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ABSTRACT

Several neurological conditions share a characteristic feature: an increase 
in intracellular calcium levels ([Ca2+]i). It has been demonstrated that calcium 
influx induces changes ranging from an increase in the expression levels of 
several genes to the activation of proteases such as calpains. Calpains are a 
family of Ca2+-dependent non-lysosomal cysteine proteases, whose substrates 
include several proteins that play critical roles in several cellular functions 
including synaptic plasticity and neuronal apoptosis. 

TrkB is a type of tyrosine related kinase receptor that can promote 
neuronal survival and differentiation upon ligand binding. It has been recently 
shown that in several neurological diseases, the level of full-length TrkB protein 
decreases before the onset of neuronal death due to one of two different 
processes: a) a reverse regulation of TrkB isoforms mRNA, or b) calpain-
mediated processing of TrkB full-length, which yields a truncated form of TrkB 
(Tc-TrkB). Because the most notorious feature of calpain proteolytic activity is 
that the products of calpain-mediated cleavage may have biological activity, 
here we review the hypotheses by which calpain-generated isoform Tc-TrkB 
may perform biological functions.
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Introduction
Neurotrophins (NT) are a set of proteins that act through high 

affinity receptors found on the cell surface. Over the past two 
decades, there has been a major increase in NT research studies, 
especially in the Central Nervous System (CNS) 9,10,25,27. NT play a 
critical role not only in the development and maintenance of the 
nervous system, but also in neuropathological disorders. It has been 
suggested that endogenous changes in NT expression can contribute 
to the development of neurological conditions. To study NT function 
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is challenging due to the different biological outcomes they 
elicit, which range from trophic, survival, or neuritogenic 
differentiation to, putatively, neuronal death 9,10,22,25,27,42,43. 
The NT, more precisely BDNF (Brain Derived Neurotrophic 
Factor), triggers signal transduction by binding to TrkB 
(Tropomyosin receptor kinase B)28,29 and p75NTR (p 75 
neurotrophins receptor) receptors.

Several TrkB receptor isoforms have been described, 
and are abundantly expressed in the brain: a full-length 
TrkB (TrkB), and the truncated isoforms TrkB-Tk. 
TrkB activation trigger different intracellular signaling 
cascades, including mitogen-activated protein kinase/
extracellular signal regulated protein kinase (MAPK/ERK), 
the phospholipase C-γ (PLC γ), and the phosphoinositol-3 
kinase (PI3K)/protein kinase B (AKT) pathways, which 
in turn induce cellular processes such as differentiation, 
proliferation and survival in different cell types9,10. 
Moreover, these physiological processes are regulated 
by different mechanisms, such as spatial and temporal 
changes in the level of TrkB ligands, the ratio between 
TrkB and TrkB-Tk, intracellular signaling pathways, and 
gene expression. Despite the fact that the biological role 
of TrkB-Tk receptor isoforms is not yet fully known, it has 
been recently associated with several functions in neurons 
and glial cells, such as the regulation of BDNF levels at the 
extracellular site, the activation of intracellular signaling 
pathways, morphological changes in neurons and glial 
cells, and dominant-negative inhibition of TrkB signaling. 
Since the function and signaling of TrkB-Tk receptor has 
been described in detail in excellent reviews6,14,23,34,36, they 
are beyond the scope of this revision.

Together TrkB and the described isoforms have recently 
been associated with several neurological conditions 
that affect the CNS, such as ischemia, Alzheimer’s disease 
(AD), and status epilepticus (SE), where excitotoxic insults 
disrupt the balance among TrkB/TrkB Tk/p75NTR ratio 
and the increase in the synthesis and release of BDNF/
proBDNF are prior events to the onset of neuronal death 
19,24,40,42,43,44,46. On one hand, this imbalance produces a 
decrease at the level of both TrkB transcripts and protein. 
On the other hand, evidence indicates that TrkB-Tk and 
p75NTR receptor levels increase due to upregulated at the 
transcriptional and translational levels, since inhibitors 
of both processes prevent the excitotoxic-induced 
upregulation observed43,44,46. Thus, it can be inferred 
that trkb mRNA splicing mechanisms may change under 
excitotoxic conditions. Even though there are increasing 
evidences supporting these findings, the biological 
consequences of the TrkB/TrkB-Tk imbalance is still a 
matter of debate19,24,40,44,46. 

