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ABSTRACT

Context. The core accretion mechanism is presently the most widely accepted cause of the formation of giant planets. For simplicity,
most models presently assume that the growth of planetary embryos occurs in isolation.
Aims. We explore how the simultaneous growth of two embryos at the present locations of Jupiter and Saturn affects the outcome of
planetary formation.
Methods. We model planet formation on the basis of the core accretion scenario and include several key physical ingredients. We
consider a protoplanetary gas disk that exponentially decays with time. For planetesimals, we allow for a distributionof sizes from
100 m to 100 km with most of the mass in the smaller objects. We include planetesimal migration as well as different profiles for the
surface densityΣ of the disk. The core growth is computed in the framework of the oligarchic growth regime and includes the viscous
enhancement of the planetesimal capture cross-section. Planet migration is ignored.
Results. By comparing calculations assuming formation of embryos inisolation to calculations with simultaneous embryo growth,
we find that the growth of one embryo generally significantly affects the other. This occurs in spite of the feeding zones of each planet
never overlapping. The results may be classified as a function of the gas surface density profileΣ: if Σ ∝ r−3/2 and the protoplanetary
disk is rather massive, Jupiter’s formation inhibits the growth of Saturn. IfΣ ∝ r−1 isolated and simultaneous formation lead to very
similar outcomes; in the the case ofΣ ∝ r−1/2 Saturn grows faster and induces a density wave that later acclerates the formation of
Jupiter.
Conclusions. Our results indicate that the simultaneous growth of several embryos impacts the final outcome and should be taken
into account by planet formation models.

Key words. Planets and satellites: formation – Planet-disk interactions – Methods: numerical

1. Introduction

The core instability mechanism is usually considered the way in
which giant planets formation proceeds. This mechanism con-
siders planetary formation as a consequence of a two-step pro-
cess. A solid material seed with a mass of the order of that of
the Moon is immersed in a protoplanetary disk. This object will
be the core of the planet. The protoplanetary disk has a pop-
ulation of planetesimals coexisting with a gaseous component.
The Moon-sized object begins to accrete solid material fromits
feeding zone. The feeding zone is often assumed to be an an-
nulus extended across few times the Hill radiusRH (defined to
beRH = a(M/3M∗)1/3, wherea is the radius of the orbit of the
planet of massM, while M∗ is the mass of the central star of the
system) on both sides of the orbit of the protoplanet. The core
gravitationally binds a tiny amount of gas and the whole proto-
planet remains in hydrostatic and thermal equilibrium. Thegas
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accretion rate is iniatally far lower than that of solids. This is true
until the core reaches a mass of≈ 10M⊕, whereM⊕ is the Earth
mass. At these stages, the amount of gas bound to the protoplanet
becomes comparable to the core mass. It is then no longer pos-
sible to be in thermal equilibrium conditions and the protoplan-
etary envelope begings to contract. This corresponds to theon-
set of the runaway gas accretion. On a very short timescale, the
planet accretes a large amount of gas and reaches its final mass.
This sequence of events was envisaged by Mizuno (1980) by
employing static models and later with evolutionary modelsby
Bodenheimer & Pollack (1986) and Pollack et al. (1996). Core
instability calculations of giant planet formation have been car-
ried out by many groups, e.g., Alibert et al. (2005 a, b), Hubickyj
et al. (2005), and Dodson-Robinson et al. (2008).

Fortier et al. (2007; 2009) were the first to consider the oli-
garchic growth regime for the accretion of planetesimals. This
regime is known to provide a good description of planetesimal
dynamics when the embryos present in the nebula have masses
much lower than the Earth mass. Thus, this is the correct de-
scription of the accretion regime for almost the entire formation
process. Oligarchic growth takes into account the effects of the
gravitational perturbations of growing planets. In this regime,
it is known that protoplanets grow on a longer timescale thatin
other accretion regimes such as those considered by, e.g., Pollack
et al. (1996). One of the most remarkable characteristics ofthe
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core instability mechanism is that runaway gas accretion occurs
at a core mass value largely independent of the final mass of the
planet. This is in close agreement with the estimate of the core
masses of the giant planets of our Solar System (see Guillot,
2005 and Militzer et al., 2008).

In spite of being considered the most likely mechanism of
planetary formation, core instability may have some serious dif-
ficulties. One of the main drawbacks was considered to be the
long timescale for planetary formation. In many simulations,
planets form on a time interval longer than (or need timescales
uncomfortably close to) the dissipation timescale of the pro-
toplanetary nebula, usually considered to be of the order of
10 Myr (Hillenbrand, 2005). In any case, we should recall the
number of simplifying assumptions considered when construct-
ing the models that lead to this apparent paradox. For example,
most of the calculations available in the literature considered a
single size distribution of planetesimals. Relaxing this assump-
tion in favor of a size distribution for which most of the mass
belongs to small planetesimals, Benvenuto et al. (2009) demon-
strated that the four giant planets of the Solar System can be
formed in a timely way with core masses in close agreement
with current estimate.

Another usual assumption in detailed simulations of plan-
etary growth is that each planet grows alone in the disk. This
would be correct if the population of planetesimals to be accreted
by one planet were not appreciably perturbed by the presenceof
another embryo. At first sight, it may be understood that thisis
the case if the feeding zone of each planet does not overlap the
one corresponding to any other planet. However, this isnot the
case if we include planetesimal migration. This process leads to
a net inward motion of planetesimals. A planet will perturb the
swarm of planetesimals that may be later accreted by another
planet moving along an inner orbit. Moreover, as we show be-
low, even the presence of an inner planet will be able to affect
the accretion process of an outer object. To our knowledge, no
calculation has been performed to quantitatively analyze these
effects. It is the main aim of the present paper to perform a first
step towards filling this gap. In doing so, we consider the simul-
taneous growth of two planets at distances from the central star
as those of Jupiter and Saturn. We consider a distribution ofsizes
of planetesimals and also different profiles for the surface den-
sity of solids and gas corresponding to the protoplanetary disk.
We also consider two values of the gas to solid ratio.

Oligarchic growth predicts the simultaneous formation of
many embryos on orbits separated by about 10RH from each
other. Thus, starting with this initial configuration wouldbe
more realistic than the one adopted here. However, to perform
a fully detailed simulation in this context we would have to be
able to compute the merging of embryos, which in the presence
of a gaseous envelope for each protoplanet is a very complex
process. This is beyond the scope of the present paper. In any
case, even with the adopted initial configuration we expect to re-
alistically estimate the effect of the simultaneous growth of more
than one planet. In this work, we do not consider planetary mi-
gration.

This paper is organized as follows: in Sect. 2, we describe the
protoplanetary disk inside which giant planets grow. Section 3 is
devoted to describing the oligarchic growth regime. Section 4
describes how we compute the growth of each protoplanetary
embryo. With all the ingredients of our model quantitatively de-
fined, in Sect. 5 we present our results corresponding to the for-
mation of Jupiter and Saturn, comparing it with the cases of iso-
lated formation. In Sect. 6, we explore different profiles for the
surface density of the nebula, and in Sect. 7 we apply our model

to the standard Hayashi nebula. Finally, in Sect. 8 we present a
discussion of our results and some concluding remarks.

