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Abstract

Computer simulation modelling is an essential aid in building an integrated understanding of how different factors interact
to affect the evolutionary and population dynamics of herbicide resistance, and thus helps in predicting and managing how
agricultural systemswill beaffected. In this review,whycomputer simulationmodelling is suchan important tool and framework
for dealingwithherbicide resistance is first discussed. Thequestions related toherbicide resistance that havebeenaddressed to
date using simulationmodelling are then explained, and themodelling approaches that have beenused are discussed, focusing
first on the earlier, more general approaches, and then on some newer, more innovative approaches. How these approaches
could be further developed in the future, by drawing onmodelling techniques that are already employed in other areas, such as
individual-basedandspatially explicitmodellingapproaches, is then considered, aswell as thepossibilityofbetter representing
genetics, competition and economics, and finally the questions and issues of importance to herbicide resistance research and
management that could be addressed using these new approaches are discussed. It is concluded that it is necessary to proceed
with cautionwhen increasing the complexity ofmodels by addingnewdetails, but,with appropriate care,moredetailedmodels
will make it possible to integrate more current knowledge in order better to understand, predict and ultimately manage the
evolution of herbicide resistance.
© 2014 Society of Chemical Industry
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1 INTRODUCTION
Herbicide resistance is a serious agricultural issue that threatens
the sustainability of world food production.1–3 Hundreds of bio-
types of weeds resistant to commonly applied herbicides are now
found throughout the world.4,5 The emergence of herbicide resis-
tance is an evolutionary and ecological process, influenced by
many interacting factors; these include the chemistry and rate of
herbicides applied, other non-chemical weed management, the
particular ecological and biological traits of the weed species or
ecotype being studied, environmental conditions and the possi-
ble biochemical andmolecular mechanisms capable of conferring
effective resistance, and their underlying genetic basis. Computer
simulation modelling provides an important tool for helping to
build an integrated understanding of how these different factors
interact to affect the evolutionary andpopulationdynamics of her-
bicide resistance, and thus helps in predicting andmanaging how
agricultural systems will be affected.
In this review, the authors (1) expand on why computer sim-

ulation modelling is such an important tool and framework for
understanding, predicting and managing herbicide resistance, (2)
explain what questions related to herbicide resistance have been
addressed to date using simulation modelling, (3) discuss the
modelling approaches that have been used, focusing first on the
earlier, more general approaches, and then on some newer, more
‘cutting-edge’ approaches, (4) consider how these approaches
could be further developed in future, by drawing on modelling
techniques that are already employed in other areas, and finally
(5) discuss what new questions and issues could be addressed
using these new approaches. This review focuses on modelling

the evolution of herbicide resistance, in contrast to other recent
overviews that have taken a different or wider focus, such as
modelling the evolution of resistance to pesticides and drugs in
general,6 or modelling weed population dynamics in general.7–12

It also focuses on models that represent or simulate the dynamic
evolutionary and population processes underlying the evolution
of resistance, while recognising the value of many other types
of modelling, such as more empirical modelling of herbicide risk
assessment13–15 or economic modelling that does not explicitly
represent genetics.16–21

