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Abstract. Introduced plants often face new environmental conditions in their non-native ranges. To become invasive,
they need to overcome several biotic and abiotic filters that may trigger adaptive changes in life-history traits, like post-
germination processes. Such early life cycle traits may play a crucial role in the colonization and establishment success
of invasive plants. As a previous study revealed that seeds of non-native populations of the woody Siberian elm, Ulmus
pumila, germinated faster than those of native populations, we expected growth performance of seedlings to mirror this
finding. Here, we conducted a common garden greenhouse experiment using different temperature and watering treat-
ments to compare the biomass production of U. pumila seedlings derived from 7 native and 13 populations from two
non-native ranges. Our results showed that under all treatments, non-native populations were characterized by higher
biomass production and enhanced resource allocation to aboveground biomass compared to the native populations.
The observed enhanced growth performance of non-native populations might be one of the contributing factors for the
invasion success of U. pumila due to competitive advantages during the colonization of new sites.
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Introduction

Organisms that become successful invaders after being
introduced into non-native ranges must pass several

selective biotic or abiotic filters that may trigger rapid
evolutionary change (Novak 2007; Prentis et al. 2008).
Such change can contribute to their invasion success, for
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example, by altering phenotypic traits (Bossdorf et al. 2005)
that enhances tolerance to biotic or abiotic conditions
(Maron et al. 2004; Abhilasha and Joshi 2009; Leiblein-Wild
et al. 2014), or increasing early life cycle traits like germin-
ation or seedling growth (Blair and Wolfe 2004). Early life
cycle trait performances are of great importance for the
spread and establishment of introduced populations in a
new range. For example, fast germination and growth of
non-native plants can provide competitive advantages over
resident species due to an earlier use of limited resources
(Milbau et al. 2003; Barney et al. 2009). A shift in growth
strategies in non-native populations often indicates
enhanced efficiency of resource allocation (Zou et al. 2007).

To determine if phenotypic changes in non-native
populations are caused by genetic processes or by
phenotypic plasticity, it is important to compare the per-
formance of native source populations as well as non-
native populations in a common environment (Kawecki
and Ebert 2004; Erfmeier and Bruelheide 2005; van
Kleunen et al. 2010). In this regard, genetic diversity is of
special interest due to its role for facilitating evolutionary
responses of populations confronted with environmental
changes (Reed and Frankham 2003). It has been found
that non-native populations are often characterized by
reduced genetic diversity compared with native popula-
tions due to bottlenecks during introduction (Sakai et al.
2001, Hirsch et al. 2011). Despite this, rapid evolution of
non-native species may occur even when experiencing
bottleneck events (Dlugosch and Parker 2008; Schrieber
and Lachmuth 2016; Zenni et al. 2016a, b, this issue).
Some studies, however, provide evidence that reduced
genetic diversity is not always the rule for non-native
populations, and that genetic diversity can be main-
tained by different mechanisms dependent on introduc-
tion history (multiple vs. single introductions), native
range genetic structure and propagule pressure (Petit
et al. 2004; Prentis et al. 2008; Le Roux et al. 2011;
Mand�ak et al. 2013). For example, inter- or intraspecific
hybridization can lead to similar or increased diversity
levels compared with source populations and can gener-
ate gene combinations which might be better adapted or
more tolerant to novel environmental conditions
(Ellstrand and Schierenbeck 2000; Dormontt et al. 2011).

Although only a small proportion of the world�s woody
plant species is currently considered invasive, the im-
pacts of these invasions are increasing worldwide
(Rejm�anek and Richardson 2013). To date, only few con-
sistent traits explaining invasion success of woody plants
have been found (Moles et al. 2012, Richardson et al.
2014) which highlights the need for more detailed know-
ledge about factors contributing to the invasion success
of trees or shrubs to predict and prevent further invasion
processes. Trait dynamics of trees are particularly poorly