2. A brief description of the protoplanetary disk
model

We consider an axisymmetric disk with inner and outer radii of
Rmin = 0.4 AU andRmax = 30 AU, respectively. The disk has
both gaseous and planetesimal components. For the surface den-
sity profile of both of them, we consider a power law distribution
of the form

Σg ∝ a−p (1)

Σs ∝ a−p, (2)

with a temperature profile given by

T ∝ a−1/2. (3)

It can be shown that the volumetric density distribution at the
disk plane is

ρg ∝ a−p−5/4. (4)

Here we consider a density distribution for the size of planetesi-
mals. We study 31 different sizes with radii between 100 m and
100 km in steps selected such that the quotient of masses of con-
secutive sizes is a factor of two, in a similar way to Brunini &
Benvenuto (2008). We assume that the material that composes
the planetesimals has a density ofρp = 1.5 g cm−3.

We consider a number of planetesimals per unit of mass dis-
tribution given bydN/dm ∝ m−5/2 (Kokubo & Ida, 1998, 2000;
Ormel et al., 2010), for which most of the mass of solids is in
the smallest planetesimals (MT ∝ m−1/2). Numerical simulations
indicate that the mass distribution of planetesimals may berep-
resented by a single or piecewise power lawdN/dm ∝ m−q. For
a constant value ofq, the total mass of solids isMT ∝ m2−q,
so if q < 2, the total mass of solids is contained in the biggest
planetesimals; in contrast, ifq > 2 the total mass of solids is con-
tained in the smallest planetesimals. Wetherill & Stewart (1993)
studied the evolution of a planetesimal system consideringan
initial population of planetesimals with radius of∼ 10 km that
evolved only by means of collisions and fragmentation. They
found that a planetesimal size distribution relaxes to a piece-
wise power law: a population of small planetesimals produced
by fragmentation (withq ∼ 1.7) and a population of large plan-
etesimals that follow an accretive regime (withq ∼ 2.5). Kokubo
& Ida (2000) studied the evolution of planetesimal size using
N-body simulations finding that, in the oligarchic regime, large
planetesimals follow a continuous power-law distributionwith
2 < q < 3. Ormel et al. (2010) performed statistical simula-
tions that include several physical processes such as dynamical
friction, viscous stirring, gas drag, and fragmentation, finding
that the transition between the runaway growth and oligarchic
growth is characterized by a power-law size distribution ofmass
indexq ∼ 2.5. On the other hand, planetesimal formation contin-
ues to be studied and to date it is not well understood how me-
ter to kilometer-sized planetesimals appear in the disk. Hence,
the primordial size distribution of these bodies has not yetbeen
established. In the paper of Wetherill & Stewart (1993), where
the system evolves only through collisions and fragmentation,
meter-sized planetesimals can only appear in the disk as frag-
ments of larger bodies. Ida et al. (2008) performed some calcu-
lations showing that the magneto - rotational instability (Balbus
& Hawley 1991; hereafter MRI) turbulence is a serious problem
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for planetesimal formation. They show that it is very difficult to
form kilometer-sized planetesimals from centimeter-meter sized
particles because of the predominance of an erosive rather than
accretive regime. Under these conditions, it does not seem pos-
sible that kilometer-sized planetesimals formed by the accretion
of smaller ones. However, they also suggest that, if MRI werein-
efficient, planetesimals may have formed in “dead zones”, where
the interaction between solids and gas is weak (Gammie, 1996;
Sano et al., 2000). This would favor the survival of centimeter
and meter-sized bodies. Kilometer-sized planetesimals may have
formed by the accretion of smaller planetesimals, and the coexis-
tence of meter and kilometer sized planetesimals may have been
possible. This possibility is important for the formation of the gi-
ant planets in the solar system, since smaller planetesimals favor
the rapid formation of the solid embryos. Moreover, if our giant
planets formed in an environment where the MRI was effective
they should have migrated towards the Sun becoming hot gi-
ant planets (Matsumura et al., 2009). On the other hand, labora-
tory experiments show that reaccumulation of fragmentation de-
bris can lead to the formation of planetesimals (Teiser & Wurm,
2009). Owing to the present status of the theory of planetesimal
formation, especially with regard to the period when they grow
from meter to kilometer size, we consider that the size and mass
distribution of the planetesimals adopted here is a valid hypoth-
esis.

Planetesimals are affected by gaseous friction, which causes
an inwards decay and can alter the solid distribution in
the disk. As demonstrated by Thommes et al. (2003) and
Chambers (2006), this effect has a strong influence on the
timescale of accretion and on the final mass values reached by
the planets at different positions in the protoplanetary disk. The
mean orbital evolution of planetesimals is given by (Adachiet
al., 1976)

da
dt
= −

2a
T f ric

(

η2 +
5
8

e2 +
1
2

i2
)1/2[

η +

(

5
16
+
α

4

)

e2 +
1
4

i2
]

, (5)

where

T f ric =
8ρprp

3CDρgvk
. (6)

Hereρp is the density of planetesimals,rp is the radius of the
planetesimal,η = (vk − vgas)/vk, andα is the exponent of the
power-law density of the gas in the disk mid plane (ρg ∝ a−α).

The evolution of planetesimal disks follows the equation of
continuity

∂Σs

∂t
−

1
a
∂

∂a

(

a
da
dt
Σs

)

= F(a), (7)

whereF(a) describes the sinks of disk material (accretion by the
forming planets and solid sublimation across the ice line, as done
by Brunini & Benvenuto, 2008). For simplicity, we also assume
that the gaseous component dissipates following an exponential
decay of its density as

ρg(a, t) = ρg(a, 0)e−t/τ. (8)

We setτ = 6 Myr as the characteristic timescale for the dissipa-
tion of the protoplanetary nebula (Haisch et al., 2001).

3. Accretion onto planets: oligarchic growth regime

The process of the accretion of solids is described by the “parti-
cle in a box” approximation (Inaba et al., 2001)

dMC

dt
=

2πΣ(aP)R2
H

P
Pcoll, (9)

whereMC is the mass of the core,Σ(ap) is the surface density
of solids at the location of the planet,RH is the Hill radius,P is
the orbital period, andPcoll is the collision probability, which is
a function of the core radius, the Hill radius of the planet, and
the relative velocity of planetesimalsPcoll = Pcoll(RC ,RH, vrel).
For regimes of high (ˆe, î > 2), medium (0.2 < ê, î < 2) and low
velocities (ê, î < 0.2), Pcoll is given by

Pcoll high =
(RC + rp)2

2πR2
H

[

IF (β) +
6RH IG(β)

(RC + rp)2ê2

]

, (10)

Pcoll med =
(RC + rp)2

4πR2
H î

[

17.3+
232RH

(RC + rp)

]

, (11)

Pcoll low = 11.3

[

RC + rp

RH

]1/2

, (12)

whereRC is the radius of the core, ˆe andî are the reduced eccen-
tricity and inclination, defined by ˆe = eaP/RH and î = iaP/RH ,
whereβ = î/ê, e andi are the quadratic mean values of the eccen-
tricity and inclination of planetesimals at the feeding zone of the
planet, andIF(β) and IG(β) are functions that can be expressed
in terms of elliptic integrals that, in the interval 0< β ≤ 1 can
also be approximated by (Chambers, 2006)

IF(β) =
1+ 0.95925β+ 0.77251β2

β(0.13142+ 0.12295β)
, (13)