2 USE AND VALUE OFMODELLING
Computermodelling provides a tool for integrating current knowl-
edge and hypotheses regarding the different factors and pro-
cesses that influence evolution of resistance (Fig. 1). This can help
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Figure 1. Conceptual model illustrating the typical dynamics simulated
in a model of herbicide resistance evolution in an annual weed. The
boxes usually represent the frequencies of different genotypes in the
various weed and seedbank subpopulations and cohorts; sizes or densities
of the subpopulations may also be represented (here, three genotypes
are represented: a homozygous susceptible SS, a homozygous resistant
RR and a heterozygote SR, under the assumption of a single gene, but
any number is possible). A number of steps occurring within a year are
simulated, resulting in transitions between the variousweed and seedbank
subpopulations and cohorts (solid arrows) or mortality (dashed arrows). At
the start of thegrowing season, there exists adormant seedbank consisting
of seeds of different genotypes. One or more germination events occur,
each resulting in a proportion of the seeds becoming a weed cohort
(here, three germination events and cohorts are represented, but any
number is possible). Herbicide application results in weed mortality, with
a different mortality for different genotypes. Surviving weeds produce
new seed, with the number of new seeds influenced by competition
between weed cohorts and the crop, and the genotype of the new seeds
determined by genetic recombination between the surviving weeds. This
seed is added to the remaining dormant seedbank that has survived
within-season seed mortality to form the end-of-season seedbank. Seed
that survives out-of-season seed mortality then becomes the starting
seedbank for the next season, and thus the simulation continues, with
all these within-year processes simulated repeatedly to represent the
population and evolutionary dynamics over several years. The process of
evolution is driven by the differential survival of weeds under herbicide
treatment, so that over a number of years the proportions and numbers
of different genotypes will vary. Non-chemical weed treatments can be
included in the model at almost any place; for example, harvest seed
control techniques would result in a proportion of the seed produced
being removed and not combined with the dormant seedbank, or higher
crop sowing density might result in higher competition on the surviving
weeds and thus lower seed production. Herbicide and non-chemical
management can be assumed to be the same each year, or to vary
from year to year. Variable environmental conditions may affect any of
the processes in the model (proportion of germination for each cohort,
competition, seedmortality, herbicide efficacy, etc.), or an ‘average season’
can be assumed in each year. Typically, the dynamics is simulated over
several years, and the changing genotype frequencies and population
densities are tracked until either a set number of years is reached or
some other stopping criterion (such as weed population reaching a critical
density threshold) is reached.

in understanding and predicting herbicide resistance evolution,
and thus potentially in designing and evaluating effective proac-
tive strategies to delay or even avoid its appearance,22,23 rather
than just reactively trying to manage populations that are already
resistant.24 Modelling allows and indeed encourages herbicide
resistance to be approached from evolutionary and ecological
perspectives likely to yield more complete understanding and,
ultimately, better management outcomes.25,26 Many important

aspects of resistance topesticides, such as thenatureof underlying
mechanisms, their genetic bases and the levels of resistance they
confer, can be best studied in laboratory, glasshouse or field exper-
imentation. However, it is impossible to capture fully the long-term
and large-scale dynamics of resistance evolution in such experi-
mental systems. This is because the processes occur among mil-
lions or more usually billions of individuals, across huge areas and
over many years. Experiments or trials on these scales are likely to
be too expensive tobe feasible, take too long tobeuseful andpose
unjustifiable biosecurity risks by producing large numbers of resis-
tant individuals, but computer simulation enables safe and quick
virtual experiments to be conducted to investigate how various
management options will affect the rate of emergence of herbi-
cide resistance in large populations across large areas and long
timeframes. Computermodelling can also represent aspects of the
system that are very difficult to measure accurately in reality, such
as the frequency of rare genes and the nature of soil seed banks,
and the way these change with time. This can provide an insight
into the way these hidden factors are likely to be affected byman-
agement factors, interact with ecological factors and affect herbi-
cide efficacy and weed population sizes. Modelling also allows a
much wider range of factors and interactions to be varied than
would be possible in real experiments, giving a more complete
understanding of the causal relationships determining the way in
which resistance evolves.
It is also important to recognise the limitations of computer

modelling as a tool for understanding and particularly for predict-
ing herbicide resistance evolution. The accuracy of a simulation
model’s predictions depends on the accuracy of (1) the represen-
tation of underlying processes within the model, (2) the param-
eter values used in the model and (3) the definition of initial
conditions.27 Errors in model assumptions can lead to large errors
in predictions.28 For example, the rate at which herbicide resis-
tance evolveswill depend strongly on the initial frequency of resis-
tance alleles within the population; this initial frequency may vary
widely between different populations, and yet it is difficult accu-
rately to measure this initial (or current) frequency in a given pop-
ulation. However, even if quantitatively accurate prediction of time
to emergence of resistance is not possible because exact values for
certain parameters are not known, sensitivity analysis of parame-
ters with unknown values can be used to estimate their relative
importance, thus identifying important data gaps and helping to
prioritise further empirical research. Such sensitivity analysis may
also reveal that relative effects do not depend on the unknown
parameter values; for example, more frequent use of a herbicide
may lead to faster evolution of resistance to that herbicide for a
very wide range of initial frequencies of resistance alleles.

