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Building an effective Hamiltonian utilizing a projector-operator
procedure, we derive an approximation based on a self-
consistent hybridization expansion to study the ground state
properties of the Anderson Impurity model. We applied the ap-
proximation to the general case of finite Coulomb repulsion
U, extending previous work with the same formalism in the
infinite-U case. The ground state energy and their related zero
temperature properties are accurately obtained in the case in
which U is large enough, but still finite, as compared with the

rest of energy scales involved in the model. The results for the
valence of the impurity are compared with exact results that
we obtain from equations derived using the Bethe ansatz and
with a perturbative approach. The magnetization and magnetic
susceptibility is also compared with Bethe ansatz results. In
order to do this comparison, we also show how to regularize
the Bethe ansatz integral equations necessary to calculate the
impurity valence, for arbitrary values of the parameters.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The Anderson impurity model (AIM)
[1], which is one of the most studied Hamiltonians including
strong correlations in condensed-matter physics, has been
solved exactly by means of the Bethe ansatz [2, 3]. In addi-
tion, the spectral function and many other correlation func-
tions have been accurately computed by using the numerical
renormalization group (NRG) [4, 5].

However, several approximated schemes are also used.
Frequently, they shed light on the expected behavior of some
properties and can be used to fit experiments, when due
to a large number of degrees of freedom it is not possi-
ble to use more robust but also time-consuming techniques.
Moreover, there is no Bethe ansatz solution in the case of a
frequency-dependent hybridization function. Among the ap-
proximations, the self-consistent hybridization (SCH) expan-
sions for solving the AIM are commonly used within a large
class of different problems. The noncrossing approximation,
NCA [6] which represents the simplest family of these self-
consistent treatments, provides an accurate calculation of the
Green functions, as well as many other properties, when the

Coulomb repulsion is taken to be infinite. Since the 80’s the
NCA has been successfully applied to study Ce compounds
[7], nonequilibrium transport properties [8] and, more re-
cently, non-Fermi liquid behaviors [9], electron–phonon in-
teraction [10], and spectroscopy of a double quantum dot
system [11].

When the Coulomb repulsion U takes a finite value,
the NCA has failed to give the correct Kondo scale (TK).
Unfortunately, its value is found to be very underestimated
as compared with the correct one obtained from the Bethe
ansatz solution of the model. The next leading order in the
self-consistent expansions that partially solves this pathol-
ogy is often known as the one crossing approximation, OCA
[12–14]. Within this extended formalism, other classes of
problems have been successfully investigated [15]. Among
them, its mayor application is in the context of the dynamical
mean-field theory as an impurity solver [16].

However, the use of NCA or OCA approximations
imposes some limitations. Finite temperatures T have to
be used, specifically temperatures larger than 0.01TK in the

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 I. J. Hamad et al.: Ground state of the AIM

former and 0.1TK in the later, in order to avoid an artificial in-
crease by about 10% in the spectral weight at the Fermi level.
The same pathology arises when these techniques are applied
to systems in which the ground state without hybridization
is a nondegenerate state. This is the case when either the
impurity state is empty (or formed by an even number of
electrons) or when a magnetic field is applied to the impurity
that brakes the Kramers degeneracy (Zeeman effect).

Remarkably, these limitations when calculating dynam-
ical properties are absent in the case of static ones [17] like
those derived from the ground state energy. In the early ap-
proach given by Inagaki [18] and Keiter and Kimball [19],
the valence of the impurity as well as the charge and spin
susceptibilities were calculated from the ground state energy
(T = 0) in the U infinite limit and for a large value of the
conduction bandwidth D → ∞.Q3

Recently, an improvement of these calculations incorpo-
rating higher order processes when calculating the occupancy
and magnetization of the impurity was done by three of us
[20]. The agreement with exact results was remarkable.

