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Cytogenetic Alterations in Multiple Myeloma: Prognostic Significance

and the Choice of Frontline Therapy

Flavia Stella,' Estela Pedrazzini,' Mara Agazzoni,” Oscar Ballester,” and Irma Slavutsky'

"Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de
Medicina, Buenos Aires, Argentina, ?Instituto de Investigaciones Hematoldgicas, Academia Nacional de Medicina, Buenos Aires,

Argentina

Multiple myeloma tumor cells demonstrate multiple and often
complex genetic lesions as evaluated by standard
cytogenetic/FISH studies. Over the past decade, specific
abnormalities have been associated with standard or high-risk
clinical behavior and they have become strong prognostic
indicators. Further, as evidenced by recent randomized clinical
trials, the choice of front-line therapy (transplant vs. no
transplant, inclusion of novel drugs such as bortezomib,
thalidomide, and lenalidomide) may be able to overcome the
adverse effect of high-risk genetic lesions.

Keywords: Cytogenetics, FISH, MGUS, Multiple mieloma,
Prognostic factors, Risk groups, Therapy, Thalidomide,
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INTRODUCTION

Multiple myeloma (MM) is a clonal plasma cell malignancy
that accounts for approximately 10% of all hematologic can-
cers (1). It is characterized by the accumulation of malignant
plasma cells within the bone marrow, the presence of a mono-
clonal immunoglobulin in the serum and/or urine, lytic bone
lesions, frequent anemia, and less often, renal impairment.
This disorder shows a variable clinical course, with some pa-
tients progressing rapidly, while others have an overall sur-
vival greater than 10 years. The natural course of the disease is
the result of a multistep process that may progress from mon-
oclonal gammopathy of undetermined significance (MGUS)
and smoldering myeloma (SMM), to symptomatic MM and
plasma cell leukemia. This process is characterized by a se-
ries of genetic events that impact in different signaling path-
ways changing the biologic characteristics of the myeloma
cells and determining proliferative and selective advantages.

Multiple prognostic factors that reflect host factors, tumor
biology, tumor burden, and response to treatment have been
described in MM (2). Among them, the presence of genetic
alterations in plasma cells has been considered to be an im-
portant prognostic factor, capable to identify patients with

different clinical features and response to therapy (3-5). Al-
though many genetic alterations are amenable to detection by
conventional cytogenetics, their detection is hampered by the
low proliferative index of plasma cells and, consequently, the
limited number of metaphases (6). In addition, some aberra-
tions are cryptic and cannot be detected by standard cytoge-
netics, thus an apparently normal karyotype is observed in
60-70% of MM patients. However, the introduction of in-
terphase fluorescence in situ hybridization (FISH) studies
showed genetic alterations in more than 80% of cases.

In the first part of this paper, we review the most common
cytogenetic/FISH abnormalities associated with myeloma,
the molecular mechanisms involved and their prognostic sig-
nificance. Later, we review data from recent randomized clin-
ical trials (RCT) to evaluate the relative role of the various
treatment regimens proposed in reference to standard and
high risk cytogenetic groups.

CYTOGENETIC AND MOLECULAR ABNORMALITIES
IN MULTIPLE MYELOMA

In the last decade, cytogenetic and molecular genetic studies
have emerged as relevant prognostic factors, capable to iden-
tify patients with different clinical features and response to
therapy (5). They may be distinguished initially in primary
abnormalities, directly related with the pathogenesis of the
disease, and secondary events, associated with progression of
the disease. Primary alterations can be subdivided in two cy-
togenetic categories: hyperdiploid and nonhyperdiploid. The
hyperdiploid group (45% of cases) is characterized by the
presence of trisomies of the odd-numbered chromosomes
and a low frequency of immunoglobulin heavy chain (IGH)
translocations involving 14q32 locus. In contrast, the nonhy-
perdiploid group (40% of cases) (encompassing hypodiploid,
pseudodiploid, and near tetraploid MM) is characterized by
a high frequency of IGH translocations, indicating that two
fundamentally different pathogenic pathways exist for MM
development (5). The ploidy categories are stable over time
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Table 1. Distribution of Cytogenetic Abnormalities in Patients with
Multiple Myeloma