IG(β) =
1+ 0.39960β

β(0.0369+ 0.048333β+ 0.006874β2)
. (14)

In contrast to the works of Brunini & Benvenuto (2008) and
Chambers (2006), we adopt the results of Inaba et al. (2001),
who assume thatPcoll is given in the whole range of velocities
for (ê, î) as

Pcoll = min
[

Pcoll med, (P−2
coll low + P−2

coll high)−1/2
]

. (15)

We consider the drag force that planetesimals experience onen-
tering the planetary envelope, which largely increases their cap-
ture cross-section. Inaba & Ikoma (2003) found an approximate
solution to the equations of motion, which allows a rapid esti-
mation of the critical radius for capturerp as a function of the
radius of the captured planetesimal, the density of the gaseous
envelopeρ, and the enhanced radiusR̃C

rp =
3ρ(R̃C)R̃C

2ρp

(

v2
∞ + 2GMP(R̃C)/R̃C

v2
∞ + 2GMP(R̃C)/RH

)

, (16)

wherev∞ is the relative velocity of the planet and planetesimal
when the two are far apart andMP(R̃C) is the total mass of the
planet contained whitiñRC. Inaba & Ikoma (2003) propose re-
placingR̃C for RC in the expressions of collision probability

Pcoll high =
(R̃C + rp)2

2πR2
H

[

IF (β) +
6RH IG(β)

(R̃C + rp)2ê2

]

, (17)

Pcoll med =
(R̃C + rp)2

4πR2
H î

[

17.3+
232RH

(R̃C + rp)

]

, (18)

Pcoll low = 11.3

[

R̃C + rp

RH

]1/2

, (19)

and again

Pcoll = min
[

Pcoll med, (P−2
coll low + P−2

coll high)−1/2
]

, (20)



4 O. M. Guilera et al.: Consequences of the simultaneous formation of giant planets by the core accretion mechanism

which gives Pcoll = Pcoll(R̃C,RH , vrel). Finally, we de-
rived a generalized version of Eq. (9) following Brunini &
Benvenuto (2008)

dMC

dt
=

∫

DS
dm

∫

FZ
2πψ(a,RH, aP) ×

2πΣ(a,m)R2
H

P
Pcoll(a,m) a da, (21)

whereDS represents the integration over the distribution of sizes
of planetesimals andFZ indicates that the integration extends
over the feeding zone. The functional form ofψ is the same as
used by Brunini & Benvenuto (2008).

3.1. Relative velocities out of equilibrium

The relative velocity,vrel, between a planetesimal and the proto-
planet may be described by

vrel =

√

5
8

e2 +
1
2

i2vk, (22)

wherevk is the Keplerian velocity at the distanceaP. The relative
velocity is governed by gravitational stirring caused by the pro-
toplanets and damping caused by gas drag. This can be modeled
following Ohtsuki et al. (2002) as
(

d〈e2〉

dt

)

stirr

=

(

MP

3bM⋆P

)

PVS , (23)

(

d〈i2〉
dt

)

stirr

=

(

MP

3bM⋆P

)

QVS , (24)

where

PVS =

[

73ê2

10Λ2

]

ln

(

1+
10Λ2

ê2

)

+

[

72IPVS (β)

πêî

]

ln(1+ Λ2), (25)

QVS =

[

4î2 + 0.2îê3

10Λ2ê

]

ln(1+ 10Λ2) +

[

72IQVS (β)

πêî

]

ln(1+ Λ2), (26)

whereΛ2 = î(î2 + ê2)/12, andIPVS (β) and QPVS (β) are given
in terms of elliptic integrals than can be approximated by
(Chambers, 2006)

IPVS (β) =
β − 0.36251

0.061547+ 0.16112β+ 0.054473β2
, (27)

QPVS (β) =
0.71946− β

0.21239+ 0.49764β+ 0.14369β2
. (28)

Nevertheless, these velocities decline appreciably when
we move far away from the protoplanet. Hasegawa &
Nakazawa (1990) demonstrated that when the distance
from the protoplanet is larger than 3.5− 4 times its Hill radius,
the excitation of the relative velocities of planetesimalsweakens
significantly. Thus, we consider that

(

d〈e2〉

dt

)e f ect

stirr

= f (∆)

(

d〈e2〉

dt

)

stirr

, (29)

(

d〈i2〉
dt

)e f ect

stirr

= f (∆)

(

d〈i2〉
dt

)

stirr

, (30)

where

f (∆) =
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−1

, (31)

where∆ represents the distance from the protoplanet, andf (∆)
guarantees that the velocity profile of planetesimals is smooth
along the entire disk and the planetary excitation on planetes-
imals is restricted to the protoplanetary neighborhood. This is
important for an adequate solution of the solid distribution.

The friction caused by the gaseous component of the pro-
toplanetary disk decreases the orbital eccentricities andinclina-
tions of planetesimals at a rate given by (Adachi et al., 1976)
(

de
dt

)

gas

=
πer2

pCDρgvk

2mp

(

η2 + v2
rel

)

, (32)

(

di
dt

)

gas

=
πir2

pCDρgvk

4mp

(

η2 + v2
rel

)

, (33)

where CD is a dimensionless coefficient that describes the
gaseous friction (it is≈ 1 for the case of spherical bodies),mp
is the mass of planetesimals,ρg is the density of nebular gas at
a distancea from the central star, andη is the ratio of the gas
velocity to the local Keplerian velocity, given by

η =
vk − vgas

vk
=

π

16
(α + β)

(

cs

vk

)2

, (34)

whereβ is the exponent of the power-law profile of temperature
of the nebula (T (a) ∝ a−β) andcs is the local velocity of sound.

4. Models of giant planet formation

As previously stated, the formation of planets was computedin
the framework of the core instability scenario, in which three
aspects are of key importance:

a. The solid accretion rate that increases the protoplanetary core
mass. This is fundamental because it largely determines its
formation timescale. The rate of solid accretion also provides
the energy release necessary to support the gaseous envelope
against gravitational contraction. This rate was providedby
the particle in a box approximation (Eq. 21) as described
above.

b. The rate of gas accretion and the evolution of the envelope.
The calculation of the structure of the gaseous protoplanetary
envelope was performed by solving the standard equations of
stellar structure (see below for additional details).

c. The interaction between planetesimals and the gaseous en-
velope. For simplicity, we assumed that they do not disag-
gregate on entering the protoplanetary envelope and are de-
posited in the nucleus. The gravitational energy release due
to planetesimal accretion was incorporated at the bottom of
the gaseous envelope.

The equations that govern the evolution of the protoplanetary
gaseous envelope are those of stellar evolution theory, namely

∂r
∂mr

=
1

4πr2ρ
equation of definition of mass (35)

∂P
∂mr

= −
Gmr

4πr4
equation of hydrostatic equilibrium (36)

∂Lr

∂mr
= ǫpl − T

∂S
∂t

equation of energetic balance (37)

∂T
∂mr

= −
GmrT
4πr4P

∇ equation of energy transport, (38)
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whereρ is the density of the envelope,G is the universal gravita-
tional constant,ǫpl is the energy release rate due to the accretion
of planetesimals, S is the entropy per unit mass, and∇ ≡ d ln T

d ln P
is the dimensionless temperature gradient, which depends on the
type of energy transport.