understood in such species due to their long lifespans and
generation times (Zenni et al. 2016a,b, this issue). Here we
focus on differences in post-germination traits between
native and invasive populations of the Siberian Elm, Ulmus
pumila (Ulmaceae). This species was introduced in several
regions outside its native range and is today regarded as
naturalized or invasive in most regions where it has been
introduced. Its invasion success can partly be explained by
inter- and intraspecific hybridization, leading to high gen-
etic diversity in the corresponding non-native populations
(Cogolludo-Agust�ın et al. 2000; Zalapa et al. 2010; Hirsch
et al. unpubl. data). In a previous study, we showed that
non-native U. pumila populations from the Southwestern
U.S. are characterized by increased germination rates
compared to native populations from China (Hirsch et al.
2012). Based on genetic data, it is highly probable that ad-
mixture supported this observed shift in the germination
traits of non-native Siberian elm populations from the
Southwestern U.S. (Hirsch et al. unpubl. data). Several
studies have shown that differences in germination char-
acteristics can also be mirrored in post-germination traits
(Donohue et al. 2010). We thus performed a common
greenhouse experiment with non-native and native U.
pumila populations to test if post-germination traits show
differences between native and invasive populations re-
sulting in an enhanced growth performance of non-native
individuals from two invasion regions. We included differ-
ent temperature and watering treatments to simulate a
wide range of environmental conditions. In particular, we
tested two hypotheses: (1) non-native populations of U.
pumila will have increased above- and belowground bio-
mass production compared to native populations; and (2)
that this enhanced growth performance in non-native
populations is achieved through changes in above- and
belowground biomass allocation, and thus more efficient
resource usage.

Methods

Study species

The Siberian elm, U. pumila, is a diploid tree native to
northern and eastern China, central Mongolia, as well as
southern Russia where it can grow in various
topographies like slopes, valleys, and plains (Wu et al.
2003; von Wehrden et al. 2009; Wesche et al. 2011).
Ulmus pumila is characterized by fast growth, and it can
persist under harsh climatic conditions such as long
summer droughts and cold winters (Wu et al. 2003;
USDA and NRCS 2011). Its growth performance and a
high tolerance to the Dutch Elm Disease led to its wide
distribution and its use in breeding programs outside the
native range (Leopold 1980; Mittempergher and Santini
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2004). Today, the Siberian elm is considered as

naturalized or invasive in the U.S., Canada (Kartesz 2011;
USDA and NRCS 2011), Mexico (Todzia and Panero 1998),

Argentina (Mazia et al. 2001; Zalba and Villamil 2002),

Spain (Cogolludo-Agust�ın et al. 2000), Estonia, Australia
and the European part of Russia (NOBANIS 2012).

Sampling scheme

We included seven populations from the Chinese native

range, seven populations from the North American and
six populations from the Argentinean non-native ranges

(Fig. 1) [see Supporting Information–Table S1]. To min-

imize the chances of sampling inter-specific hybrid indi-
viduals, we chose only non-native populations located in

regions where no other elm species capable of hybridiz-

ing with U. pumila occurred. A genetic study using micro-
satellite markers showed that the non-native

populations in these regions are rather characterized by

intra-specific hybridization and standing genetic diversity

comparable to native populations of U. pumila (Hirsch
et al. unpubl. data). In the native range, we focussed on

populations from northern parts of China because these

regions seem to be the most probable source regions of
at least the North American non-native populations

(Webb 1948; Leopold 1980). Mature seeds from China

were collected in 2009 and from Argentina and the U.S.

in 2010. At least, 15 trees per population were sampled

and seeds were pooled within populations. Where seeds
had already been shed, they were collected from the

ground at different locations across the population to

obtain a representative mixed sample of the correspond-
ing population. To maintain seed viability, seed material

was stored in sealed plastic bags at 4 �C following Grover

et al. (1963).