Clinical
Group (% of Cases) Genes Characteristics
Hyperdiploid (45) More favorable, IgG-«
Older patients
Nonhyperdiploid (40) Aggressive disease, IgA-A

Younger patients

Cyclin dysregulation

t(11;14)(q13;932) (16) CCNDI1/IGH More favorable
t(6;14)(p21;932) (2) CCND3/IGH

t(12;14)(p13;q32) (<1) CCND2/IGH

t(4;14)(p16;q32) (15) FGFR3- Intermediate risk
MMSET/IGH  Less frequent bone
lesions

MAF rearrangements

t(14;16)(q32;923) (5) IGH/c-MAF
t(14;20)(q32;q11) (2) IGH/MAFB
t(8;14)(q24.3;q932) (<1) MAFA/IGH

(6;14)(p25;932) (2) IRF4/IGH

Aggressive disease

Poor information

Other alterations (15) Variable

and rarely changes at disease progression (7). In a small sub-
set of patients (10%), both IGH translocations and hyper-
diploidy can be observed. This association is considered of
have an unfavorable outcome (5). In addition, there is a sub-
group of cases (15%) that present other type of alterations and
variable clinical course.

Overall, hyperdiploidy showed a more favorable clinical
evolution, more commonly are elderly individuals, and have
a higher incidence of MM bone disease (8). However, this
group is heterogeneous, being subdivided by GEP (gene ex-
pression profile) in four putative subgroups. Each subgroup
was characterized by the overexpression of largely nonover-
lapping gene sets associated to different pathways relevant to
myeloma biology and with different clinical outcome, such
as, cancer testis antigen and mitosis/proliferation-related
genes, hepatocyte growth factor (HGF)/interleukin-6 genes,
NEF-kB/anti-apoptosis genes, and the last one ill-defined and
with low expression of HGF (9).

Nonhyperdiploid MM cases are also an heterogeneous
group that consists of several molecular subtypes based
on the specific partner chromosome involved in the IGH
translocation, and mediated primarily by errors during IGH
switch recombination process (Table 1). The different sub-
groups include: Cyclin D translocations, t(4;14)(p16.3;q32)
and MAF translocations.

Cyclin D translocations

Translocation t(11;14)(q13;q32), with the consequent up-
regulation of Cyclin D1 (CCNDI1) gene, is the most fre-
quent translocation of this group, occurring in approximately
15-20% of newly diagnosed MM patients (5, 10, 11). The
other alterations of this group are: t(6;14)(p21;q32) (2%) and
t(12;14)(p13;q932) (<1%), involving CCND3 and CCND2
genes, respectively (12, 13). These translocations are asso-

ciated with nonsecretory or hyposecretory disease, lympho-
plasmacytic or small mature plasma cell morphology, lambda
light chain usage and CD20 expression (14-18). Transloca-
tion t(11;14)(q13;q42) is observed in one half of cases of light
chain amyloidosis and can be found in MGUS. This translo-
cation has been associated with a favorable clinical evolu-
tion; the disease can be heterogeneous and its global effect
on prognosis is considered neutral (5, 11, 19, 20). The Inter-
national Myeloma Workshop Consensus (21) establishes that
t(11;14) does not predict a superior outcome. A recent evalu-
ation of its impact on the outcome of autologous hematopoi-
etic cell transplantation concludes that t(11;14) has a worse
outcome than patients with normal karyotype and FISH
studies, but better than patients with high risk markers (22).