We assumed that the outer boundary conditions change in
full accordance with the evolution of the protoplanetary disk,
i.e., are function of time. At the outermost point of the proto-
planet model, we defineρ = ρneb(t). However, we assumed the
temperature to be fixed. The remainig ingredients of the calcula-
tions presented below are as in Fortier et al. (2007; 2009).

4.1. Methodology of the code

The goal of this work was to construct self-consistent models of
giant planet formation inside a realistic protoplanetary disk that
evolves with time and, in particular, to analyze how the simulta-
neous growth of more than one object affects the growth of each
individual object. For this purpose, we separated the calculation
into several steps. We generalized the code that computes the
in-situ formation of one giant planet to compute the simultane-
ous formation of N planets. Then, we coupled this code with the
one that solves the disk evolution, which, in turn, has the role of
being the main program.

Once the parameters model have been defined, the calcula-
tion starts with the initial disk model. The Hill’s radius ofeach
planet was then defined and the migration velocities computed
for each planetesimal size. These velocities are employed to
solve the surface density of the disk. Then we computed the evo-
lution of the gaseous component of the disk. We then computeda
growth step for each planet. To do so, we had to consider the con-
tributions due to each planetesimal size inside the planetary feed-
ing zone and also the collision probabilities for each planet. For
each planet, we computed the accretion rate of solid and the new
structure for the gaseous envelope. We adopted the new masses
for each planet and computed the sinks of planetesimals, nec-
essary for solving the continuity equation. This proceduretook
computational cycle, and when necessary the whole procedure
was repeated. To achieve a stable and accurate sequence of mod-
els, for the next time step we adopted the minimum timescale of
all the ingredients considered in the calculation.

We considered the simulation to have ended when all plan-
ets had reached the adopted mass values. In the case that one or
more planets had reached their final masses while some others
had not, we computed the evolution of the whole system. In this
case, we did not consider any additional growth of the planets
that reached their final masses but still took them into account
when computing the evolution of the disk, perturbing the popu-
lation of planetesimals.

5. Application to the simultaneous formation of
Jupiter and Saturn

We apply the model described in Sects. 2, 3 and 4 to quan-
titatively analyze the effects of the simultaneous formation of
Jupiter and Saturn comparing with the results corresponding to
the case of isolated formation.

5.1. A standard nebula with profile Σ ∝ r−3/2

We first considered the standard model of the Solar nebula pro-
posed by Hayashi (1981). It states that

Σs(a) =



































7.1
( a
1 AU

)−3/2
g cm−2, a < 2.7 AU

30
( a
1 AU

)−3/2
g cm−2, a > 2.7 AU

(39)

Σg(a) = 1700
( a
1 AU

)−3/2
g cm−2 (40)

T (a) = 280
( a
1 AU

)−1/2
K (41)

ρg(a) = 1.4× 10−9
( a
1 AU

)−11/4
g cm−3 (42)

The discontinuity at 2.7 AU in the surface densities of solids
is caused by the condensation of volatiles (the “snow line”).
Hayashi (1981) employed a gas/solid ratio of 240 inside the
snow line. Nevertheless, we employ the same model but with a
gas/solid ratio of 100 as in Mordasini et al. (2009). In that work,
Mordasini et al. (2009) adopted a value ofz = 0.0149 (Lodders,
2003) for the abundance of heavy elements in the Sun; but this
abundance value is higher by a factor of 2 to 4 in the internal
regions of the Solar disk because of a redistribution of solids
(Kornet et al., 2004). Mordasini et al. (2009) adopted a factor
of 3 considering a value ofz = 0.04, which corresponds to a
gas/sold ratio of 100 inside the snow line. Thus, our standard
Solar nebula is defined by

Σs(a) =



































7.1
( a
1 AU

)−3/2
g cm−2, a < 2.7 AU

30
( a
1 AU

)−3/2
g cm−2, a > 2.7 AU

(43)

Σg(a) = 710
( a
1 AU

)−3/2
g cm−2 (44)

T (a) = 280
( a
1 AU

)−1/2
K (45)

ρg(a) = 5.92× 10−10
( a
1 AU

)−11/4
g cm−3. (46)

For numerical reasons, we followed Thommes et al. (2003)
spreading the snow line in a region of about 1 AU with a smooth
function, so the surface densities of solids are described by

Σs(a) =

{

7.1+ (30− 7.1)

[

1
2

tanh

(

a − 2.7
0.5

)

+
1
2

]}

×

( a
1AU

)−3/2
g cm−2 (47)

This model evidently, corresponds to a nebula less massive than
that of Hayashi (1981). In our model, the mass contained be-
tween 0.4 and 30 AU

0.005M⊙ ≤ Mgas ≤ 0.05M⊙, (48)

which corresponds to nebulae of between 1 and 10 MMSN
(where we assume that the minimum mass solar nebula corre-
sponds to a disk of 0.005 solar masses).
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Table 1. Parameters for the planets considered in the calcula-
tions.

Jupiter Saturn
Rorb [AU] 5.2 9.5
Mini

core [M⊕] 5 × 10−3 5× 10−3

Mini
gas [M⊕] 1 × 10−12 1× 10−12

M f inal [M⊕] 318 95

∗ Rorb is the radius of the (fixed) orbit.Mini
core and Mini

gas are the initial
masses of the core and the envelope gaseous, respectively.M f inal is
the final (assumed) mass value.

Table 2. Isolated formation of Jupiter and Saturn for a disk with
surfaces densities of solids and gas∝ a−3/2.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

4 10.12 2.54 21.31 5.34 — — — —

5 12.65 3.17 26.61 2.86 — — — —

6 15.18 3.81 31.35 1.76 6.14 0.73 17.07 9.62

7 17.71 4.45 36.32 1.09 7.17 0.85 20.83 4.89

8 20.24 5.08 41.48 0.62 8.19 0.97 23.76 2.85

9 22.77 5.72 45.39 0.33 9.22 1.09 26.38 1.75

10 25.30 6.35 46.09 0.16 10.24 1.21 28.72 1.08

∗ Σs [g cm−2] and ρg [10−11 g cm−3] are the initial surface density
of solids and the initial volumetric density of gas at the disk mid-
plane at the position of Jupiter and Saturn, respectively.Mc [M⊕] is
the final core mass andt f [Myr] is the formation time.

5.1.1. Jupiter and Saturn: isolated formation

After defining our disk model, we computed the isolated forma-
tion of Jupiter and Saturn. When we refer to isolated formation,
we mean that we consider only one planet forms in the Solar
nebula while the disk evolves. The initial conditions and final
masses we considered here are given in Table 1.

The results we obtained are summarized in Table 2. We
found that for 4 to 10 MMSN, Jupiter is formed in less
than 6 Myr. Saturn is formed in less than 10 Myr for 6 to
10 MMSN. Although theoretical models find small cores for
Jupiter (0-12M⊕ Guillot, 2005; 14-18M⊕ Militzer et al., 2008)
and Saturn (9-22M⊕ Guillot, 2005), the models also pre-
dict 10− 40 M⊕ of heavy elements in Jupiter’s envelope and
20 − 30 M⊕ of heavy elements in Saturn’s envelope (Guillot,
2005; Guillot & Gautier, 2009). Because we assumed that all the
falling planetesimals reach the core,Mc corresponds to the total
heavy element mass in the core and envelope.

