arising of the (2, -2)
resonance connects the two sets of resonances that at ((¢, 1/232)
appeared isolated for the considered ¢ range. The remaining reso-
nances at (’(¢2,1/23%) appear completely overlapped with either set
of resonances at (’(¢, 1/232). From this plot, we could derive the crit-
ical value for the perturbative parameter, & ~ 0.28.
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Fig. 4. Poincaré surfaces of section for ¢=0.12 (on the left), and for ¢ =0.14 (on the right).

6. Numerical estimation of the critical value of the perturbation
parameter

In this section we empirically estimate the value of ¢ by means
of Poincaré SOS. To this aim, we take the intersections on the plane
x=0 (actually |x| < 10~8) whenever py >0, for several initial conditions
along the y-axis.

Fig. 4 displays the SOSs corresponding to é=0.12 (on the left) and
0.14 (on the right), respectively. There we can distinguish the (2, -1)
resonance, very close to the last invariant curve that corresponds
to the y-axis periodic orbit—(1, 0) resonance—and the (2, -2),(2,-3)
resonances as well. The (2,-4), (2,-5) and (2, -6) resonances do
not show up due to the fact that they are completely destroyed by
overlap, as could be seen from Fig. 3 for this value of ¢. It is important
to remark that several higher order resonances do appear which
have not been theoretically computed.

For ¢ = 0.12, we observe that the chaotic domain where the
(2,-4), (2,-5) and (2, —6) resonances appear destroyed by overlap
is bounded by some KAM tori and thus, it remains unconnected with
the outer chaotic component around the (2,-3) and (2,-1) reso-
nances. On the other hand, for ¢ = 0.14, both chaotic zones are con-
nected, leading to a global transition to chaos, in the sense that any
orbit could explore almost all the chaotic component of phase space.

Therefore, it looks like ¢ lies somewhere in the range (0.12,0.14).
After performing a rather thorough numerical exploration, we have
noted that for £=0.135, several KAM tori do persist, which are shown
in Fig. 5, where a zoom in the window [0,0.4] x [0,0.3] is presented.
There, such KAM tori can be clearly distinguished and are seen to
definitively separate both chaotic domains in phase space. Never-
theless, this bounded region of chaotic motion, does not involve the
resonances we are taking into account to derive the analytical esti-
mation of &, but high order ones.

Therefore, from experimental means, we may state that ¢>0.135
is a good lower bound for the critical value of the perturbation pa-
rameter.

7. The 3D model

Now we will focus on a 3D version of the dynamical system under
study. In Cartesian coordinates, its Hamiltonian is given by
Hp.q)= 503 + 0§ +p2) + §(x* +y* +2%) + eX*(y + 2). (19)

Let us notice that for a null value of the perturbative parame-
ter we recover the three independent 1D quartic oscillators, whose

0.3

0.25

0.2

2> 0.15

0.1

0.05

035 04

025 0.3

Fig. 5. Poincaré surface of section for ¢ = 0.135 illustrating the existence of KAM
tori that separate both chaotic components.

solutions x(t) and y(t) are the ones given by Eq. (2), while z(t) allows
for the expression:
2(t)=zo(h3) ) _ o cos((2n — 1)es(h3)t), (20)

n=1

where zo(h3) = 4fhY*.
In terms of the action-angle variables of the unperturbed
Hamiltonian, the complete Hamiltonian (19) can be recast as

H(I, 0) = Ho(I) + V(I, 0) (21)
with
Ho =AU +15° +13°),
V(I,0) = V2(I) i Opmi{cos(2(n +m — 1)07 £ (2k — 1)0,)
n,mk=1
+ cos(2(n —m)0y £ (2k — 1)03)}
+ Vi3 i Upmic{€0s 2(n +m — 1)07 £ (2k — 1)03)
n,mk=1
+ cos(2(n — m)0y = (2k — 1)03)}, (22)
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where the new quantities Vy;(I) = 25/23[34If/31;/3 have been intro-
duced; the + sign meaning that both terms are included in the series.

8. Resonances at (/(¢)

The perturbation given in Eq. (22) shows that for each combina-
tion of n,m and k there result 8 harmonic vectors m. Again, due to the
even character of the perturbation, we take just one representative
resonant vector, m, whose coefficient o also encompasses the con-
tribution of its opposite vector —m; and keep only those harmonics
such that O(oum) < 0(1/232).