However, an extension of this static approximation to fi-
nite values ofU is still desirable. This is justified due to the ex-
istence of relatively not so large values of the Coulomb inter-
action in bulk systems as well as in systems of semiconductor
quantum dots or carbon nanotubes through which transport
experiments are currently being performed [21, 32, 33].

In this contribution, we extend the use of the SCH
expansions when calculating the ground state properties of
the single impurity Anderson model to incorporate large but
finite values of the Coulomb repulsion. We compare our
approximated ground state properties, like valence and
magnetization of the impurity with exact Bethe ansatz
calculations. We also provide a method to regularize the
divergences that appear in some Bethe ansatz expressions
which might be useful for researchers interested in using
these exact results. In addition, in the opposite limit, we start
the discussion showing the excellent agreement of impurity
occupancy calculated from perturbation theory (PT) to
second order in U, modified to give the correct result in the
atomic limit and to satisfy the Friedel sum rule [22, 23], for
not so large values of U as compared with the hybridization
strength.

The outline is as follows: In Section 2, the model is in-
troduced and, starting from a projector-operator procedure,
the self-consistent hybridization expansion including finite
values of the Coulomb repulsion is reviewed. We generalize
the self-consistent hybridization expansion to include finite
values of the Coulomb repulsion. Section 3 presents the nu-
merical results for different physical magnitudes, including
a detailed benchmark between Bethe ansatz results and the
approximated PT and SCH-expansion. Finally, in Section 4
some conclusions are drawn. In the appendix, we explicitly
give the steps that we follow in order to regularize and com-
pute in an efficiently numerical way the integral equations of
the Bethe ansatz when calculating the impurity valence for
arbitrary values of the model parameters.

2 Model and formalism We work with the Anderson
Hamiltonian,

H =
∑

kσ

εknkσ +
∑

σ

Edndσ + Und↑nd↓

+
∑

kσ

(Vkd
†
σ
ckσ + H.c.), (1)

where nkσ = c
†
kσckσ is the number operator for conduction

electrons, c
†
kσ creates a conduction electron with momentum

k and spin σ, and ndσ = d†
σ
dσ and d†

σ
are the analogous opera-

tors for electrons in the localized impurity, which has a local
energy Ed and Coulomb repulsion U. The coupling of the
impurity with the conduction band is given by the hybridiza-
tion function �(ω) ≡ π

∑
k
V 2

k
δ(ω − εk). We focus on the

energy of the ground state, E0, of the system with a ground
state wavefunction |ψ0〉. From it, other quantities such as the
occupancy of the impurity, magnetization, and susceptibility
can be obtained, after incorporating a magnetic field B via a
Zeeman term gμBB(n↓ − n↑)/2 in the Hamiltonian.

The procedure we follow in general is the same as the one
applied in a previous work by three of us [20]. The main idea
is to divide the Hilbert space in two subspaces, by means of
projector operators, but with the peculiarity that the working
subspace consists of a single state. For that purpose, we define
the projector operator P1 = ∏

kσ≤kF
nkσ , being kF the Fermi

wave vector, and P2 = 1 − P1. These projectors then divide
the Hilbert space of the system into two disjoint subspaces:
S1, which contains only one state corresponding to the Fermi
sea with no electrons in the d-level, |φ1〉 = ∏

kσ≤kF
c
†
kσ|0〉, and

S2, that contains the rest of the states in the Hilbert space. In
principle, the state |φ1〉 can be chosen as either the one in
which the impurity is empty, singly, or doubled occupied,
arriving at the same final results.