5.1.2. Jupiter and Saturn: simultaneous formation

We next assumed that the planets form simultaneously; in this
case, the main results we obtained are given in Table 3. For
6 and 7 MMSN, we see that Jupiter formation completely in-
hibits Saturn formation (simulations are halted when the time of
formation exceeds 10 Myr). The Saturn formation timescale is

Table 3. Same as Table 2 but for the simultaneous formation of
Jupiter and Saturn.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

6 15.18 3.81 30.20 1.74 6.14 0.73 0.76 > 10

7 17.71 4.45 34.67 1.07 7.17 0.85 2.91 > 10

8 20.24 5.08 40.95 0.61 8.19 0.97 17.48 7.08

9 22.77 5.72 44.48 0.33 9.22 1.09 22.26 3.02

10 25.30 6.35 48.83 0.16 10.24 1.21 27.41 1.56

about 10 times longer than the Jupiter formation timescale for
the remaining cases.

Comparing the results given in Tables 2 and 3, we see that
Saturn has almost no effect on the formation of Jupiter. However,
the opposite is not true: the formation of Jupiter, clearly inhibits
the formation of Saturn in some cases (see Fig. 1) and largelyin-
creases the formation time of Saturn in others (see Fig. 2). This
is due to an increment in the migration velocities of planetes-
imals in Saturn’s neighborhood when Jupiter reaches gaseous
runaway that, in turn, accelerates the migration of planetesi-
mals to the Saturn’s feeding zone (Figs. 3 and 4). This incre-
ment in the migration velocity of planetesimals causes the solid
accretion timescale to become longer than planetesimal migra-
tion timescales, and the solid accretion rate of Saturn (when it is
formed simultaneously with Jupiter) becomes less efficient than
for the isolated Saturn formation (Figs. 5 and 6). Remarkably,
Jupiter’s and Saturn’s feeding zones do not overlap at any time.
Although Saturn’s feeding zone is well beyond Jupiter’s loca-
tion, the increase in the migration velocity of planetesimals at
this location, is caused by an eccentricity and inclinationex-
citation of the planetesimals related to Jupiter’s perturbations.
When Jupiter reaches its final mass (318M⊕), its correspond-
ing Hill radius is∼ 0.35 AU. At 9.5 AU, Saturn is a distance
of ∼ 12RH from Jupiter. As we can see in Fig. 7, when Jupiter
reaches its final mass, the tail of the modulation function (see
Eq. 30) produces an excitation (in planetesimal eccentricity and
inclination) lower than 1% at 9.5 AU compared to that produced
at Jupiter’s location. It is this excitation that causes theincre-
ment in the migration velocity of planetesimals at the Saturn’s
neighborhood when both planets are formed simultaneously.In
Figs. 8 and 9, we show the time evolution of eccentricity and
inclination along the disk for the case of Jupiter formed in isola-
tion. The increases in eccentricity and inclination when Jupiter
reaches gaseous runaway, and reaches its final mass, are respon-
sible for the increment in the migration velocities of planetesi-
mals at 9.5 AU (Fig. 10). We note that the choice of the mod-
ulation function is rather arbitrary. However, it should satisfy
some key properties: it should produce a planetary excitation on
planetesimals restricted to the protoplanetary neighborhood; it
must have a tail that is capable of exciting the surrounding plan-
etesimals to be accreted; and, from a numerical point of view,
it should guarantee a smooth velocity profile along the entire
disk. Moreover, it ought to have an appreciable tail at distances
well beyond the assumed function for representing the feeding

zone (ψ ∝ e−( ∆
4RH

)2

). If this were not the case, there would be no
planetary formation, even for the case of isolated embryos.The
choice of another possible modulation function that satisfies the
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Fig. 1. Comparison of cumulative masses as a function of time
for the simultaneous formation of Jupiter and Saturn and isolated
formation of Saturn for a 6 MMSN disk with power indexp =
3/2. Clearly, when Jupiter reaches its gaseous run away, Saturn
formation is inhibited in comparison with the case of its isolated
formation.

aforementioned conditions, but has a narrower tail would pro-
duce even smaller perturbations caused by Jupiter (in eccentric-
ities and inclinations) at Saturn’s location. However, if Jupiter
and Saturn formed closer to each other, as predicted by the “Nice
Model” of Tsiganis et al. (2005) (Jupiter∼5.5 AU, Saturn∼8.3
AU), an inhibition in the formation of Saturn should still occur.
To our knowledge, a detailed study of this modulation function
is not yet available and its calculation is a difficult task, beyond
the scope of this paper. In any case, it seems an unavoidable
conclusion that the modulation function should be significantly
higher than zero on a long tail, sufficient to allow the excitation
of planetesimals by an already formed Jupiter at Saturn’s orbit.

When the formation timescales for Jupiter are much shorter
than those corresponding to Saturn, the formation of the latter
is inhibited. One possible way out of this effect is to consider
a smoother profile for the nebular surface density. This point is
investigated in the next section.

6. Exploring different disk profiles

Models of steady accretionα-disks predict profiles ofΣ ∝
r−1 (Shakura & Sunyaev, 1973; Pringle, 1981). We used this
profile and the profileΣ ∝ r−1/2, previously proposed by
Lissauer (1987). We repeated the calculations reported in Sect. 5,
but using instead these profiles for the disk density.

We decided to normalize these profiles at Jupiter’s location.
In this way, for the smoother slopes of the nebular surface densi-
ties, Saturn will find more material inside its corresponding feed-
ing zone and, in turn, the formation timescales will be shorter.
We note that in this case the mass of the disks between 0.4-
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Fig. 2. Same as Fig. 1 but for a 8 MMSN. In this case, Jupiter
does not inhibit Saturn formation but largely delays it.

30 AU never exceeds 0.1M⊙, so these disks should be stable
against self-gravitational collapse (Mayer et al., 2004).

We have shown that for our model of Solar nebula, the sur-
face density is given by Eq. 43. It can be rewritten, scaling to
Jupiter’s location as

Σs(a) =



































0.6
( a
5.2 AU

)−3/2
g cm−2, a < 2.7 AU

2.53
( a
5.2 AU

)−3/2
g cm−2, a > 2.7 AU.

(49)

Thus, we employ a solid profile

Σs(a) =































0.6
( a
5.2 AU

)−p

g cm−2, a < 2.7 AU

2.53
( a
5.2 AU

)−p

g cm−2, a > 2.7 AU.

(50)

Using the same profile for the temperature and the same
gas/solid ratio for the different values ofp (-3/2, -1, -1/2) at
Jupiter’s location (5.2 AU), the value of the surface densities of
solids and gas and the volumetric gas density in the mid planeof
the disk were found to be the same regardless of the value ofp.

6.1. A nebula with profile Σ ∝ r−1

For example, we consideredp = 1 in the profile given by Eq. 50

Σs(a) =



































0.6
( a
5.2 AU

)−1
g cm−2, a < 2.7 AU

2.53
( a
5.2 AU

)−1
g cm−2, a > 2.7 AU.

(51)
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Fig. 3. The evolution of planetesimal migration mean velocities
at Saturn’s feeding zone for a 6 MMSN disk with power index
p = 3/2. The increase in the migration mean velocities, for the
case of Saturn’s simultaneous formation, is due to Jupiter’s rapid
formation as it reaches gaseous runaway.