Also it has been demonstrated that BDNF/proBDNF 
(BDNF immature isoform) have key roles in determine 
neuronal death once the pathology has occurred. In vivo 

results from our lab show when intra-hippocampal infusion 
of function-blocking antibodies against BDNF avoided 
the down-regulation of TrkB and prevent neuronal death 
following the SE insult. In line with this, the infusion of 
BDNF protein after SE exacerbated neuronal degeneration 
and surprisingly, inhibiting BDNF protein synthesis, due to 
the infusion of antisense oligonucleotides, induced a rapid 
decrease of BDNF protein levels, and SE-induced neuronal 
damage was prevented42. These results show that there is 
a complex interplay between the NT and their receptors 
before the onset of neuronal death. 

Calpain protease mediates the TrkB receptor 
degradation following an excitotoxic insult 

Neuronal depolarization induces an increase in 
intracellular calcium levels ([Ca2+]i), which exerts a variety 
of functions, ranging from increased expression of several 
genes to the activation of proteases such as calpains18,21,32,35. 
Calpains constitute a family of Ca2+-dependent non-
lysosomal cysteine proteases that play key roles in various 
cellular functions, including synaptic plasticity and 
neuronal apoptosis. To achieve its functions, calpain acts 
on different substrates, including cytoskeletal proteins 
(e.g. α-spectrin, neurofilaments), membrane receptors 
(e.g. NMDA receptor), and other proteases. When active, 
calpain modifies the structure and activity of their targets 
by limited proteolysis18.

Calpains have two modes of action depending on the 
[Ca2+]i found in the cytoplasm: in a physiological way and 
in pathological conditions, where there is calcium overload 
mainly by over-activation of the NMDA receptor (NMDAr), 
resulting in calpain overactivation11,32. It has been recently 
observed that, in ischemia, AD, and experimental SE 
models, a drop in TrkB level is not only due to a decrease 
at the transcriptional level. A TrkB-calpain-dependent-
processing is another mechanism that cooperates with 
the imbalance observed12,24,44,46. This proteolityc cleavage 
results in a truncated protein, Tc-TrkB, which lacks the 
tyrosine-kinase domain, and it is comparable to the 
synthesized TrkB-Tk isoform (first demonstrated by 
Vidaurre et al.44). Jeronimo-Santos et al.24 has confirmed 
these results, and established that the TrkB site for calpain-
cleavage is located between the Shc-binding site (Tyr515) 
and the TrkB kinase domain. Consequently, the Tc-TrkB 
receptor contains the Shc-binding site, whereas the 
remaining intracellular fragment (TrkB-ICD) contains the 
complete tyrosine kinase domain of TrkB receptor. These 
data indicate that the proteolytic processing triggered by 
calpain generates two TrkB-derived proteins.

Tc-TrkB increases in the dendritic and axonal 
domains before the onset of neuronal death

Degeneration of neuritic processes in neurons is an 
early event in a wide range of neurodegenerative diseases 
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as well as in other neurological conditions 4,35,48. We found 
that the neurotrophin receptor TrkB is proteolitically 
processed by calpain in the dendritic and axonal domains 
of neurons committed to die, and this constitutes an early 
step in the neuronal degenerative process12. While the 
TrkB level decreases, the Tc-TrkB concurrently increases, 
leading to a TrkB/Tc-TrkB imbalance, which we believe it 
is linked to neurodegeneration. When a specific calpain 
activity blocker agent was used, the TrkB/Tc-TrkB 
imbalance was prevented, the neuronal processes were 
protected from degeneration and an enhanced neuronal 
survival was observed. Additionally, ANA-12, a specific 
TrkB antagonist7, blocked SE-induced neuronal death. By 
the time that ANA-12 was added to the neurons in culture, 
a significant decrease in the level of TrkB had already 
occurred. Thus, we believe that the observed effect of the 
ANA-12 antagonist did not result from TrkB inhibition, 
but mostly from an effect on Tc-TrkB. Others have shown 
an increase in the synthesis of TrkB-Tk receptor following 
excitotoxic stimulation, which takes place prior to the 
onset of neuronal death24,44. However, the possibility 
that neuronal death is prevented by ANA-12 through 
inhibition of signaling pathways downstream TrkB-Tk can 
be discarded, since blocking TrkB-Tk protein synthesis did 
not affect neuronal death44. It will be important to further 
investigate the biological role of Tc-TrkB in this process. 