3 HERBICIDE RESISTANCE ISSUES
ADDRESSEDWITHMODELLING
3.1 Time to resistance
One of the first answers many managers would like a herbicide
resistancemodel to provide is how long it will take until they have
a resistance problem. Ideally, the model would be able to predict
how long it will take under the current weed management strat-
egy, and, for comparison, how long it would take under possible
alternative weed management strategies. Almost all herbicide
resistancemodels provide a prediction of ‘time to resistance’, with
some defining this in terms of a threshold frequency of resistance
within the population29,30 and others seeking a definition of more
direct relevance to the farmer, such as time until weed populations
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reach a critical level, or until herbicide efficacy falls below a certain
threshold.31,32 Modelling studies then typically look at how this
‘time to resistance’ depends on weed management, and other
ecological, biological and genetic factors • (Table 1). However it is

AQ1

defined,models have predicted that this ‘time to resistance’ is very
sensitive to parameters that are almost impossible to measure in
practice, and that may vary considerably between populations
of the same species. In particular, the initial resistance allele fre-
quency has a substantial effect on predicted time to resistance
across a rangeof differentmodels, and is likely to vary substantially
in real populations – few of which remain entirely unselected in
any case.29,33,34 Therefore, much herbicide resistance modelling
work has focused on predicting whether certain management
options are likely to increase or decrease the time to resistance in
relative terms, rather than absolute time estimates.

3.2 Rotations andmixtures
One management option often recommended to delay the evo-
lution of herbicide resistance is the use of herbicide rotations
and mixtures/combinations, and this has been a popular topic
for modelling as well (Table 1).30,32,35 ‘Combination’ strategies,
defined as strategies involving ‘multiple intragenerational killing’,
can be considered to include both the application of physical
mixtures of different herbicides and strategies such as ‘double
knockdown’ that do not necessarily involve a literal mixing of
different herbicides but still apply more than one herbicide within
each generation.35 Empirical studies have provided evidence that
mixtures/combinations may be more effective than rotations in
delaying resistance evolution through herbicide selection,36 and
modelling has supported this empirical evidence.34,35,37,38 The
issue of mixtures is growing in importance, as new crop tech-
nologies with resistance to multiple herbicides are developed.39

Positive cross-resistance, where resistance to one herbicide also
confers some resistance to another, is likely greatly to reduce the
usefulness of rotations, mixtures and multiple-herbicide-resistant
crop technologies as control measures;40 to date, this issue has
sometimes been ignored in modelling studies. Modelling has
predicted that the efficacy of rotation and mixtures will depend
on the fitness costs associated with resistance and negative
cross-resistance (where resistance to one herbicide reduces
resistance to another) between the herbicides used.32,41,42

3.3 High and low dose
Another, somewhat controversial, management issue addressed
with modelling has been the question of herbicide dose, or the
‘dose rate debate’ as it is sometimes called (Table 1).26,43,44 Models
have consistently predicted that higher selection pressure (usually
associated with higher dose) leads to faster increases in the fre-
quency of resistance alleles within a population over time when
resistance is assumed tobe conferredby a single dominant geneof
major effect (monogenic resistance).29,45 However, herbicide resis-
tance modelling has suggested that relatively low doses are likely
to lead to resistant weed problems faster when effective resis-
tance is conferred by multiple genes acting together, and any
one of these genes can only confer a partial minor level of resis-
tance (polygenic resistance).31,46 In this case, low doses tend to
allow individuals with partial levels of resistance to survive,47,48

which then cross with individuals with partial levels of resistance
conferred by other genes, producing some progeny with more
of these minor genes ‘stacked together’ and thus higher resis-
tance. This means that, over a number of years, weed populations