Since the harmonic vectors at (/(¢, 1/23%) can be splitted into two
groups, we denote by % the subset of vectors whose third component
is zero and by & that of vectors having their second component equal
to zero. Therefore, the perturbation can be written in the fashion:

3" amcos(m - 0) + Vis(I) > o cos(m - 0). (23)

me% me%

V(I,0) = V1o(I)

On applying the resonance condition, m-w=0, withm < Z3/{0}, to
the unperturbed system, the following relation between the actions
in each degree of freedom is obtained:

13 13

miL? +myl? +mald? =0 (24)

so that each resonant vector could not have all its three components
of the same sign. Furthermore, whenever a resonant vector has two
of its components equal to zero, we get a null amplitude for the
perturbation term.
Thus, we obtain 12 different resonant vectors, grouped in the
following set:
77(6,1/23%) =1(2,-1,0),(2,-3,0),(2,-5,0),(4,~1,0),(4,-3,0),
(6,-1,0),(2,0,-1),(2,0,-3),(2,0,-5),
(4,0,-1),(4,0,-3),(6,0,—-1)}.
For those vectors m € %, the resonance condition together with

the energy conservation condition define a curve in action space (not
just a point as in the 2D case) given by

3
I :_<@> I,
my
34
h m} 43
Ig:iz—<1+m—§>(1;) ,

(h/A/(1

(25)

where I} € [0, 17, ] with [}, = + (my/ma)*))¥4.

h=0.485, £ =0.01

€2

-04 -03 -02 -0 0 0.1 0.2
€1

The concomitant curve for m € & is given by

I 3/4
1£={A <1+ )(r)“/3} ,
s (26)

3
Ir = m I
3 ms 1

with I} e [0,I%,], the upper bound being IZ, = (W/A/(1 +
(ml/m3)4))3/4. In energy surface both kind of resonances define
straight lines. On applying the pendulum approximation, we obtain
a similar resonant Hamiltonian to that given by Eq. (9), namely,

p?
Hr(p1, Y1) = 5,4 + €V cos iy, (27)
where Vip = Vi2(I")oum for m € #and Vi = Vq3(I"Jorm for m e %.

In energy space, the resonance widths in each degree of freedom,
are adequately described by
o1 (AL

(A, = — $ALP2(MV i) Py

= SAIP(eMVim) 2 m;. (28)

Let us remark that, while in the 2D model the resonance and
energy conservation conditions force the resonance width to depend
on just one variable, either h, hj or I{, in the 3D model the resonance
width is a function of two independent variables, which we have
chosen to be I} and h.

With the widths computed by means of (28), we can trace the
displacements of the resonant energies, h +(Ah; )m and hi — (Ahj)p,
for values of I} € [0, Imqx]. Therefore, followmg [10] we perform the
global change of coordinates:

= %(hl —2hy + h3),
= J5(h1 = h3),
e3 = %(’ﬁ + hy + h3), (29)

where e; € [—(y/2/3)h,h/v/6], e; € [-h/v/2,h/~/2] and e3 = h//3,
adopting the value h ~ 0.485, to finally display in Fig. 6 the region of
energy surface occupied by the structure of resonances at (/(¢, 1/232)
for two different values of the perturbative parameter. Let us remark
that many of the resonances in ¥ (¢, 1/232) are barely observable
due to their thinness and close proximity to a boundary.

h=0.485, £ =0.05

-04 -03 -02 014 0 0.1 0.2
€1

Fig. 6. Resonances at (/(&, 1/23%) for ¢=0.01 (on the left) and ¢ =0.05 (on the right).
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9. Resonances at (/(e?)

As in the 2D case, we perform a canonical transformation in or-
der to remove the perturbation at (/(¢), the associated generatrix
function being of the form:

F(J,0)=] -0 +¢9®(],0), (30)

where

(],0)= Z Dm(J)sin(m - 0) + Z Dm(J)sin(m - 0) (31)
me% me%

with @m(J) = —Vm(J)/m - o(J).

The new Hamiltonian is described by the same formal expression
given in Eq. (13), where the first and second terms within braces
adopt the values:

13°Ho(J) 02U, ) 02U, )
2 Qo O O
Y g )
m,m’
me% m'e% ]1/3 + mlll/3 )( 11/3 + m2]1/3)

x {cos((m +m') - ¢) + cos((m — ') - @)}
m1mlj2/3 3 +m m3]4/3
+ 2 ) Omm 13 13 13 1)
me¥ me% ml] + m3-l )( 1J + m3]
x {cos((m+m') - @)+ cos((m —m') - @)}

2D Omm

me? me%

mim) )22

(m ]1/3+m2]1/3 (m1]1/3+m3]1/3

x {cos((m+m') - @)+ cos((m —m') - @)}

2/311/3]1/3
+ Z Z 5mm

meZ m'e%

mym.J
l/3+m3]1/3)( ]1/3+m2]1/3)

x {cos((m +m') - @)+ cos((m —m') - @)}, (32)
where Smm = 233%3 B2 ooy and

V], @) 00(J, @)
i 0g;