Rescaling to 1 AU and using the same gas to solid ratio, we
found that the disk becomes defined as

Σs(a) =



































3.13
( a
1 AU

)−1
g cm−2, a < 2.7 AU

13.15
( a
1 AU

)−1
g cm−2, a > 2.7 AU

(52)

Σg(a) = 313
( a
1 AU

)−1
g cm−2 (53)

T (a) = 280
( a
1 AU

)−1/2
K (54)

ρg(a) = 2.61× 10−10
( a
1 AU

)−9/4
g cm−3. (55)

Spreading the snow line in a region of about 1 AU with a smooth
function

Σs(a) =

{

3.13+ (13.15− 3.13)

[

1
2

tanh

(

a − 2.7
0.5

)

+
1
2

]}

×

( a
1AU

)−1
g cm−2, (56)

the disk mass enclosed between 0.4 and 30 AU was found to be

0.0065M⊙ ≤ Mgas ≤ 0.065M⊙, (57)

which corresponds to values for nebulae between 1 and
10 MMSN (now the MMSM correspond to a disk of 0.0065 solar
masses).

After defining the disk, we computed planetary formation.
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Fig. 4. Same as Fig. 3 but for the case of a 8 MMSN nebula.

6.1.1. Jupiter and Saturn: isolated formation

The results we obtained are presented in Table 4. For 3 to 10
MMSN, Jupiter’s formation time was found to be short enough
not to conflict with observational estimations. However, the final
core mass of Jupiter is higher than expected. Similar results were
obtained for the isolated formation of Saturn. We found thatthe
timescales for the isolated formation of Jupiter and Saturn(ex-
cept for the case of 4 MMSN) are in closer agreement (in all
cases, Jupiter is formed before Saturn). We next consideredthe
case of simultaneous formation.

6.1.2. Jupiter and Saturn: simultaneous formation

Comparing Tables 4 and 5, we see that, except for the case of
4 MMSN, for which the formation timescales are very different,
in the remaining cases the simultaneous formation of Jupiter and
Saturn is analogous to the case of isolated growth.

Although in all cases, the final core masses are higher than
observational estimations, we note that ablation of accreted plan-
etesimals was not considered here. Small planetesimals could
completely disintegrate before they reach the core, reducing the
final core masses of Jupiter and Saturn.

6.2. A nebula with profile Σ ∝ r−1/2

For the profile given by Eq. 50 with power ofp = 1/2, rescaling
at 1 AU, employing the same gas/solid ratio, and spreading the
snow line in a region of about 1 AU with a smooth function we
found that the disk is characterized by

Σs(a) =

{

1.36+ (5.77− 1.36)

[

1
2

tanh

(

a − 2.7
0.5

)

+
1
2

]}

×

( a
1AU

)−1/2
g/cm−2, (58)
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Table 4. Isolated formation of Jupiter and Saturn for a disk with
power indexp = 1.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

3 7.59 1.90 21.20 6.87 — — — —

4 10.12 2.54 26.87 3.34 5.53 0.66 19.41 8.55

5 12.65 3.17 31.35 2.06 6.92 0.82 24.20 3.79

6 15.18 3.81 34.90 1.37 8.30 0.99 28.02 2.00

7 17.71 4.45 38.40 0.89 9.69 1.15 31.05 1.06

8 20.24 5.08 42.01 0.51 11.07 1.31 33.87 0.56

9 22.77 5.72 44.76 0.25 12.45 1.48 36.83 0.30

10 25.30 6.35 50.20 0.11 13.84 1.64 41.10 0.18

Σg(a) = 136
( a
1 AU

)−1/2
g cm−2, (59)

T (a) = 280
( a
1 AU

)−1/2
K, (60)

ρg(a) = 1.13× 10−10
( a
1 AU

)−7/4
g cm−3. (61)

The mass of gas between 0.4 AU and 30 AU is

0.01M⊙ ≤ Mgas ≤ 0.1M⊙, (62)



10 O. M. Guilera et al.: Consequences of the simultaneous formation of giant planets by the core accretion mechanism

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

5.2 9.5

e

rp= 100 m

MP= 52 M⊕

MP= 318 M⊕  

 0

 0.05

 0.1

 0.15

 0.2

 0.25

5.2 9.5

rp= 1 km

MP= 52 M⊕

MP= 318 M⊕  

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

5.2 9.5

e

a [AU]

rp= 10 km

MP= 52 M⊕

MP= 318 M⊕  

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

5.2 9.5

a [AU]

rp= 100 km

MP= 52 M⊕

MP= 318 M⊕  

Fig. 8. Time evolution of the eccentricities along the disk for the
case of the isolated formation of Jupiter. Curves correspond to
0, 1× 10−5, 1× 10−4, 1× 10−3, 0.01, 0.05, 1, 1.73, and 1.76 Myr.
The last two curves correspond to times before and after Jupiter
gaseous runaway. At these moments, the mass of the planet was
of 52 M⊕ and 318M⊕, respectively.

Table 5. Same as Table 4 but for the simultaneous formation of
Jupiter and Saturn.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

4 10.12 2.54 27.30 3.27 5.53 0.66 4.28 > 10

5 12.65 3.17 29.22 2.01 6.92 0.82 24.32 3.93

6 15.18 3.81 33.73 1.33 8.30 0.99 29.67 1.96

7 17.71 4.45 38.35 0.86 9.69 1.15 32.91 1.08

8 20.24 5.08 45.52 0.49 11.07 1.31 34.51 0.56

9 22.77 5.72 48.14 0.23 12.45 1.48 39.34 0.30

10 25.30 6.35 49.95 0.10 13.84 1.64 44.54 0.19

which correspond to nebulae of masses between 1 and
10 MMSN (where the MMSM correspond to a disk of 0.01 solar
masses).

Again, we first compute isolated formation for Jupiter and
Saturn.
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Fig. 9. Same as Fig. 8, but for the time evolution of the incli-
nations along the disk. It is clear that inclination excitations are
smaller than eccentricity excitations.

Table 6. Isolated formation of Jupiter and Saturn for a disk with
power indexp = 1/2.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

3 7.59 1.90 26.41 4.80 5.61 0.66 23.92 5.92

4 10.12 2.54 31.02 2.66 7.48 0.88 29.41 2.33

5 12.65 3.17 34.49 1.75 9.36 1.09 33.48 0.99

6 15.18 3.81 37.44 1.21 11.23 1.31 37.60 0.41

7 17.71 4.45 39.82 0.79 13.10 1.53 43.02 0.19

8 20.24 5.08 41.91 0.43 14.97 1.75 48.52 0.11

9 22.77 5.72 44.40 0.19 16.24 1.97 53.34 0.07

10 25.30 6.35 51.66 0.07 18.72 2.19 56.98 0.05

6.2.1. Jupiter and Saturn: isolated formation

For each planet, formation timescales are again, shorter than es-
timate of disk lifetimes, but the final core masses are higherthan
observational estimate.

Except for the case of 3 MMSN, Saturn formation occurs
remarkably on a timescale shorter than that corresponding to
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Fig. 10. Same as Figs. 8 and 9, but for the time evolution of the
planetesimal migration velocities along the disk. The planetes-
imal migration velocities, at 9.5 AU, are increased by Jupiter,
only when it achieves its final mass.