can evolve resistance more quickly under low doses; in combina-
tion with the lower kill rates achieved with lower herbicide rates,
this means that weed populations may increase in size consider-
ably faster than if higher doses were used. This is one case where
modelling indicates differences between resistance evolution in
weeds and other organisms, with modelling for fungicide resis-
tance indicating that low rates pose no risk of increased rates of
evolution.43 The modelling also provides an insight into why such
differencesmight be expected betweenweeds and fungi, because
sexual recombination is generally less frequent with fungi, and
fungal populations do not generally need several years to build
up populations. Modelling has also suggested that a ‘revolving
dose’ strategy of alternating relatively high doses and relatively
low doses may be effective when both polygenic and monogenic
resistance genes are present at low levels in a population; the low
doses reduce selection pressure for themonogenic resistance, and
the high doses help to stop the accumulation of polygenic resis-
tance alleles.49,50 For organisms besides weeds, when it is possible
to apply a pesticide dose for which the expression of resistance is
recessive,modelling has predicted that a strategy combining areas
of high-dose applicationswith areas of refuges (no dose)would be
effective in delaying resistance evolution,51–55 and it appears that
the strategy has been at least somewhat effective,55 even if limita-
tions of the modelling and strategy must be acknowledged.28,55

However, similar strategies in weeds have not received much
attention from modellers because of the difficulty of finding situ-
ations where the required combination of an economically viable
herbicide dose and a recessive expression of resistance exists.

3.4 Tillage
Soil cultivation has long been used as a weed control method, and
occasional strategic tillage has been recommended for managing
weeds in reduced-tillage systems,56,57 along with harvest seed
control measures.58–60 These non-chemical control methods are
promoted as ways to deal with populations that already have
resistance or to delay resistance evolution by removing the need
for some herbicide applications within the system. Modelling has
predicted that the risk of resistance evolution can also be reduced
by adding tillage to a system without removing any herbicide
applications, by gaining additional weed kill through soil distur-
bance at sowing38,61 or by burying resistant populations through
occasional strategic soil inversion (Table 1).62

3.5 Interactions betweenmanagement, genetics
and ecology
As well as looking directly at the effect of management issues on
rates of evolution of herbicide resistance rates of evolution, mod-
elling has been used to investigate how other biological, ecolog-
ical or genetic factors may influence rates of evolution, or even
how biological or genetic factors may interact with management
to affect rates of evolution (Table 1). Some of the factors that have
been considered include theunderlyinggenetic basis of resistance
(inheritance), the mating system, gene flow, fecundity, seed dor-
mancy and longevity of soil seed banks, and ecological fitness of
different resistance genotypes.32–34,45,62–65 For example, investi-
gating interactions between seed dormancy and germination and
the timing of when a herbicide is applied within a growing sea-
son in relation to other herbicides, and so which herbicides affect
which weed cohorts, can help to explain different rates of evolu-
tion of resistance.34,66 Many of these ecological/biological factors
apply specifically to weeds, as opposed to other organism types,
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justifying the development of weed-specific models. Studies have
also consideredhowbiological or genetic factorsmay interactwith
management options to influence the rate at which populations
might regress from evolved resistance and become more suscep-
tible again,67,68 and how these factors influence the ideal weed
density thresholds that should be maintained in fields.69,70

3.6 Spatial spread
Spatial spread of resistance through pollen and seed dispersal is
another issue that has been addressed with modelling (Table 1).
There has been some spatially explicit modelling of resistance
evolution dynamics that has considered the spread both within
and among fields.71–77 Modelling of the spread of resistance

Table 1. Published studies that have usedmodelling to understand and/or predict the evolution of resistance to herbicides, ordered by publication
year. The superscript next to each year is the number in the References list. For each study, the table shows whether the study explicitly tested
the effect of certain management, genetic and biological/ecological factors on the evolutionary dynamics. It also shows whether the model
used in the study had certain characteristics that would tend to increase model realism but at the expense of increased model complexity
and/or reduced generality. Management factors include herbicide rotation, herbicide mixture, mosaic, i.e. spatial heterogeneity in herbicide
application, herbicide dosage, tillage/cultivation or othermanagement options. Genetic factors include the initial frequency of resistance alleles,
the mutation frequency, dominance, the strength of resistance, the possibility of cross-resistance, the number of genes involved in resistance
and epistasis. Biological/ecological factors include fitness penalties for resistance alleles, seed dormancy and/or longevity, dispersal and/or gene
flow,outcrossing rates and initialpopulation size. Model characteristics includewhether themodel representspopulationdynamics, as opposed to
just genetic dynamics, density dependence, spatial heterogeneity andmultiple genes/loci, and also whether the model is stochastic, as opposed
to deterministic, whether it was simulated on a computer to obtain results, as opposed to being solved analytically, and whether it was explicitly
constructed to represent a specific weed species