t(4;14)(p16.3;q32) translocation

The second most frequent reciprocal translocation in MM
patients is t(4;14)(p16.3;q32), which occurs in about 15% of
patients (23, 24). This is a cryptic translocation that must be
evaluated by FISH or reverse-transcriptase PCR (RT-PCR),
and involves two protein coding genes, MMSET and FGFR3,
both mapped at 4p16.3. They are the Wolf-Hirschhom syn-
drome candidate 1 gene (WHSC1) also known as multiple
myeloma SET domain (MMSET), a protein with homology
to histone methyltransferases, and the fibroblast growth fac-
tor receptor 3 (FGFR3) gene, an oncogenic receptor tyrosine
kinase. MMSET is expressed in all cases with this transloca-
tion; instead FGFR 3 expression is detected in 75% of patients
due to the loss of the derivative chromosome 14, in which
FGFR3 is translocated, observed in 25% of cases (24, 25).
This loss apparently reflects the presence of clonal evolution
during disease progression. Translocation t(4;14)(p16.3;q32)
is associated to the use of IgA heavy chain, lambda light
chain, and a very high prevalence of chromosome 13 dele-
tion/monosomy (6, 25-28), and identify a subset of MM pa-
tients with short survival, even in the context of autologous
transplantation (6, 20, 29, 30). This translocation is also ob-
served in cases with MGUS and frequently in patients with
SMM (26, 31).

MAF (musculoaponeurotic fibrosarcoma) gene
translocations

These translocations are less frequent, being observed in
5-7% of MM patients. They include: t(14;16)(q32;q23) (5%),
£(14;20)(q32:q11) (2%) and t(8;14)(q24.3;932) (<1%), in-
volving c-MAF, MAFB and MAFA genes, respectively. These
translocations have been associated with IgA isotype, higher
frequency of chromosome 13 deletion and a more aggres-
sive clinical outcome (6). The mechanism of this poor out-
come is thought to involve the consequences of MAF upreg-
ulation, which include upregulation of cyclin D2, effects on
cell interaction and upregulation of apoptosis resistance (32).
Particularly, the t(14;16)(q32;q23) juxtapose the c-MAF gene
(16q13) and IGH locus at 14q32. The breakpoint occurs in
the introns of a very large gene named WWOX (WW do-
main containing oxidoreductase), which spans a fragile site
(FRA16D) (33). It is interesting to point out that transloca-
tion t(14;20)(q32;q11) involving MAFB gene is associated
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with short survival in MM patients. The same transloca-
tion shows a long-term stable disease in MGUS and SMM
patients, suggesting that the translocation alone cannot be re-
sponsible for adverse clinical behavior and additional events
must be required for disease progression (34). Simultane-
ously, very scarce information about clinical characteristics
of translocation t(8;14)(q24.3;q32) exists.

Secondary alterations

As previously referred, the presence of secondary genetic
events reflects tumor progression. In MM several recurrent
secondary alterations have been described, being the most
frequent: deletion/monosomy of chromosome 13, deletion of
chromosome 17p13, chromosome 1 abnormalities (1p dele-
tions and 1q gains/amplifications), and C-MYC transloca-
tions (5, 35-37).

Chromosome 13 alterations

Chromosome 13 alterations are detected in 50% of cases, 85%
monosomies, while the remaining 15% are interstitial dele-
tions (38, 39). This alteration was first associated with an un-
favorable prognosis and short survival (31, 40, 41), but there
is now increasing evidence that its prognostic relevance may
be related to its association with high risk IGH transloca-
tions, particularly t(4;14) (90% of cases), being considered as
a marker of nonhyperdiploid MM (5, 6, 40, 41). In addition,
Fonseca et al. (5) suggest a critical role for chromosome 13
deletion/monosomy as a prerequisite for clonal expansion of
myeloma tumors.