Growth experiment

Common garden experiments were initiated in January

2011 and were performed in a completely randomized de-

sign. For germination, we used eight replicates per popula-
tion and a temperature treatment. Each replicate

contained 20 seeds placed on filter paper in standard Petri

dishes. The dishes were filled with de-ionized water to
keep the seeds permanently moist. The germination was

performed in RUMED Light Thermostats germination

chambers (Type 1301; Rubarth Apparate GmbH, Laatzen,

Germany) under two temperature treatments (20 �C/10 �C
and 32 �C/20 �C) with a photoperiod of 12 h cold

white light (1200 Lux) and 12 h darkness. Eight randomly

chosen seedlings per population were planted into 1.5 L
pots filled with a standardized amount of soil substrate

(substrate “TS 3” with recipe number 404 supplied by

Klasmann-Deilmann, Geeste, Germany). Age of seedlings

Figure 1. Sampled localities of Ulmus pumila populations in the non-native ranges (A: U.S. and B: Argentina) and in the native range (C and
D: China). Population locations are indicated by gray triangles. AZ , Arizona; CO, Colorado; NM, New Mexico; UT, Utah; WY, Wyoming.
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within and between the different treatments differed by
less than 5 days (minimum age: 3 days) and all seedlings
were planted at the same day to minimise the effect of
germination date on the results of the experiment.
Further, only seedlings of similar size where selected to
minimize maternal effects. Individuals were assigned to
controlled greenhouse cabinets with alternating tempera-
tures of either 20 �C/10 �C or 30 �C/20 �C (day/night). In
this context, seeds which germinated under the lower
temperature treatment were assigned to the lower tem-
perature conditions in the greenhouse and vice versa.
Additional illumination of sufficient intensity to allow
growth was used during the whole growth experiment to
provide a day length of 12 h. After an establishment period
of 24 days with regular watering, the treatment with water
levels of 90, 70 and 50 % (gravimetric percentages of the
soil water holding capacity), hereafter referred to as wet,
medium and dry, respectively, was applied. Every second
day, gravimetrically determined water loss was adjusted
and pots were re-randomized every 2 weeks within each
greenhouse cabinet. To avoid block effects between cab-
inets all non-temperature and non-watering related condi-
tions were equivalent and constant (e.g. cabinets located
at the same side of the greenhouse, homogeneous illu-
mination and humidity).

Resulting from the design outlined above, the initial
experimental conditions included 960 individuals (20
populations * 2 temperature treatments * 3 water treat-
ments * 8 replicates; Table 1). After 10 weeks of water
treatment, all individuals were harvested by carefully
removing the plants from the pots. The roots where gen-
tly cleaned from all attached soil particles using a root
washing table. Following drying at 80 �C for 48 h, above-
and belowground biomass was weighed for each plant
using a high precision balance (Sartorius AG, Goettingen,
Germany; model La5200d; readability 0.001 g).

Statistical analyses

All statistical analyses were performed in the R statistical
environment (version 3.2.2; R Core Team 2015). Biomass

parameters were square root transformed to better ap-
proximate normality. We applied generalized linear
mixed models with Gaussian error distribution to test if
biomass production differs between ranges as well as
temperature and water treatments (package lme4 ver-
sion 1.1-10; Bates et al. 2015). Populations nested within
range were included as random effect and backward
elimination of non-significant fixed effects (P>0.05) was
used as criterion for model selection. Significances were
derived by applying Wald Chi-Square tests (package car
version 2.0-25; Fox and Weisberg 2011). Post-hoc ana-
lysis of significant interactions was performed using the
R package phia (version 0.2-0; De Rosario-Mart�ınez
2015). The same procedures were chosen for log-
transformed shoot-root ratios (dry aboveground biomass
divided by dry belowground biomass) as response vari-
able. We considered this approach because biomass al-
location patterns can help to gain a more detailed
knowledge about how plants react towards different en-
vironmental conditions (e.g. Wilson 1987; Padilla et al.
2013).

Results

Fifty individuals did not survive the experiment, and of
these, more than 60 % were from native range popula-
tions (Table 1). Consequently, biomass was harvested
from a total of 910 individuals (Table 1).

Aboveground biomass was significantly higher
under the warmer temperature treatment, the medium
as well as the wet water treatment, and in non-native
populations (Table 2 and Fig. 2A). Further, we found a
significant interaction between temperature and water
treatment (Table 2). The post-hoc analysis of this inter-
action revealed that the warmer temperature treatment
had a stronger positive effect for the aboveground bio-
mass production under the wet water treatment than
under the medium and dry water treatments (v2 ¼ 5.59,
df ¼ 1, adjusted P ¼ 0.036) and to the dry water
treatment (v2 ¼ 15.28, df ¼ 1, adjusted P<0.001;

......................................................................................................................................................................................................................