Year Management factors Genetic factors Biological/ecological factors Model characteristics
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0292 y y y y y
0337 y y y y y y y y y
0366 y y y y y y y y y y y y
0338 y y y y y y y y y y y y y y
0473 y y y y y
0686
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genes from transgenic crops has also received considerable
attention,78–80 and this modelling has potential to inform the
modelling of the ‘natural’ emergence of resistance in weeds under
selection from herbicide treatments in the way that it represents
the flow of genes through pollen and possibly seed dispersal.

4 APPROACHES TOMODELLING THE
EVOLUTION OF RESISTANCE
4.1 Simpler approaches
Early approaches tomodelling thedynamic evolutionof resistance
usually aimed to capture the most important factors involved in
relatively simple ways (Table 1). Simpler models also tend to be
relatively general and abstract, and so they did not necessarily
contain features that were specific to herbicides and weeds, but
could also be thought of as representing other types of organ-
ism, although a few models were specifically developed to rep-
resent weeds.32,45,68,81,82 In such models, the basis of resistance
was usually assumed to be monogenic, and the gene was often
assumed to be fully dominant, leading to an assumption of just
two phenotypes – one fully susceptible and one completely resis-
tant. These models were usually based on population density, in
that their state variables represented the frequency or propor-
tions of different alleles, genotypes or phenotypes in the pop-
ulation; they thus predicted when resistance might appear, but
not what densities of resistant individuals to expect. These fre-
quencies could usually take any value between 0 and 1, meaning
that the discrete nature of real populations and genomes was not
accounted for. These models did not typically represent seasonal
variation effects or ecological aspects specific to weeds, such as
dormant seed banks persisting across seasons or staggered ger-
mination within a season resulting in a number of different weed
cohorts.

4.2 Addingmore details of the real biological system
With time, models of herbicide resistance evolution began to
include representation of more aspects of the real biological sys-
tem (Table 1). In many cases this involvedmaking themodel more
specific to weeds and herbicides (rather than general organisms
and pesticides), and in some cases specific to particular weed
species or agricultural systems (see below for examples). In other
cases, genetic details were added without ecological/biological
details that made the model specific to weeds.49,83

In the simplest approaches, actual weed population density
is largely ignored, and only the frequency of the suscepti-
ble/resistant genotypes is represented. However, in reality it is
weedpopulation sizes or densities that concern farmers, andmod-
ellers have recognised this and included representation of plant
and seed numbers, along with genotype frequencies (e.g. Renton
et al.31 and Gardner et al.49). With population densities comes the
need to consider density-dependent nature of seed production,
self-thinning and mortality, and intra- and interspecific resource
competition. These have often been represented in fairly simple
descriptive ways, such as using a hyperbolic competition function
like that developedby Firbank andWatkinson,84,85 where seedpro-
duction per unit area tends towards a fixedmaximum at high den-
sities (seeRenton et al.31 andDiggle et al.37 for examples), although
more recently resistance evolution models have been linked with
more complex crop growth simulation models that handle
the simulation of crop–weed competition with much greater
temporal and spatial resolution and biological realism.61,86,87

As mentioned, some herbicide resistance models have started
to focus quite specifically on the details of particular species, her-
bicides and systems. Such modelling may, for example, focus very
specifically on glyphosate resistance evolution in Palmer ama-
ranth (Amaranthus palmeri) in glyphosate-resistant transgenic
cotton in the southern United States88,89 or glyphosate resis-
tance evolution in awnless barnyard grass (Echinochloa colona) in
glyphosate-resistant transgenic cotton in north-east Australia.61