The effective Hamiltonian that operates on the S1 sub-
space obeys the equation [20]

H̃ |φ1〉 =
(

H11 + H12

1

E − H22

H21

)
|φ1〉 = E|φ1〉, (2)

where Hij = PiHPj. The term H21 comes from the hybridiza-
tion term and so connects the subspace S1 with S2. It acts
creating a singlet state belonging to the S2 subspace,

|φkd〉 =
∑

σ

d†
σ
ckσ√
2

|φ1〉, (3)

We label k and K the wave numbers below and above
the Fermi level, respectively. We obtain the equation for the
energy after applying 〈φ1| to the left of Eq. (2)

E = εT + 2
V 2

N

∑
k,k′

〈
φkd| 1

E − H22

|φk′d

〉
, (4)

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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where εT = 2
∑

k
εk represents the energy of the ground state

of the Fermi sea. As usual, we neglect the k dependence of
Vk = V/

√
N.

As we stated in the previous work [20], in order to get
an explicit expression for the eigenvalues in (4), it is enough
to calculate the matrix elements of the operator (E − H22)−1

between the states |φkd〉. These states are created by a single
application of the H12 term of the Hamiltonian to |φ1〉 in the
S1 subspace. Besides, as the space S2 is created by successive
applications of the Hamiltonian, and this commutes with the
total spin operator, the subspace S2 contains only states that
are singlets.

Up to this point, the procedure has been completely gen-
eral and equal to the one presented in previous work done in
the infinite U case [20]. Now, in order to generalize the treat-
ment we consider arbitrary values of U, and hence processes
where the impurity is doubly occupied.

Although it is in principle possible to obtain all the ma-
trix elements gij of the resolvent operator G = (E − H22)−1,
it can be noticed that to calculate the ground state energy,
given in (4), it is only necessary to calculate the diagonal gkk

and nondiagonal matrix elements gkk′ corresponding to the
states below the Fermi level. Following closely the treatment
done in [20], and working in the thermodynamic limit, we
begin by examining only the diagonal contribution gkk, which
is expressed as a continuous fraction that ultimately, in the
thermodynamic limit, can be written in a closed expression
as follows:

gkk(E) = 1

E + εk − Ed − F0(E + εk) − F2(E + εk)
, (5)

where the functions F0 and F2 satisfy a set of three self-
consistent equations, exact up to terms proportional to V 2.

F0(E) = V 2

N

∑
K

1

E − εK − F1(E − εK)

F1(E) = 2
V 2

N

∑
k

1

E + εk − Ed − F0(E + εk) − F2(E + εk)
.

F2(E) = V 2

N

∑
k

1

E + εk − 2Ed − U − F1(E + εk)
. (6)

The system of equations incorporates an extra function,
F2, not present in the infinite U case, related to processes in
which the impurity is doubly occupied.

The ground state energy, according to Eqs. (4), (5), and
(6), can be self consistently expressed by,Q4

E = F1(E) (7)

The solution of these equations incorporates processes
of all orders in the hopping matrix element V . However,
the ground state energy obtained still remains perturbative,
even though the second-order processes are re-summed self-

consistently. Going beyond the self-consistent second-order
approximation, given by the diagonal term gkk, we incorpo-
rate the next leading order taking into account the nondiago-
nal elements gkk′ , to the calculation of the ground state energy.
Instead of incorporating this crossing terms self consistently
into Eq. (6), which is a difficult numerical task, we express
this nondiagonal contribution to the energy in terms of the
auxiliary functions F0, F1, and F2 calculated as we proposed
above.

Q1(E) = 2
V 2

N

∑
k,k′ =k

gkk′ (E), (8)

with gkk′ given by

gkk′ (E) = V 2

N

1

E + ek − Ed − F0(E + ek) − F2(E + ek)

× 1

E + ek + ek′ − 2Ed − U − F1(E + ek − ek′ )

× 1

E + ek′ − Ed − F0(E + ek′ ) − F2(E + ek′ )
.

(9)

Including this nondiagonal term, we obtain the next lead-
ing order contribution to the energy, which is proportional to
V 4.

E = F1(E) + Q1(E) (10)

In general, when solving Eq. (10) there are three solutions
but only one lies below Ed , which corresponds to the ground
state energy. Regarding the numerical algorithm employed in
searching for the solution, it is similar to the one used in the
standard NCA approximation, that is the use of logarithmic
meshes with a strong dense region around the energy position
of the ground state, and this position is dynamically changed
iteration after iteration until convergence.