Table 1. Number of Ulmus pumila individuals (Nind) per range at the beginning and at the end of the greenhouse experiment. The starting
number consists of the number of populations tested for the corresponding range (Npop) * 2 temperatures * 3 water treatment levels * 8 repli-
cates. The difference between the starting number and the number of individuals at the end of the experiment characterizes the number of in-
dividuals which did not survive the experiment (Nind_dead).

Range Npop Nind at the beginning of the experiment Nind at the end of the experiment Nind_dead

China (native) 7 336 305 31

Argentina (non-native) 6 288 273 15

U.S. (non-native) 7 336 332 4

Sum 20 960 910 50
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Fig. 3A). The medium and the dry water treatments

showed a similar response to the temperature treat-

ments (v2 ¼ 2.46, df ¼ 1, adjusted P>0.05; Fig. 3A).
Belowground biomass production was also signifi-

cantly higher under warmer temperatures and for

non-native populations (Table 2 and Fig. 2B). The water

treatment showed a significant effect only in interaction

with the temperature treatment (Table 2). This inter-

action reflects a similar reaction of belowground bio-
mass production under medium and wet water

treatment levels between the two temperature condi-

tions (v2 ¼ 3.00, df ¼ 1, adjusted P>0.05; Fig. 3B).

Belowground biomass production under dry conditions

was less affected by the temperature treatment

compared to the medium (v2 ¼ 6.42, df ¼ 1, adjusted

P ¼ 0.023) and wet water treatment level (v2 ¼ 17.94,

df ¼ 1, adjusted P<0.001; Fig. 3B).
Similar patterns were found for shoot-root ratio, which

was significantly higher under warmer temperatures and

for both non-native ranges (Table 2 and Fig. 4). However,

a significant interaction between temperature treatment

and range (Table 2) showed that the warmer tempera-

ture treatment had a stronger increasing effect on the
shoot-root ratio of native populations compared to non-

native populations from Argentina (v2 ¼ 35.51, df ¼ 1,

adjusted P<0.001) and the U.S. (v2 ¼ 15.07, df ¼ 1, ad-

justed P<0.001; Fig. 5A). Both non-native ranges dif-

fered only slightly regarding their response to the water

............................................... ............................................... ...............................................

......................................................................................................................................................................................................................

Table 2. Analysis of variance (type III) results comparing the minimal generalized linear mixed models. The results show the influence of the
temperature and water treatment as well as the population origins (range) on the aboveground and belowground biomass production as well
as on the biomass ratio (df , degrees of freedom; temp., temperature; treatm., treatment). Rows with no entries characterize interactions
that were removed during the model reduction process.

Source of variance Aboveground biomass Belowground biomass Biomass ratio

v2 Wald statistic df P v2 Wald statistic df P v2 Wald statistic df P

Intercept 103.17 1 <0.001 415.50 1 <0.001 7.00 1 0.008

Temp. treat. 30.56 1 <0.001 13.23 1 <0.001 58.90 1 <0.001

Water treat. 60.01 2 <0.001 1.03 2 0.596 144.61 2 <0.001

Range 41.93 2 <0.001 23.58 2 <0.001 29.88 2 <0.001

Temp.�water treat. 15.47 2 <0.001 18.17 2 <0.001

Temp. treat.� range 36.61 2 <0.001

Water treat.� range 11.27 4 0.024

Temp. treat�water treat.� range

Figure 2. Dry aboveground (A) and dry belowground (B) biomass of native and non-native Ulmus pumila populations by temperature and
water treatments (med¼medium). For a statistical analysis of the data see Table 2.
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treatment (v2 ¼ 5.43, df ¼ 1, adjusted P<0.02; Fig. 5A).
Shoot–root ratios were also significantly different
between the water treatment levels, with lowest values
under the dry water treatment and highest values under
the wet water treatment (Table 2 and Fig. 4). Moreover,
water treatment and range showed a significant inter-
action (Table 2). The shoot–root ratio of native popula-
tions was more positively affected by the water
treatment than the shoot–root ratio of non-native
Argentinean (v2 ¼ 8.17, df ¼ 2, adjusted P ¼ 0.044) or
non-native U.S. populations (v2 ¼ 8.46, df ¼ 2, adjusted
P ¼ 0.044; Fig. 5B). We found no differences between

both non-native ranges within this interaction (v2 ¼ 0.26,
df ¼ 2, adjusted P>0.05; Fig. 5B).