Deletion 17p13

This alteration, in which the tumor suppressor gene TP53
maps, is considered the most important molecular cytoge-
netic prognostic factor in MM patients (6, 40, 42). Tumor
suppressor protein TP53 has an important role in promoting
apoptosis, senescence, or cell cycle arrest in response to DNA
damage, while TP53 deletion or mutations may either predis-
pose cells to DNA damage or allow cellular survival (43). It
is a late event in MM, being reported in about 10% of cases
by FISH studies. Its presence predicts for shorter survival,
more aggressive disease, higher prevalence of extramedullary
disease, hipercalcemia, short duration of response post-high
dose therapy, and central nervous system involvement. It is
observed in most cases of plasma cell leukemia both primary
and secondary, and is very uncommon in MGUS (6, 40, 42,
44-47). FISH studies of clonal evolution indicated that the
deletion occurs most commonly in subclones (48).

Chromosome 1 alterations

Structural aberrations of chromosome 1 are the most fre-
quent additional changes in plasma cell disorders, being
found in up to 45% of MM and in almost all PCL patients
(49-56). Among them, 1q21 gains/amplifications are highly
prevalent in MM and its frequency rises during the course
of the disease (52, 56-58). Different studies support that this
alteration introduces an increased level of genetic instability
in myeloma cells (49, 59) and suggest 1q amplification as a
possible subrogate marker of more clonally advanced tumors

Copyright © 2015 Taylor & Francis Group, LLC
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(60). Significantly short survival was observed in patients
with 1q21 gain/amplification compared to those lacking this
alteration (56, 61). In addition, higher frequency of 121 gain
was found in relapsed patients (72% of cases), probably as-
sociated to drug resistance (52, 58, 62). One of the key genes
mapped on chromosome 1q21 is CKS1B (CDC28 protein ki-
nase regulatory subunit 1B) (8, 54), that encodes for a pos-
itive cell cycle regulator that activates cyclin-dependent ki-
nases to promote proliferation and cell cycle progression (63,
64). CKS1B is essential for the ubiquitination of the inhibitor
of the cell cycle CDKNIB (p27X'"™), which degradation is re-
quired for the cellular transition from quiescence cells to the
proliferative state (65). Its overexpression was associated with
a high rate of proliferation and poor prognosis in MM pa-
tients (66—68) and a positive correlation between CKS1B ex-
pression and 1q21 gain was observed (56, 58, 69). Zhan et al.
(67) detected high CKS1B mRNA and protein levels in ag-
gressive primary MM, which increased during disease pro-
gression. A more indolent clinical course was associated to
low levels of CKS1B expression. In concordance, Stella et al.
(56) found higher CKSIB expression in MM compared to
MGUS samples, suggesting a role of this gene in the multi-
ple step process of progression of MGUS to MM. A number
of studies have evaluated the association between 1q21 copy
gain and CKSI1B expression with clinical evolution show-
ing 1g21 copy gain as a more significant prognostic factor
than CKS1B overexpression (56, 58, 61, 70). Patients with
1921 gain/amplification show a higher prevalence of adverse
IGH@ translocations as well as other secondary alterations
like deletions 13q and 17p (58, 62, 63, 71), being suggested
that additional genetic abnormalities significantly worsen the
poor prognosis of 1q21 gain (63, 71).

Deletions of 1p have been identified in approximately
7-40% of myeloma cases using cytogenetics, FISH, and com-
parative genomic hybridization (CGH) (4, 72, 73), and a re-
current region of losses at 1p32.3 affecting CDKN2C (cyclin-
dependent kinase inhibitor 2C) (p18™¥“C) locus was defined
(74,75). CDKN2C gene belongs to the INK4 family of cyclin-
dependent kinases (cdk) inhibitors which interacts preferen-
tially with the cdk4/6 preventing G1 progression. Terminal
differentiation of B cells into plasma cells is dependent on
GI1 cell cycle arrest, which is temporally correlated with its
increased expression (76). Chromosome 1p deletion has also
been associated to adverse clinical outcome in MM patients
(53, 66, 73, 77). Association between 1p deletions and 1q21
gains is frequently observed (53, 56). The incidence and prog-
nostic significance of deletions at 1p22 and 1p32 have been
recently evaluated in a large cohort of MM showing that even
though both deletions were predictive for poor progression
free survival and overall survival, deletion 1p32 appears as a
major independent prognostic factor (78).