Tc-TrkB may acquire a biological function following 
calpain-dependent TrkB processing

Several studies show that some proteolytic products 
of calpain-mediated cleavage carry biological activity18. 
A well-known example of a calpain substrate proteolytic 
product with biological activity is the p35 protein, a 
neuron-specific activator of cyclin-dependent kinase 5 
(CDK5). When calpain is activated, p35 cleavage results 
in p25, which steadily activates CDK5, and p10 proteins, 
also biologically active30. This cyclin-dependent kinase 
has been implicated in several biological functions, 
including modulation of synaptic plasticity and hyper-
phosphorylation of Tau protein, an AD hallmark15,30,38. 
Similarly to the dual functions of CDK5, the metabotropic 
glutamate receptor mGluR1α has also the potential to be 
neuroprotective as well as to contribute to neurotoxicity. 
In an excitotoxic model, calpain mediate the proteolityc 
cleavage of the C-terminal tail of mGluR1α which impair 
its capability to induce neuroprotective effects via Akt 
activation. The cleavage of mGluR1α helps to maintain a 
positive feedback regulation in excitotoxicity (involving 
calpain and mGluR1α), which results in a pathological 
intracellular calcium increased47. In line with the latter, 
another calpain target includes the NCX3 subtype of the 
Na+-Ca2+ exchanger (NCX) whose proteolytic inactivation 
helps to maintain high cytoplasmic calcium levels3.

Several studies have shown that calpain-processed 

proteins have effects at the synaptic level by modulating 
burst firing and by modifying the localization of receptors 
in normal and pathological conditions. Calpain cleaves 
protein kinase C (PKC) which releases the active protein 
kinase M fragment (PKM) which can modulate the 
development and maintenance of burst firing, a process 
that enhances neurotransmitter release to the synaptic 
cleft31. The postsynaptic density protein 95 (PSD-95), a 
scaffold protein that clusters several receptors together, 
is also a calpain target45. When the PSD-95 is cleaved, 
the anchoring of NMDAR is modified13,33. In a Huntington 
disease model, calpain is involved in the re-localization of 
membrane receptors. In this pathological condition, calpain 
cleaves the C-terminal GluN2B subunits, resulting in the 
relocation of neuroprotective synaptic NMDA receptors to 
extrasynaptic sites16,17. In addition, the Huntingtin protein 
(Htt) fragments cleavaged by calpain can translocate to 
the nucleus, with toxic effects on the cell20. Moreover, it 
is known that cleavage of procaspase-3 by calpain leads 
to activation of caspase, which can degrade the calpain 
specific endogenous inhibitor Calpastatin, which in turn 
accelerates calpain activation5,48. 

Furthermore, as mentioned above, the calpain-
processed TrkB generates TrkB-ICD24,40. It is feasible to think 
that this fragment might also acquire biological functions, 
similarly to what happens to the above mentioned calpain-
products. Other authors have found that many tyrosine 
kinase receptors can experience proteolytic cleavage 
by γ-secretases, caspases, and/or metalloproteases, 
generating ICD fragments with cellular functions1,40. 
Moreover, the neurotrophin receptor p75NTR undergoes 
a rapid α- and γ-secretase-dependent cleavage, following 
neurotrophin-mediated Trk activation. Therefore, p75NTR 
receptor cleavage releases ICD26, which facilitates NT-Trk-
dependent Akt activation8. 