The method can be straightforwardly generalized to an
Anderson model with an SU(N) symmetry without any ad-
ditional numerical cost. In fact, the self-consistent system of
equations in Eq. (6) can be easily modified to be the solu-
tion of the 2−level infinite−U Anderson model, which in the
case of degenerate and equally hybridized levels represents
the SU(4) Anderson model, which is nowadays the focus of
intense experimental and theoretical research [32]. Note that
when solving SU(N) models with NRG, the Hilbert space
increases by 2N at each iteration, rendering the calculation
very difficult for N = 4 and almost impossible for N > 4.
There is also no important computational cost in breaking
SU(N) symmetry within our method.

In what follows, we discuss the impurity properties de-
rived by the numerical solution of the Eq. (10).

www.pss-b.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 I. J. Hamad et al.: Ground state of the AIM
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Figure 1 Impurity occupation as a function of Ed . Solid lines stand
for the Bethe ansatz results while symbols indicate the results from
PT.

3 Numerical results We employ a square hybridiza-
tion of intensity � with a half-bandwidth D, which is related
with the hopping V via � = πV 2/2D. Furthermore, we
chose � = 1 as our unit of energy.

3.1 Ground state energy and impurity valence
As we state in the introduction, it is important for many appli-
cations to get a simple approximation that can be used, when
the Coulomb repulsion is large enough but still finite, for an
examination of the magnitudes derived from the ground state
energy, such as the valence of the impurity.

On the other hand, when the Coulomb repulsion is not
too large, that is, of the order of the hybridization energy
�, perturbation theory in the parameter U provides accurate
results. For instance, renormalized-PT has been successfully
used to analyze the temperature and voltage universal depen-
dence of the conductance [24, 25]. Specifically, in Fig. 1 we
show the total occupancy of the impurity obtained from PT
improved in such a way that it reproduces the atomic limit
and satisfies the Friedel sum rule for all occupancies [22, 23],
and the exact one calculated from the Bethe ansatz (see Ap-
pendix) for several values of U as a function of the impurity
energy Ed .

As it can be seen from Fig. 1, the impurity occupation
obtained from PT only presents small deviations as compared
with the exact ones (less than 1%) when the Coulomb repul-
sion is set to be U = 6�. Unfortunately, the deviations from
the exact values quickly grow in the strong interacting limit,
when the Coulomb repulsion is several orders of magnitude
larger than �. Also our results (not shown) indicate that the
magnetic susceptibility within the modified PT approach un-
derestimates the magnetic susceptibility by more than 6% for
U ≥ 3� in the symmetric case Ed = −U/2.

This situation emphasizes the convenience of having an
approach capable of studying the strong interacting limit,

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

E
d

0

0.2

0.4

0.6

0.8

1

n d

U/Δ=27
U/Δ=40
U/Δ=80

Figure 2 Total impurity occupancy as a function of the energy level
Ed in the strong interacting limit for several values of the Coulomb
repulsion U. Solid lines stand for the Bethe ansatz results.

U >> �, since it represents a realistic case of most semi-
conductor and molecular quantum dots. The SCH expansion
we propose to calculate the ground state energy, impurity
occupation, magnetization, and susceptibility satisfies this
condition. In what follows, we present our main results.

Figure 2 shows the impurity occupation as a function of
the local level Ed for several values of U calculated from
the SCH expansion including the 4th order processes. The
solid lines indicate the results obtained from the Bethe ansatz
technique. We include an appendix in which we explicitly
show the steps we follow to compute the integral expressions
that determine the valence within the Bethe ansatz solution
for arbitrary values of the model parameters. Here, we have
changed the unit of energy � = 1 by setting � = 0.1; 0.2
and 0.3 while we chose U = 8.