Herbicide resistance modelling has been applied specifically to
parasiticweeds90 and to one particular species and herbicide,91–94

and models have been based on field data for the dynamics and
relative fitness of resistant and susceptible biotypes of a particular
species, making them even more specific to the context in which
those data were collected.63,81 In some cases, this specific focus
has been achieved by linking evolutionary models with crop
models, meaning that predictions from individual runs are specific
not only to the crops and weed species but also to the soil type
and historical weather of a particular field.61,87

Asmentioned above,most earliermodels of herbicide resistance
evolution assumed amonogenic basis for resistance, following the
fact that, formost early studied cases of resistance, when a genetic
basiswas identified, itwasmonogenic. However, there is a growing
concern regarding polygenic resistance, which is more associated
with problematic cross-resistance to multiple unrelated types of
herbicide,95–97 and for which selection patterns may be different
from selection of monogenic resistance.31 When earlier resistance
modellers tackled the issue of polygenic resistance, they tended to
use a quantitative genetics approach, based on several assump-
tions, including that resistance is conferred by a large number of
unlinked genes, each of very small additive effect.98 More recently,
modellers have represented multiple genes and their interactions
more explicitly, allowing a more detailed and realistic representa-
tion of a polygenic basis for herbicide resistance,31,99,100 or other
pesticides.83,101,102 This explicit approach also allows for represen-
tation of the linkage disequilibrium between alleles that is likely
to emerge when very strong selection pressures are driving evolu-
tionary processes,83 but that is ignored in the ‘traditional’ quantita-
tive genetics approaches. Representing the genetics more explic-
itly has the advantage that initial allele frequencies, mutation fre-
quencies and fitness penalties can also be represented separately
for each resistance gene and allele; it also means that values for
these parameters need to be defined and justified.
Spatial heterogeneity is another aspect of biological reality that

has been added to some herbicide resistance models in more
recent times. When modelling herbicide resistance, spatial het-
erogeneity in weed and seed densities is likely to be important,
as is spatial heterogeneity in the frequencies of resistance alle-
les. To represent spatial heterogeneity, resistance models can take
a relatively simple and implicit approach of just adding variation
to parameters likely to vary across space, such as dose,31,101,103 or
they can represent space and variation in population density and
genetic frequencies more explicitly. Such spatially explicit models
can represent variation in space in one dimension, along a tran-
sect or gradient, or down through depths in a soil profile,62 in two
dimensions across a field or a landscape of many fields71–77,104 or
potentially in all three dimensions.
Uncertainty and stochasticity are also important aspects of her-

bicide resistance evolution. While earlier models tended to be
deterministic, more recentmodels have included random stochas-
tic processes to represent some of the uncertainty observed in real
systems. For example, when weeds are sprayed with herbicide, a
model can simulate that exactly 95% of susceptible plants will die
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(deterministic), or that each plant in the population has a 95%
chance of dying (stochastic). Stochasticity is important in resis-
tance evolution, because it often depends on relatively rare occur-
rences (gene mutations, the chance survival of an intermediate
resistant genotype, sexual reproduction resulting in two particular
complementary resistant genes coming together in one organism
to create a new strongly resistant genotype). Stochasticity can also
represent sourcesof variation that arenot explicitlymodelled, such
as plants havingdifferent sizes, and thus different chances of being
killed by a herbicide, even if having the same resistance genes.
Another source of uncertainty is basic uncertainty about howwell
model parameter values represent the real system. Understanding
the uncertainty in predictions introduced by stochastic processes
within the model and/or uncertainty in model parameter values
generally requires multiple simulation runs to produce a distri-
bution of results that represent the full range of likely outcomes
(Monte Carlo simulation).88 Another possibility is a sensitivity anal-
ysis that looks at the effect of varying each model parameter one
at a time.31,45

Another approach that has been used in herbicide resistance
modelling to some extent is individual-based modelling (IBM), as
opposed to population density approaches. IBM involves explicit
representation of the individuals within a population, along with
their individual characteristics.105–108 IBM approaches have been
used in modelling resistance in a range of specific types of organ-
ism, including insects and parasitic nematodes,53,54,83,101,109,110 and
inmore theoretical non-organism-specific studies,111 but only to a
limited extent with weeds.31