Table 7. Same as Table 6 but for the simultaneous formation of
Jupiter and Saturn.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

3 7.59 1.90 33.94 4.51 5.61 0.66 23.60 5.91

4 10.12 2.54 43.92 2.30 7.48 0.88 28.42 2.33

5 12.65 3.17 62.54 1.08 9.36 1.09 33.49 0.99

6 15.18 3.81 60.07 0.50 11.23 1.31 37.58 0.41

7 17.71 4.45 59.94 0.26 13.10 1.53 43.20 0.19

8 20.24 5.08 57.53 0.16 14.97 1.75 48.75 0.11

9 22.77 5.72 57.77 0.10 16.24 1.97 53.76 0.07

10 25.30 6.35 57.90 0.06 18.72 2.19 57.60 0.05

Jupiter. This result may seem rather paradoxical because the
solid accretion rate is lower at larger distances from the cen-
tral star (Eq. 9), even for this moderate profile. However, ithas
a simple explanation. For a solid density profileΣs ∝ r−p, if
we consider an annulus of the disk of thicknessdr, the mass of
the annulus isdm = 2πrΣs(r)dr so, dm ∝ r1−p. If p > 1, the
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Fig. 11. Comparison of cumulative masses as a function of time
for the simultaneous formation of Jupiter and Saturn and iso-
lated formation of Jupiter for a 6 MMSN disk with power index
p = 1/2. The rapid formation of Saturn significantly favors the
formation of Jupiter.

mass increases inwards and due to the planetesimal migration,
the incoming flux of mass towards the annulus is lower than the
outcoming one. On the other hand, ifp < 1, the mass grows
outwards, and the incoming flux of mass is greater than the out-
coming. The evolution of the solid density profile is governed by
Eq. 7, where sinks, caused by planetary accretion, are also con-
sidered. Figure 13 clearly shows that initially the mean density
of solids in Jupiter’s feeding zone is greater than the mean den-
sity of solids in Saturn’s feeding zone, but as time advances, the
mean density of solids in Saturn’s feeding zone become greater
than that corresponding to Jupiter. Because of this, Saturn’s for-
mation occurs before that of Jupiter’s. It is clear that the migra-
tion of planetesimals plays a very important role in planetary
formation, especially forp < 1.

We now consider simultaneous formation.

6.2.2. Jupiter and Saturn: simultaneous formation

We see that for this nebular profile the temporal order of the
phenomena is inverted. Jupiter formation does not affect the for-
mation of Saturn (the latter forms first except in the case of
3 MMSN), but Saturn formation shortens the Jupiter formation
timescale and largely increases their final cores (Fig. 11).

The rapid formation of Saturn produces adensity wave of
solids, responsible for the acceleration of Jupiter’s formation
(see Fig. 12). This wave increases the mean density of solidsin
Jupiter’s feeding zone (Fig. 13) increasing the accretion rate of
solids (Fig. 14). In our model, we do not consider some poten-
tially relevant phenomena such as planetesimals resonant trap-
ping, planetesimals shepherding, and gap opening in the plan-
etesimal disk (Tanaka & Ida, 1997, 1999; Zhou & Lin, 2007;
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Fig. 12. Time evolution of the planetesimal density profiles for
a 6 MMSN disk with power indexp = 1/2 for the simul-
taneous formation of Jupiter and Saturn. The density wave of
solids, produced by the rapid formation of Saturn is a very dis-
persive phenomena and strongly depends on planetesimal size.
As time advances, density profiles decrease at the planets’slo-
cation. Curves correspond to 0, 1× 10−7, 1× 10−6, 1× 10−5, 1×
10−4, 1× 10−3, 0.01, 0.05, 0.1, 0.2,0.3, 0.4, and 0.5 Myr.

Shiraishi & Ida, 2008). These phenomena could change the pro-
cess of planetary formation slowing down or even inhibiting
solid accretion. Unfortunately, they are very difficult to incorpo-
rate in a semi-analytical model such as the one presented here.

7. The case of the Hayashi nebula

Finally, for the sake of completeness, we repeated the calcula-
tions for the case of the standard model of Hayashi. Since this
model only differs from our own withp = 3/2 in terms of the
amount of gas, similar results may be expected because a large
amount of gas implies lower relative velocities of the planetesi-
mals, and makes the accretion of solids more efficient. The cor-
responding results are given below.

7.1. Jupiter and Saturn: isolated formation

Comparing the two considered values of the gas/solid ratio
(Tables 2 and 8) we find the expected results. The higher the
gas/solid ratio, the lower the formation timescale and the higher
the core mass. The effects are clearly much larger for the case of
Saturn. We now consider whether qualitatively, the main charac-
teristics of simultaneous formation remain the same.

7.1.1. Jupiter and Saturn: simultaneous formation

We see (Table 9) that, except for the case of 5 MMSN, the si-
multaneous formation changes quantitatively and even qualita-
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Fig. 13. Evolution of the mean density of solids in the Jupiter
and Saturn feeding zones for a 6 MMSN disk with power index
p = 1/2. It is clear that the presence of Saturn increases the mean
density of solids in Jupiter’s feeding zone, because of an inner
density wave of planetesimals produced by the rapid formation
of Saturn (see Fig. 12).

Table 8. Isolated formation of Jupiter and Saturn for the Hayashi
nebula.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

5 12.65 7.51 30.82 2.58 5.12 1.43 17.23 8.77

6 15.18 9.02 37.68 1.49 6.14 1.72 21.68 4.00

7 17.71 10.5 41.67 0.80 7.17 2.00 25.30 2.20

8 20.24 12.0 42.81 0.42 8.19 2.30 28.50 1.22

tively relative to the results for the case of a ratio gas/solid=100
(Table 3). For the cases of 6, 7, and 8 MMSN, the formation
times of Saturn shorten, while those of Jupiter become longer
and the core masses are also lowered considerably. This is be-
cause, while an increment in the amount of gas improves the
efficiency of the solid accretion rates, it also accelerates theplan-
etesimal migration.

8. Discussion and conclusions

In the framework of the core instability hypothesis, we have
considered the in situ formation of Jupiter and Saturn occur-
ring simultaneously in a protoplanetary disk populated by plan-
etesimals with a size distribution for which most of the mass
is in small objects. We considered protoplanetary nebulae with
power-law surface densities for gas and solids, and assumedthat
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Fig. 14. A comparison of the evolution of the solid accretion rate
for the simultaneous formation of Jupiter and Saturn and isolated
formation of Jupiter for a 6 MMSN disk with power indexp =
1/2. We see that Saturn’s rapid formation significantly increases
the solid accretion rate for the simultaneous formation of Jupiter.

Table 9. Same as Table 8 but for the simultaneous formation of
Jupiter and Saturn.

MM Jupiter Saturn
SN

Σs ρg Mc t f Σs ρg Mc t f

5 12.65 7.51 22.68 3.38 5.12 1.43 14.93 > 10

6 15.18 9.02 25.63 1.90 6.14 1.72 23.33 3.81

7 17.71 10.5 29.02 0.86 7.17 2.00 27.88 1.95

8 20.24 12.0 33.83 0.41 8.19 2.30 32.71 0.99

the gas component of the disk dissipates following an exponen-
tial law with a characteristic timescale of 6 Myr.