In Fig. 3, we plot the SCH results for the impurity
occupancy shown in Fig. 2 as a function of the renormalized
energy E∗

d
= Ed + �

π
ln( πeU

4�
) which explicitly includes the

Haldane shift [27] together with the corresponding renormal-
ized Bethe ansatz curve. As expected from the universality
of the model, we notice here that all the curves collapse into
an universal one in the Kondo regime −E∗

d
� � and that at

E∗
d
= 0 the valence is nd = 0.58 in agreement with Fig. 2 of

Ref. [2].

3.2 Magnetic properties In what follows, by adding
a magnetic field B to the Hamiltonian 1, we study the impu-
rity contribution to the magnetization, Mimp. The inclusion of
the Zeeman interaction within the SCH procedure is straight-
forward and it is described in Ref. [20]. The impurity mag-
netization can be obtained by deriving of the ground state
energy with respect to the magnetic field and removing from

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 3 Universal occupation number nd as a function of the
scaled energy πE∗

d/2� for the same parameters that in Fig. 2.

this the conduction band contribution,

Mimp(B) = − ∂

∂B
(E(B) − εT (B)). (11)

Figure 4 shows the SCH results of Mimp in units of gμB as
a function of B/T1 for U = 12 in the symmetric case Ed =
−6, compared with the exact Bethe ansatz results for the
Kondo model [29]. This is justified since for the symmetric
case charge fluctuations are frozen and the Anderson model
maps onto the Kondo one.

The Kondo regime is characterized by the energy scale
T1 [29], and its relation with the susceptibility at zero tem-

10
-2

10
0

10
2

10
4

10
6

B / T
1

0.0001

0.001

0.01

0.1

0.5

1

M
im

p(B
)

ed=-6, U=12
BA

Figure 4 Comparison of the results obtained by the SCH expansion
forMimp, in units ofgμB and as a function ofB/T1, for the symmetric
case with those from the Bethe ansatz solution of the Kondo model.
The scale T1 is defined in the main text.

perature is given by

χimp(B = 0) ≡
√

2πe

T1

. (12)

It can be noticed from Fig. 4 that the agreement between
SCH expansion and BA is very good when Mimp is calculated
in units of B/T1, for which Mimp is a universal curve. In partic-
ular, the SCH approach captures both the linear dependence
of the magnetization for small values of B, which is a signa-
ture of the Kondo effect, and the logarithmic dependence for
larger ones [29, 3, 30].

The Kondo scale, TK, is also frequently found from the
susceptibility at zero magnetic field χimp(B = 0) ∝ 1

TK
, and

Eq. (12) permits a relation between both energy scales, T1 =
4
√

2πe TK. Unfortunately, outside the regime U � |Ed|, �,
the Kondo scale that we obtain within the SCH procedure is
found to be several orders of magnitude smaller than the one

corresponding to the Haldane scale, TK =
√

U�

2
exp(− πU

8�
)

[27], for the symmetric case. For the parameters used in Fig.
4, the SCH expansion predicts a Kondo scale of the order of
10−5 while the corresponding one to the Haldane expression
is of the order of 10−2 in units of �.

Therefore, outside the regime U � |Ed|, �, the SCH
expansion to obtain the ground state energy, within the ap-
proximation proposed, requires the calculation of the Kondo
temperature using other approaches.

This is not a surprising result. The same feature appears
when the SCH expansion in its lowest version, NCA, is ap-
plied using finite values of the Coulomb interaction [12–14].
As we mentioned in the introduction, this pathology was
partially overcome adding, in a self-consistent way, all the
dressed diagrams that involve one crossing conduction elec-
trons, which corresponds to the next leading order called one-
crossing approximation OCA. While in our present treatment
of the problem, we are already taking into account 4th order
processes, we are not including these contributions in a self-
consistent way, as we mentioned in Section 2 and can be seen
from Eq. (6). While our treatment is completely reliable to
obtain the static properties of the Anderson Hamiltonian for
U � �, |Ed|, it fails to give correctly the Kondo tempera-
ture when U/� is not large enough, situation in which an
equivalent scheme to OCA approximation is required. This
full treatment is beyond the scope of the present study.