=Y 2mm

me% m'e%

(2mlj1/3]2/3 n m/j4/3 71/3)
(miJy” + may)

x {cos((m+m') - @)+ cos((m —m') - @)}

IS T NCL L AR

1/3 1/3
meZ me% ( ]/ +m3J/

x {cos((m + ') - ) + cos((m — m') - )}
11/31 J1/3
_ 225 miy
22, o T m )
x {cos((m+m') - @)+ cos((m —m') - @)}
]1/31 ]1/3
_ 225"”“ _Mi Jy Js
merZ m%l/ (m1]1/3 + mzjl/g)

x {cos((m +m') - @) + cos((m —m') - @)}. (33)

Therefore, the Hamiltonian may be recast as

A, )
=Ho(J) + & Z Z Z [a(n,m,m',]) + a(n,m,—m',])] cos(n - @)
neo/ | me? m'e%

+ > )" [b(n,m,m'J)+ b(n,m, —m,J)] cos(n - @)
meZ me?

+ Y > [cn,m,m )+ c(n,m, —m',J)] cos(n - @)
me? m' e
+ Y > [dn,m,m'J) + d(n,m,—m',J)]cos(n- @) ¢, (34)

meZ m' <%

where .7 is the set of harmonic vectors arising through any combi-
nation of vectors from % U % and whose first non-zero component
is positive, and the coefficients a-d are defined as follows:

a(n,m,m’,J)

5mm[ (my m’]] 12/3+m m’]‘l/3
™| P + mg Pt 4 my )

— (2m]]l/3]2/3

-2 fXrn=m+m,

myJ {3513
myJ}2 +my))?) }

0 if+nZm4+m'.

) (m1]1/3+m311/3)( ]l/3+m3[1/3

if+tn=m+m,

— (2m1]1/3]2/3+m3]4/3 1/3
(m 111/34_”1},1/3

0 if+nZm4+m'.

c(n,m,m’.J)

my m1]2/3]1/3jl/3

Omam
} Lm]]1/3+m2]1/3)( ]1/3+m3]1/3

= 4 m]1/3jl/3]1/3 i|

(my)y” + my)y>)

if+tn=m+m,

0 if+n£m4+m'.

din,m,m,]J)

5 { mimy {015
m,m (m1]1/3+m311/3)( Jl/3+m2]1/3)

= 4 m/]1/3jl/3]1/3 i|
(myy 4+ myy)

if+tn=m+m,

0 if+tnfm+m.
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h=0.485, £=0.01
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Fig. 7. Resonances at (/(¢2,1/23?) for ¢ =0.01 (on the left) and &= 0.05 (on the right).

Further, on introducing a coefficient analogous to the one in the
perturbation at ((¢2) for the 2D model,

D)= Y 3 [a(n,m,n.J)+ a(n,m, —m' J)]

me% m'e%
+ > > [b(m,m,m' J)+ b(n,m,—m',J)]
meZ me%
+ )Y [cmmm' J) + c(n,m, —m',])]
me¥ me%
+ 3 3 [dn,m,m' J) + d(n,m, —m J)] (35)
meZ m'e%
the Hamiltonian allows for the expression:
HU,@)=Ho) + & 3 D(n,J)cos(n - ). (36)

ne.c/

Close to any resonant action associated with a resonant vector
at ()(¢2), n, we could apply the pendulum approximation to get the
same formal expression for the resonant Hamiltonian given by (17).

The variations in the energy components are similar to those of
(O(¢); indeed,

Ay = A1 (o)) ;.

For those n with either n3 =0 or ny =0, the resonant curves are
given by Egs. (25) and (26), respectively, with the pertinent substi-
tution of m; and [; by n; and J;. Meanwhile, whenever n; = 0 the
resonant curves are given by

r 1 h sl
& (1+(n2/n3)4)3/4{A o } '

r_ 1 h )™
5=4 + (n3/my)*)¥4 {A ) }

with J1 € [0,(h/A)¥*].

Let #",(&2,1/23%) be the set of resonant vectors which belong to
.o/ and that can be constructed by at least one pair (m, m’) such that
O(omom ) < 0(1/23%). On computing the elements of 7 ,(¢2,1/232)
we learn that this set consists of 15 vectors with one null component
together with 48 having all its three components different from zero.

Fig. 7 shows the area of the canonical energy surface (h = 0.485)
occupied by those resonances at (/(¢2, 1/232) that have one null com-

ponent together with the (2,—1,—1) resonance, for the same two
values of the perturbative parameter used for Fig. 6.

Such a subset of 7;(¢2,1/23%) as well as the complete set
4"+(g,1/23%) have been considered in Fig. 8—left for & = 0.005. This
picture should be compared with the contour-plot obtained by
means of the MEGNO for the very same value of ¢ which is dis-
played in Fig. 8—right (taken from [10]). This numerical exploration
evinces that the resonances which strongly manifest are those with
just one null component (i.e. the straight ones) and the (2,-1,-1)
resonance (the one showing a curved shape).