In the first instance, we calculated the isolated and simul-
taneous formation of Jupiter and Saturn for a standard nebula
with profile Σ ∝ r−3/2 but with a lower gas/solid ratio than that
adopted by Hayashi (1981), following the work by Mordasini et
al. (2009). We quantitatively analyzed how the isolated forma-
tion of Jupiter (Saturn) is affected when it occurs simultaneously
with Saturn (Jupiter). For the isolated formation, we have found
that Jupiter and Saturn achieved its final masses on a timescale
in agreement with observational estimate for 6 to 10 MMSN (the
corresponding disk masses are between 0.003M⊙ and 0.05M⊙).
However, the final core masses are higher than estimates in
most of the cases (Table 2). The most important result is that
Jupiter’s formation timescales are somewhat shorter than the
corresponding ones for Saturn. We have found that the rapid for-
mation of Jupiter inhibits -or largely increases- the timescale of
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Fig. 15. Comparison of the time evolution of planetesimal den-
sity profiles for a 8 MMSN disk with power indexp = 3/2 in
Saturn’s neighborhood for its isolated formation, and alsoits si-
multaneous formation with Jupiter. As time advances, the den-
sity profiles decrease in both cases; however, profiles evolution
are very different. Planetesimals of 1, 10, 100 km in size pro-
duce a density wave for Saturn’s isolated formation. This den-
sity wave is inhibited when Saturn forms simultaneously with
Jupiter: for all sizes of planetesimals, the evolution of density
profiles decreases more quickly when Saturn forms in the pres-
ence of Jupiter.

Saturn’s formation when they grow simultaneously inside the
disk (Table 3). Jupiter’s formation increases the migration mean
velocities of the planetesimals at Saturn’s feeding zone (Figs. 3
and 4). This phenomena causes the timescale of solids accretion
rate to becomes longer than the planetesimal migration timescale
such that, Saturn’s solid accretion rate becomes less efficient
(Figs. 5 and 6). In Fig. 15, we show that the presence of Jupiter
significantly modifies the time evolution of solids in Saturn’s
neighborhood and, in turn, modifies Saturn formation.

We then explored smoother profiles in trying to solve the
problem of the different formation timescales. Accretionα disks
predict profiles ofΣ ∝ r−1. We used this profile and another
proposed by Lissauer (1987) -Σ ∝ r−1/2- that could solve for-
mation timescales of the outer Solar System giant planets. We
normalized these profiles at Jupiter’s position (5.2 AU) so that,
at this position, the surface densities of solids and gas, and the
volumetric density of gas in the mid plane disk are the same for
all considered profiles (p = 3/2, 1, 1/2). The smoother the pro-
files, the higher the density of solids at Saturn’s position,and the
closer the similarity in the formation timescales.

For the profileΣ ∝ r−1, we found that the formation
timescales of Jupiter and Saturn are more similar to those for
isolated formation. In this case, the simultaneous formation of
Jupiter and Saturn is practically does not unchanged with re-
spect to the corresponding isolated formation of each planet.



14 O. M. Guilera et al.: Consequences of the simultaneous formation of giant planets by the core accretion mechanism

0.1

1

5

10

20

40

80

0.01 0.1 0.5 1 5 10

M
 /

 M
⊕ 

Saturn
simultaneous
with Jupiter

Jupiter simultaneous

with Saturn

Σ ∝  r
-3/2

MT
Mcore
Mgas 

0.1

1

5

10

20

40

80

0.01 0.1 0.5 1 5 10

M
 /

 M
⊕ 

Saturn
simultaneous
with JupiterJupiter simultaneous

with Saturn

Σ ∝  r
-1

MT
Mcore
Mgas 

0.1

1

5

10

20

40

80

0.01 0.1 0.5 1 5 10

M
 /

 M
⊕ 

Time [Myr]

Saturn
simultaneous

with Jupiter Jupiter simultaneous
with Saturn

Σ ∝  r
-1/2

MT
Mcore
Mgas 

Fig. 16. Comparison of the simultaneous formation of Jupiter
and Saturn for a 6 MMSN disk with different power indices
(p = 3/2; 1; 1/2). We see that simultaneous formation of Jupiter
and Saturn changes as the power index decreases.

However, for the profileΣ ∝ r−1/2 the temporal order of the phe-
nomena is inverted. In most cases, Saturn forms before Jupiter.
The rapid formation of Saturn induces a density wave of solids
(Fig. 12) that significantly favors Jupiter’s formation (Fig. 11)
. This wave increases the amount of solids in Jupiter’s feeding
zone (Fig.13), such that the solid accretion rate becomes more
efficient (Fig.14).

In Fig. 16, we compare the simultaneous formations of
Jupiter and Saturn for the case of a 6 MMSN disk with different
power indices (p = 3/2; 1; 1/2). For the case ofp = 3/2, Jupiter
inhibits Saturn’s formation. For smoother profiles (p = 1; 1/2),
the process becomes more efficient, for various reasons. First,
at Saturn’s position there is a higher density of solids and gas.
In addition, as power indices decrease the mass of solids grows
outward, and due to planetesimal migration the replenishment of
solids in the feedings zones is more efficient.

Finally, we repeated the calculations for the standard model
of Hayashi. Because Hayashi’s nebula is more massive than that
of our model with p = 3/2 -only differing in the amount of
gas- our results were expected to be qualitatively similar.This
was found to be true for the isolated formation of Jupiter and
Saturn (Table 8), where formation timescales decrease and fi-
nal core masses increase. This is because a greater amount of
gas leads to the accretion rate of solids becoming more efficient.
However, the properties of the simultaneous formation of Jupiter
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Fig. 17. Comparison of the simultaneous formation of Jupiter
and Saturn for a 6 MMSN disk for the Hayashi nebula (Σg/Σs =

240) and our model (Σg/Σs = 100). The formation processes are
very different in each case.

and Saturn differ qualitatively and quantitatively in the case of
our model withp = 3/2. While for our model Jupiter inhibits
Saturn’s formation, for the Hayashi’s nebula the formationtimes
of Saturn are decreased by the presence of Jupiter. In addition,
Jupiter final core masses are significantly decreased by the pres-
ence of Saturn.

In Fig. 17, we show the differences between the simultaneous
formations of Jupiter and Saturn for a 6 MMSN disk between the
Hayashi nebula and our model withp = 3/2. The gas/solid ratio
clearly has an important role in the formation process. Different
gas/solid ratios may change qualitatively and quantitatively the
whole formation of a planetary system.

The primary hypothesis of our model is that most of the plan-
etesimal mass is in small objects. Most of the works that sim-
ulate giant planet formation do not consider oligarchic growth
regime. In these works, a much faster time-dependent regimeis
adopted for the growth of the core (Pollack et al., 1996; Alibert
et al., 2005 a, b; Hubickyj et al., 2005; Dodson-Robinson et al.
2008). With this solid accretion rate, the final core mass of the
giant planet is quickly achieved. Relative velocities are slower
and the solid accretion rate becomes more efficient, so planetesi-
mals of 100 km in size are usually used. While some studies pre-
dict this type of planetesimals (Johansen et al., 2007; Morbidelli
et al., 2009), N-body simulations predict that when the em-
bryos reach a mass similar to the Moon, the runaway regime
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switches to oligarchic regime (Ida & Makino, 1993; Kokubo &
Ida, 1998; 2000; 2002). We note that if our primary hypothesis
is relaxed, and most of the planetesimal mass does not residein
small objects -or larger planetesimals are considered- formation
timescales become longer than disk lifetimes.
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