As a final analysis, we include in Fig. 5 the susceptibility
comparing our results for χimp with those obtained from a
Bethe ansatz calculation [31] in the case of infinite Coulomb
repulsion U. Note that the Haldane shift [28] (introduced
before when discussing Fig. 3) diverges when both D and
U are infinite. Therefore, in the Bethe ansatz calculation,
only the renormalized energy level E∗

d
which contains this

shift, keeps a physical meaning. In the left panel of Fig. 5,
we show results of the SCH method for both D = 10 and
D → ∞ shifted by a constant energy E∗

d
− Ed so that the

results coincide with the Bethe ansatz solution for χimp. The
agreement with the latter is very good in both cases, capturing

www.pss-b.com © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 Left: Impurity contribution to magnetic susceptibility
χ∗ = χ/((μBg)2/�) as a function of the renormalized energy E∗

d .
The solid line indicates the calculation by using the Bethe ansatz
technique in the limit of both, D, U → ∞. The symbols represent
the SCH solution for two values of the bandwidth D. Right: same
as before in terms of the unrenormalized energy Ed for the SCH
results.

the universality of the model. For completeness, the right
panel of the figure shows the values of the susceptibility as
calculated from the SCH method, without shifting the energy.

4 Summary and conclusions In this work, we ap-
plied the self-consistent hybridization expansions including
4th order processes to compute the ground state energy, oc-
cupancy, and magnetic properties of the Anderson impurity
model in the case of finite Coulomb repulsion, extending a
previous treatment for infinite U. We show that the static
properties of the model can be well calculated within the
SCH expansions for zero temperature and finite magnetic
fields. We successfully match our results with those coming
from the Bethe ansatz solution of the model.

This simple approach allows the study of systems that can
be described by the Anderson model, such as semiconduc-
tor [32] or molecular quantum dots [33] where the Coulomb
repulsion is expected to be large but cannot be considered
infinite. Experimentally relevant quantities, such as the equi-
librium conductance of the impurity, which is directly related
to the occupancy (if the system is in a Fermi liquid regime)
can be obtained. Furthermore, the semianalytic nature of the
solution permits a direct and fast calculation of the properties
on a single workstation.

In addition, the general form of Eq. (6) can be written in
the same way as Eq. (16) of Ref. [20], where the hybridization
function �(ω) depends on the full density of states of the
conduction electrons ρ(ω) in the following form: �(ω) =
πV 2ρ(ω). Therefore, the approximation would be of interest
for cases with nontrivial, frequency dependent, hybridization
function, where the Bethe ansatz technique indeed cannot be
applied.

Bethe ansatz equations of the impurity valence
at zero magnetic field To compute the valence of the
impurity at zero magnetic field and for arbitrary values of
the parameters U, εd , � we start with the expressions (5.8)
and (5.9) given by Wiegmann and Tsvelick in Refs. [2, 3].

U/2 + εd

(2U�)1/2

= i√
2π

∫ +∞

−∞

dω

ω + iη

e−|ω|/2−iωQ

G(−)(ω)

1

(−iω + η)1/2
(13)

nd = 1 − i√
2π

∫ +∞

−∞

dω

ω + iη

e−|ω|/2

G(−)(ω)

×
∫ +∞

−∞
dκ eiω(g(κ)−Q)�(κ). (14)

where the functions G(−)(ω), g(κ), and �(κ) are given by

G(−)(ω) =
√

2π
( iω+η

2πe
)iω/2π

Γ ( 1
2
+ iω

2π
)
,

g(κ) = (κ − εd − U/2)2

2U�
,

�(κ) = �

π

1

(κ − εd)2 + �2
,

with η → 0+. The equation in (13) fixes the value of Q that
enters in the explicit calculation of the impurity occupation
in (14).