Discussion

The greenhouse study supported our hypotheses that
saplings of non-native populations of Ulmus pumila were
characterized by increased above- and belowground bio-
mass production combined with changes in above- and
belowground biomass allocation across all water and
temperature treatments compared to native range
populations. Thus, enhanced seed germination rates of

Figure 3. Interaction plots of mean dry aboveground biomass (A) and mean dry belowground biomass (B) of Ulmus pumila in response to
the temperature and water treatments.

Figure 4. Shoot–root ratios of native and non-native Ulmus pumila populations in response to temperature and water treatments
(med¼medium). For a statistical analysis of the data see Table 2.
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non-native Western U.S. populations compared with na-
tive populations (Hirsch et al. 2012) are reflected in an
increased seedling performance of these populations.
This result is in accordance with the assumption that a
change of germination traits often involves a change of
post-germination traits (Donohue et al. 2010). These
characteristics in non-native populations might contrib-
ute to the invasion success of U. pumila because they
promote advantages during the seedling establishment
and colonization of new sites. For example, fast germin-
ation allows an earlier use of resources, while enhanced
biomass production promotes competitiveness (Seiwa
2000; Weigelt et al. 2002). Blumenthal and Hufbauer
(2007), by comparing native and non-native populations
of 14 different invasive herbaceous plant species,
showed that invasive species often evolve increased
growth. However, they also found that this is only when
introduced plants are not competing with natives. Thus,
without experiments to compare the competitive ability
of native and non-native U. pumila populations, we can-
not draw conclusions on the full spectrum of environ-
ments where this shift in early life cycle traits might be
beneficial. Nevertheless, our results show that the
enhanced early life cycle performance may support rapid
establishment and colonization of non-native Siberian
elm populations, at least in non- or low-competitive en-
vironments (e.g. sites treated by mowing, burning or re-
moval of trees and shrubs, natural sites where no or only
few other trees or shrubs occur).

Data on shoot-root ratios showed that populations in
both non-native ranges may have enhanced efficiency in
resource allocation into aboveground biomass. A similar

biomass allocation shift was found when comparing the
growth performance of native and non-native
Phragmites australis populations (Saltonstall and
Stevenson 2007). These authors demonstrated that,
when grown in high nutrient levels, non-native P. aus-
tralis populations invest more in the shoot production
than native populations and that this can explain its ag-
gressive growth in the non-native range. Because we
observed biomass allocation shifts in non-native popula-
tions across all treatments, we assume that this contrib-
utes towards an advantage in the establishment of new
populations at different environmental conditions in the
non-native ranges of U. pumila. The increased invest-
ment in aboveground biomass may indicate a competi-
tive advantage over slower growing species since this
allows a better use of resources (Gioria and Osborne
2014). Further, the higher allocation into belowground
biomass of native Siberian Elm populations might indi-
cate higher disturbance pressure by herbivory in this
range where resource storage becomes an important
strategy for survival (van der Maarel and Titlyanova
1989; Jia et al. 2010). In this context, it is often assumed
that a shift in the biomass allocation and the overall
growth performance of non-native populations is caused
by a resource reallocation from defense mechanisms
into vegetative growth due to a release of selection pres-
sures (e.g. herbivores) as postulated by the EICA hypoth-
esis (evolution of increased competitive ability; Blossey
and Notzold 1995). However, more comparative experi-
ments with respect to the response to herbivory and
inter-specific competition are needed to test the predic-
tions of the EICA hypothesis for the invasion of U. pumila.

Figure 5. Interaction plots of mean shoot-root ratio in response to temperature (A) and water treatments (B).
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In contrast, it is also possible that the higher allocation
into belowground biomass in native populations may in-
dicate an adaptation to less favorable soil water avail-
abilities in these localities. Wesche et al. (2011) found
that U. pumila seedlings in Mongolia are characterized by
very low shoot–root ratios, which might indicate that
seedlings need to reach water in the soil profile as soon
as possible due to the dry conditions characteristic of
these areas.