A glance at Fig. 8—left reveals that in some intersections between
0(e) and O(¢?) resonances, the widths of the latter tend asymptoti-
cally to infinity. This is due to the emergence of small denominators
in the Fourier coefficients of the perturbation, a fact that reminds us
that the canonical transformation performed in order to eliminate
the perturbation terms proportional to ¢ is no longer valid in the
neighbourhood of any (/(¢) resonance.

A good example of this behaviour is the intersection between
the (0,1,—1) and the (2,—1,0) resonances. The former is an ((&2)
resonance that starts on the top right-hand corner of the energy
surface and gets through the middle of it while the latter is of ()(¢)
and can be identified as the widest of the resonances departing from
the bottom right-hand corner of the energy surface.

10. Analytical estimate of the critical value of the perturbation
parameter for the 3D system

As it can be seen from Fig. 8, many resonances have a triangular
shape. Such is the case of all those resonances associated with a
vector having either its second or its third component equal to zero.

It can be demonstrated instead that for a resonant vector with its
first component ny equal to zero, the coefficients a(n,m, +m’,J) and
b(n,m,+m',J) are null v (m, m’). Thus, the contribution of such a vec-
tor proceeds only through its concomitant coefficients c(n,m, +m’,J)
and d(n,m, +m’,J). Further, from Eq. (37) it can be stated that the res-
onance width tends to zero when J; approaches either 0 or (h/A)3/ 4,
Consequently, the regions encompassed by the separatrices of reso-
nances for which ny = 0 do not have a triangular shape.

On estimating ¢ for the 3D model, we are compelled to make
somewhat strong simplifications: (i) we take as & the value of ¢
for which the total area covered by resonant regions (A;) equals
90% of the whole area of the energy surface (Ap); (ii) we approxi-
mate by triangles the resonant regions corresponding to resonant
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Fig. 8. Resonances up to (/(¢2,1/23%) for &= 0.005 (on the left) and the actual resonance structure obtained with the MEGNO (on the right) for the same energy normalized
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Fig. 9. A//A, (on the left) and fraction of chaotic motion (on the right) both vs. the perturbation parameter, in logarithmic scale.

vectors with one null component; (iii) we approximate by two
triangles the resonant region corresponding to the (2,—1,—1) reso-
nance; (iv) we do not consider any further resonance; (v) we add
up the area of each resonance disregarding the intersections due to
crossings of resonances, so that those regions corresponding to two
different resonances are considered twice.

In Fig. 9—left we have plotted the fraction A,/Ay, for the perturba-
tion parameter varying in the range ¢ € [0.00001, 0.2]. There it can be
observed that A;(¢) reaches 90% of A, for some ¢. between 0.03 and
0.04. This result is in quite good agreement with that arising from
Fig. 9—right (taken from [12]) which displays the fraction of chaotic
motion according to the MEGNO values, for the same range of ¢.

11. Discussion

We have checked out the accuracy of the overlap criterion when
applied to a simple near-integrable Hamiltonian system in both its

2D and 3D versions. To this end, we have computed the unperturbed
resonances up to order ()(&2) for both systems, and modelled each
resonance by means of the pendulum approximation in order to
estimate the theoretical critical value of the perturbation parameter
for a global transition to chaos.

By performing several SOS for the 2D case we have derived an
empirical value to be compared to our theoretical estimation. There
is a significant difference between both values which might be due
to not having considered the width of the perturbed separatrix layers
in the theoretical estimation.

For the 3D case a theoretical estimate of the critical parameter
has been attained, which is shown to match the one given in [12],
where such a value is achieved on computing the fraction of chaotic
motion vs. ¢ according to the MEGNO values.

Let us remark that the conception of transition to global chaos
assumed for the numerical estimate of ¢. in the 2D case is of a differ-
ent nature from the one adopted for the 3D system. Actually, the 2D
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system is considered to be globally chaotic if the chaotic component
of phase space appears almost fully connected, while in the 3D case
the system is regarded as globally chaotic when at most 10% of the
energy surface corresponds to invariant tori. Notice that in the lat-
ter case, though it is very likely that the chaotic component be con-
nected when resonances do overlap in a mostly chaotic phase space,
nothing could be asserted about the existence of a fully connected
region of unstable motion (see [12,14,15] for a thorough discussion).

Therefore, from both theoretical and numerical results we may
assert that a suitable estimate for the critical value of the perturba-
tion parameter could be obtained, for the 3D model, by means of the
overlap criterion when considering resonances up to @’(¢2). Indeed,
regarding terms just up to ()(¢) largely overestimates &, as already
shown by [1] for the standard map.
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