The highly divergent nature of the integrand in Eq. (13)
demands particular care in handling the limit η → 0+. In
fact, using the identity 1√

−iω+η
= 1√−i

1√
ω+iη

→ 1√
2|ω|

(1 +
i sgn(ω)) and taking explicitly the limit η → 0+ the RHS of
(13), which we call Z(Q), becomes

Z(Q) = i√
2π

∫ +∞

−∞

dω

ω + iη

e−|ω|/2−iωQ

G(−)(ω)

1

(−iω + η)1/2

= i√
2π

∫ +∞

−∞

dω√
2|ω| (1/ω − iπδ(ω))

× (1 + i sgn(ω)) H(ω, Q)

with H(ω, Q) = e−|ω|/2−iωQ

G(−)(ω)
|η→0+ = e−iωQΓ ( 1

2 + iω
2π

)√
2π| ω

2πe
|iω/2π e|ω|/4 and being

the limit H(0, Q) = 1/
√

2, the argument has a nonintegrable
singularity at ω = 0. In order to avoid this singularity and
make the integral tractable numerically, we subtract the sin-
gular part of Z(Q) before taking the limit η → 0+.

Let us write the integral Z(Q) in the following form

Z(Q) = i√−2iπ

∫ +∞

−∞

dω

(ω + iη)3/2

e−|ω|/2−iωQ

G(−)(ω)
. (15)
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Using the fact that

Zs = ic√−2iπ

∫ +∞

−∞

dω

(ω + iη)3/2
= 0 (16)

we set c = 1/G(−)(0) = 1/
√

2 and re-write Z(Q) = Z(Q) −
Zs as follows

Z(Q) = i√−2iπ

∫ +∞

−∞

dω

(ω + iη)3/2

{
H(ω, Q) − 1√

2

}

= i

2
√

π

∫ +∞

−∞
dω

1 + i sgn(ω)

ω
√|ω|

{
H(ω, Q) − 1√

2

}
.

(17)

In this way, the argument within the integral becomes
regular.

We also map the infinite range of integration to a finite
one by using

∫ +∞

−∞
dω f (ω)

=
∫ +∞

0

dω {f (ω) + f (−ω)}

=
∫ 1

0

dx
1 + x

(1 − x)3

{
f

(
x

(1 − x)2

)
+ f

( −x

(1 − x)2

)}
.

The change of variable was chosen so that the argument
of the integral is smooth for x → 1 (ω → ∞). By means of
the above-mentioned transformations, the integral becomes
suitable for numerical evaluation.

The integral in (14) is simpler and it can be evaluated in
a more direct way. Calling K(ω) = ∫ +∞

−∞ dκ eiω(g(κ)−Q)�(κ), it
becomes

nd = 1 − i√
2π

∫ +∞

−∞

dω

ω + iη

e−|ω|/2

G(−)(ω)
K(ω)

= 1 − i√
2π

∫ +∞

−∞
dω (1/ω − iπδ(ω))

e−|ω|/2

G(−)(ω)
K(ω)

= 1 − i√
2π

{∫ +∞

−∞
dω

e−|ω|/2

ωG(−)(ω)
K(ω) − iπ√

2

}

= 1

2
+ 1√

2π

∫ +∞

−∞
dω

e−|ω|/2

ω
Im

[
K(ω)

G(−)(ω)

]
(18)

Finally, we compute the principal part of the integral with
the help of the following transformations

∫ +∞

−∞
dω f (ω)

=
∫ +∞

0

dω {f (ω) + f (−ω)}

=
∫ 1

0

dx
1

(1 − x)2

{
f

(
x

1 − x

)
+ f

( −x

1 − x

)}
.
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