MYC alterations

MYC (8q24) rearrangements in MM are often complex
involving nonreciprocal alterations, duplications, amplifica-
tions that can be mediated by secondary events that do not
involve B-cell-specific recombination mechanisms, and
sometimes do not involve immunoglobulin loci (79). These
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Table 2. Cytogenetic Risk Stratification

High risk (20% of patients)
t(14;16)(q32;q23) (by FISH)
t(14;20)(q32;q11) (by FISH)
del(17)(p13) (by FISH)
Chromosome 1 alterations
Complex karyotype

Intermediate risk (20% of patients)
t(4;14)(p163932) (by FISH)
del(13)(q14)

Standard risk (60% of patients)
Hyperdiploid
t(11;14)(q13;932) (by FISH)
t(6;14)(p21;q32) (by FISH)

alterations occur in 15% of newly diagnosed MM patients
(80), but are observed in 45% of cases with advanced disease,
and in nearly 90% of human myeloma cell lines, showing
a similar prevalence in hyperdiploid and nonhyperdiploid
cases (81). Translocations involving MYC and IGH loci are
frequently observed as a late event during tumor progression,
when the diseases are becoming more proliferative and less
stromal dependent. MYC activation was also detected in
MGUS patients, suggesting it could be an early genetic event
in the pathogenesis of MM (82). Experimental studies in a
transgenic mouse model support a functional role for MYC
in the progression of MGUS to MM (83).

Other alterations

Fifteen percent of patients have other alterations, showing a
heterogeneous clinical course. Among them, deletions of the
short arm of chromosome 12 occur in about 8% of MM pa-
tients and in 24% of cases with plasma cell leukemia (84). The
size of the deletion is variable, and it tends to appear in ad-
vanced disease, representing a secondary change associated
with disease progression. Another point to be considered is
the presence of complex karyotypes which are a consequence
of the accumulation of sequential genetic changes that appear
during tumor clone development and are associated with dis-
ease progression (13, 35). Taking into account the clinical
outcome, genetic abnormalities in MM can be classified in
standard, intermediate and high risk (Table 2).

CYTOGENETICS AND THERAPY

In order to evaluate the impact of new therapies for pa-
tients with specific cytogenetic abnormalities, we identified
8 RCT published in the past 10 years which provided data on
outcomes of cytogenetically defined risk subgroups (85-94).
While the criteria for high risk groups varied among studies,
it generally included del(17q13), t(14;16) and in occasions
t(4;14). Our analysis is based on the retrospective evaluation
of subgroups of patients from RCT with the known limita-
tions of these types of analyses. Difficulties are further com-
pounded by the fact that high risk groups represent a small
fraction of patients in these trials (~20%). To date, there are
no published trials where patients have been prospectively
stratified according to their cytogenetic risk profile.

Table 3. Impact of Bortezomib Induction Therapy on Progression
Free Survival of Patients Receiving High-Dose Therapy with
Autologous Stem Cell Transplantation

High-Risk Standard Risk
Trial Patients® Patients® p value
GIMEMA (91)
BTD 58% at 3 years ~ 63% at 3 years 713
TD 19% at 3 years  61% at 3 years .001
PETHEMA/GEM (92)
BTD 23.5 months NR .06
D 8.9 months 29.4 months .04

BTD, bortezomib, thalidomide, dexamethasone; TD, thalidomide, dexamethasone;
NR, not reached.

2The presence of del(17p13) and/or t(4;14).

>The absence of del(17p13) and t(4;14).