Our greenhouse experiment further revealed that the
overall biomass production as well as shoot–root ratios
increased with increasing water availability and warmer
temperatures highlighting that water acquisition is of
high importance for this species. However, we found that
water and the temperature treatments had a stronger
effect on populations from the native range than they
had on non-native populations. While shoot–root ratios
of populations from both non-native ranges showed only
a moderate response to the temperature treatment,
ratios of native populations clearly increased under
warmer growing conditions (Fig. 5A). A similar strong in-
crease of the shoot–root ratios of native populations was
observed under the wet water treatment while non-
native populations showed a weaker response (Fig. 5B).
Non-native populations thus displayed lower levels of
phenotypic plasticity than those from the native range.
Siberian elm grows under very dry conditions in parts of
its native range where it entirely depends on ground-
water (Wesche et al. 2011). Plants growing in more
stressful conditions (e.g. dry conditions) often reduce
their biomass production while contributing more bio-
mass to roots in order to balance the water absorption
and consumption (van der Maarel and Titlyanova 1989;
Wu et al. 2007).

Admittedly maternal effects might have also affected
our results. These effects could be alleviated by using at
least second-generation individuals for such compara-
tive studies (Lavergne and Molofsky 2007; Moloney et al.
2009), but this approach is impractical for trees due to
the long generation times. However, we assume that the
overall enhanced growth performance and tolerance to
different growth conditions of non-native U. pumila
populations is rather connected to the apparently high
genetic diversity and incidence of admixture in both non-
native ranges (Cogolludo-Agust�ın et al. 2000; Zalapa
et al. 2010; Hirsch et al. unpubl. data). Elevated genetic
diversity often supports higher environmental tolerance
of populations (Hodgins et al. 2012; Forsman and
Wennersten 2015). According to our own data (Hirsch
et al. unpubl. data), the high genetic diversity of the non-
native populations of U. pumila likely resulted from

multiple introductions that facilitated admixture of previ-

ously isolated populations. This genetic mixing and the

resulting high genetic diversity levels could have facili-

tated the shift in early life cycle traits of U. pumila in the

non-native ranges. Our assumption confirms the predic-

tion that evolutionary processes in non-native species

may occur rapidly because novel allelic combinations re-

sulting from admixture can be beneficial in the face of

new selective pressures (Barrett and Schluter 2008;

Forsman 2014). It remains to be tested in future studies

if these genetic shifts in non-native U. pumila popula-

tions are reflective of an adaptive evolutionary change.

Therefore, reciprocal transplantation experiments under

heterogeneous environmental conditions in both native

and non-native ranges should be conducted to defini-

tively infer the role of local adaptation in explaining per-

formance differences (Huang et al. 2015; Gibson et al.

2016). Moreover, our results may be biased due to the

sampling design representing relatively few geographical

regions per range (Keller and Taylor 2008). Future experi-

ments should, therefore, try to include more native as

well non-native populations to confirm our findings over

a wider geographical range.
Our findings also highlight the importance of consider-

ing early life cycle traits when implementing manage-

ment against invasive populations. Specifically, for

Siberian elm, our findings illustrate the need for manage-

ment efforts to include early life stages to control further

spread. Once U. pumila is established and a large

amount of belowground biomass has accumulated,

managing efforts become more difficult because the

root-system must be destroyed to prevent resprouting

(USDA 2014). The potential to establish rapidly new

populations shown by our results implies that manage-

ment efforts should, therefore, be focused on its early

life stages to antagonize its further spread.

Conclusions

We used a combination of different methods covering

various scales in our study to show that a shift in post-

germination traits has likely occurred in non-native U.

pumila populations. We assume that the enhanced early

life cycle performance of non-native U. pumila populations

is beneficial during establishment and colonization events

across different growth conditions. This emphasizes the

importance of considering potential post-introductory

genetic shifts for predictions of invasion processes as well

as for risk assessments for non-native species.
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