Based on all the information supporting a functional 
role of calpain-cleaved products, it would not be surprising 
to find that the TrkB-calpain-cleaved products can perform 
a biological function.

Therapeutic targeting of the TrkB receptor
In this article, after reviewing the latest knowledge 

of TrkB processing by calpain, we discuss the rationale 
underlying the selective targeting of calpain to prevent the 
Tc-TrkB mediated neuronal death. A good strategy has to 
be proposed in order to prevent the axonal and dendritic 
domain degeneration once the pathology has occurred. 
Among them to be considered is the intraperitoneal 
administration (i.p.) of a calpain activity blocker, as 
was already been demonstrated by Araujo et al.2. Using 
kainic acid (KA) as an in vivo model of SE, Araujo et al. 
demonstrated that i.p. infusion of MDL 28170, a calpain 
activity blocker that pass through the blood-brain 
barrier, avoided the extent of the lesion in the CA1 area 
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in the hippocampus of KA-injected rats. Whether the i.p. 
administration of the calpain activity blocker prevents the 
increase in the Tc-TrkB in the axonal and dendritic domain 
and thus, explain the decrease in the neurodegeneration, 
is a good hypothesis to be tested in order to develop new 
pharmacological treatment once the pathology has occurred

Another plausible therapeutic strategy to prevent 
neurodegeneration would be the inhibition of the BDNF-
protein synthesis. We already showed that this approach 
markedly decrease neuronal death after SE in vivo42. In 

line with this, others have shown that inhibiting the BDNF-
TrkB complex it is associated with a decreased in the 
epileptogenesis in SE models 37. New strategies to avoid 
neurodegeneration can be focus on TrkB processing with 
the aim of developing promising strategies to treat SE 
patients.

Concluding remarks

Recently published results indicate that physiological 
or pathological increase in [Ca2+]I induces an increase in 

Figure 1. Schematic representation model of TrkB /Tc-TrkB/TrkB-Tk dysregulation after an excitotoxic insult. A) Physiological condition. Neuronal 
depolarization induces an increase in the intracellular calcium levels ([Ca2+]i) which participate in several functions: from increasing the expression of 
several genes (among them is the trkb gene) to the activation of proteases such as calpains. B) Excitotoxic insult. An excitotoxic insult induces a neuronal 
hyper-depolarization which produce a massive increase in the ([Ca2+]i). In these conditions, calpain proteases experience a pathological activation that 
cleaves several substrates, including the TrkB receptor. This proteolityc cleavage induces a decrease in TrkB levels and increase in the Tc-TrkB. Also, another 
mechanism that contributes to the decrease in the TrkB protein levels is the change in the splicing mechanisms of the TrkB transcripts: increasing the TrkB-Tk 
mRNA levels and decreasing the TrkB mRNA levels. (a) In Jerónimo-Santos et al24, there is no change in the TrkB mRNA levels following amyloid-β peptide 
treatment. In Unsain et al.43 there is also an increase in the levels of proBDNF, BDNF and p75NTR following SE (b) and (c). C) Excitotoxic insult+Calpain inhibitor. 
Although there is an increase in the [Ca2+]I, when calpain inhibitor is added prior to, during and after the excitotoxic insult, a complete neuroprotection is 
observed 12. Xie et al.46 shows that when a calpain inhibitor is added to neuronal cultures there is an increase in the TrkB mRNA (d) and a decrease in the 
TrkB-Tk mRNA (e). Ext: Extracellular; Int: intracellular compartment.
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calpain activation, which, in turn, leads to the proteolytic 
cleavage of several substrates. The excitotoxic insult 
selectively upregulates TrkB-Tk protein level. Also, it 
simultaneously decreases TrkB level via transcriptional 
deregulation and by increasing TrkB calpain-proteolityc 
cleavage. This process results in two new isoforms: Tc-TrkB 
and TrkB-ICD. Further experiments are needed to elucidate 
whether both calpain-dependent-TrkB-cleaved products 
may acquire new biological functions.
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