FRONTLINE THERAPY INCLUDING AUTOLOGOUS
STEM CELL TRANSPLANTATION

Thalidomide

In the MRC IX trial, which randomized 1111 evaluable
patients, the incorporation of thalidomide during induc-
tion with CTD (cyclophosphamide, thalidomide, and dex-
amethasone) was compared to CVAD (cyclophosphamide,
vincristine, doxorubicin, and dexamethasone) followed by
a single course of high-dose therapy and autologous stem
cell transplantation (HD-ASCT). No significant differences
in progression free survival (PFS) or overall survival (OS)
were observed. A late, modest OS benefit was noted with
CTD in patients with standard risk cytogenetics, but it was
not seen in high-risk patients (85).

Bortezomib

HOVONG65 evaluated the incorporation of bortezomib in
combination with doxorubicin and dexamethasone (BAD)
compared to standard VAD (vincristine, doxorubicin, and
dexamethasone) (86). They randomized 827 patients to ei-
ther induction therapy followed by one or two cycles of
HD/ASCT. Patients in the VAD arm received thalidomide
maintenance, while patients in BAD received bortezomid
maintenance. Overall, the study showed a superior complete
remission rate (CR) and PFS for BAD, with a nonsignificant
trend for better overall survival (OS) at 6 years: 61% versus
55%.

In patients with del(17p13) BAD resulted in better PFS
(26.2mvs. 12 m, p =.02) and OS at 3 years (69% vs. 17%, p =
.02) than VAD. Among patients treated with BAD, del(17p13)
was no longer a predictor of PES or OS, while it remained a
strong predictor among VAD treated patients (p = .001 for
PFS and p = .001 for OS). Interestingly, among del(17p13)
negative patients, there was no difference in outcomes com-
paring BAD and VAD.

Thalidomide and bortezomib

Two RCT evaluated induction therapy with bortezomib con-
comitant with thalidomide/dexamethasone (BTD) compared
with thalidomide/dexamethasone (TD) (87, 89) prior to
HD/ASCT (Table 3).

Cancer Investigation
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In the first trial, patients received BTD or TD before tan-
dem HD-ASCT and followed by consolidation. Overall, a
benefit for BTD was reported with PES at 3 years of 68% ver-
sus 56% (p = .005), but with no significant differences in OS
(87). PES for BTD patients with t(4;14) was 69% compared to
74% in those without the abnormality (p = .66). The adverse
prognosis of t(4;14) was retained in TD treated patients: PFS
37% versus 63% (p = .013). Overall, post-transplant consol-
idation with the same regimen used for induction improved
CR rates and PFS. BTD consolidated patients with t(4;14)
and/or del(17p13) had a 3 years PFS of 54%, similar to that
patients without these abnormalities. TD consolidated pa-
tients had a PFS of 19% in the presence of t(4;14) (88).

In the second trial, BTD treated patients achieved, over-
all, significantly improved CR rates (35% vs. 14%) and PFS
(56.2 vs. 28.2 months) compared to TD treated patients.
Among cytogenetically defined high-risk groups which in-
cluded t(4;14) and del(17p13), BTD treated patients had sig-
nificantly improved CR rates (38% vs. 0%, p = .01) PES
at three years (23.5 months compared to 8.9 month in TD
treated patients) (89). OS was shorter in high-risk patients
regardless of the treatment assigned. In this trial, patients
received a single course of HD/ASCT. After transplantation
patients underwent a second randomization to maintenance
therapy with interferon, thalidomide, or bortezomib plus
thalidomide.

FRONTLINE THERAPY NOT INCLUDING
AUTOLOGOUS STEM CELL TRANSPLANTATION

Thalidomide

In the large MRC IX trial for patients unsuitable for trans-
plantation, 849 patients were randomized to receive CTD or
melphalan and prednisone (MP). Overall, CTD patients had
higher response rates, but no differences in PFS and OS. Stan-
dard risk patients showed a late (after 18 months) OS benefit,
which was not observed in high-risk patients (90).

Bortezomib

The VISTA trial, compared bortezomib plus melpha-
lan/prednisone (BMP) versus MP, overall no significant dif-
ferences were seen in terms of CR rates, PFS, and OS when
high-risk and standard risk patients were compared for the
entire population (91).

Bortezomib and thalidomide

In a comparison of BMP with BTD, the adverse prognosis
associated with high-risk cytogenetics was not affected by
the treatment arm. However, OS at three years in nonhy-
perdiploid patients, was 53% with BTD and 72% in BMP
treated patients (92). A second randomization assigned pa-
tients to maintenance with bortezomib/thalidomide (BT) or
bortezomib/prednisone. In high-risk patients, PFS and OS
were similar with both maintenance schemas (PFS 28 vs. 27
months, OS 55% vs. 53% at 4 years). Standard risk patients
had a nonsignificant trend of better PES (47 vs. 36 months)
and better OS (79% vs. 69% at 4 years) with BT (93). Nei-

Copyright © 2015 Taylor & Francis Group, LLC
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ther maintenance regimen was able to overcome the effect of
adverse cytogenetics.

The incorporation of thalidomide to BMP (BMP+-T) fol-
lowed by BT maintenance improved PFS compared to BMP
without maintenance (35.3 months vs. 24.8 months, p <
.001). The benefit was shown in standard risk patients (HR
0.62), but BMP+T could not improve the outcomes of high-
risk patients (HR 0.98) (94).

Lenalidomide

While lenalidomide has been shown to improve PFS in pa-
tients treated with or without transplantation (95-98), there
is limited data available to evaluate its relative impact ac-
cording to cytogenetic/FISH defined standard and high-risk
groups. Subgroup analyses from one of these trials (98)
suggest the continuous lenalidomide plus dexamethasone
does not improve PES or OS in high-risk, transplant inel-
igible patients as compared to melphalan, prednisone, and
thalidomide.

SUMMARY

In the transplant or in the conventional dose therapy settings,
patients receiving thalidomide as induction and/or mainte-
nance have a modest OS benefit which is limited to standard
risk patients, but is not seen in high-risk patients.

Transplanted patients receiving induction therapy with
bortezomib (in combination with doxorubicin or thalido-
mide), demonstrate a major impact on outcomes of high-
risk patients, improving their CR rates, PES, and OS. In at
least two trials, bortezomib was able to completely overcome
the adverse effect of high-risk cytogenetics (86, 87). It is not
clear, from the data available, if the addition of thalidomide
to bortezomib during induction therapy results in any addi-
tional benefits.

For patients treated with conventional dose therapy,
bortezomib in combination with MP or TD has not been
shown to improve the outcomes of high-risk patients (92, 93).
Maintenance with BT or BP produced similar results in high-
risk patients, with a trend for better PFS and OS with BT in
standard risk subgroups (92). Similarly, the four drug combi-
nation BMP+T with BT maintenance improved PFS of stan-
dard risk patients but not of high-risk patients (94).

Based on the available data, high-risk patients should be
treated with bortezomib-based induction therapy followed
by HD-ASCT. A recent meta-analysis shows that induction
therapy including bortezomib prior to transplantation im-
proves the outcomes in the general trial population compared
to nonbortezomib protocols (99). In our analysis, this ap-
proach has been shown to improve outcomes of high-risk
patients. Standard dose therapy with BMP, BTD, or BMP+T
primarily improved the outcomes of standard risk patients,
but not for those with adverse cytogenetics.

Genetic abnormalities evaluated by cytogenetics/FISH
have a strong prognostic value in MM. They should be in-
cluded in the evaluation of all patients at the time of diagno-
sis, as they may be able to help select the most appropriate
therapy. Cytogenetic abnormalities are currently included in
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a new staging system (100) and they will be essential to strat-
ify patients with different prognosis for specific risk-directed
therapies in future RCT.
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