5 THE ROAD AHEAD
5.1 Individual-basedmodelling approaches
There aremany open avenues formethodological development in
herbicide resistance modelling, and many applications that could
be addressedwith these newmodels. IBM approaches are promis-
ing for a deeper understanding of resistance evolution and the
complex interactions involved because they can incorporatemore
of the biological detail and variability of real systems.106 This can
represent more of the biological variation within populations, and
particularly how various ecological and genetic traits of individu-
als may become correlated or dependent over time under certain
management regimes. This would allow, for example, a better
understanding of the complex interrelationships between genet-
ics and ecological ‘fitness penalties’ operating at different points
in the lifecycles of plants, such as reduced seed and/or pollen
production, increased mortality or diminished competitiveness
in certain conditions.112 As another example, IBM could help to
unravel some of the complex interactions between evolution
of seed dormancy and germination traits, evolution of chemical
herbicide resistance and timing of herbicide applications, and
thus help in understanding observed relationships between seed
dormancy and herbicide resistance.113–116 To date, biological
parameters in models, such as those controlling dormancy, com-
petitiveness or flowering time and thus fecundity, have usually
been assumed to be fixed, whereas in reality they are likely to
change over generations under different simulated agronomic
conditions, just like chemical resistance; IBM can help to account
for this coevolution. One caution for IBM approaches is that the
additional realism and better representation of biological com-
plexity usually come at the cost of additional model complexity,
which may make models more difficult to calibrate, verify and
analyse.105,106

5.2 Spatially explicit models
Making herbicide resistance models more spatially explicit may
also be important. The assumptions that weed populations at
the scale of a field exhibit spatially homogeneous densities and
genetic frequencies, and random mating, are clearly not realistic.
It has already been shown that the finite nature of weed popula-
tions can have real implications for model predictions, even when
modelled populations are large and not spatially differentiated;37

it is even more likely to be important when it is considered that
real weed populations of some species may be quite patchy and
have low seed dispersal. This means that the possibility for local
extinction of resistance alleles will bemuch higher than if the pop-
ulation is considered to be large and spatially homogenous. Spa-
tially explicit herbicide resistancemodelling should learn from the
rich field of spatially explicit modelling of dispersal and popula-
tion dynamics that has already been employed in a diverse range
of fields, including invasion biology, pest management, gene flow
from transgenic crops and conservation.79,80,117–122 Fortunately,
recent empirical work is already providing valuable information
on the dispersal of pollen and seeds that will help to inform
these models.123–126 Spatially explicit herbicide resistance mod-
els would make it possible to simulate, evaluate and design spa-
tially targeted weed control options, such as managing resistant
patches with different herbicides using targeted detection and
spray technologies127–131 or autonomous robotic vehicles.132 They
would alsomake it possible to understand the importance of seed
and pollen dispersal in the spread of herbicide resistance, and
help to predict the efficacy of management options based around
limiting dispersal, such as limiting seed movement through farm
equipment hygiene and crop seed screening,133 or possibly limit-
ing pollen flow by using barrier zones or spatial planning of land
use accounting for dominant winds.76

5.3 Competition
It may be worth considering the level of detail at which compe-
tition for resources between plants is represented within herbi-
cide resistance models. Plant competition, and crop–weed com-
petition in particular, has been modelled at varying levels of
biological and dynamic realism,134 including with crop growth
approaches,135 spatially explicit individual-based approaches136

and functional-structural approaches that represent the dynamic
above- and/or below-ground architecture of competing plants in
high detail.137,138 While these approaches may be overly complex
for direct inclusion in evolutionary models that represent dynam-
ics over many years, they might still have a role for informing
the representation of competition in evolutionary models, and
accounting for self-thinning and compensatory growth after her-
bicide mortality. A related issue is the representation of envi-
ronmental and weather effects in herbicide resistance models.
As mentioned, when a crop model is used to simulate competi-
tion and predict seed set, the seasonal effects of specific rainfall
and temperature patterns on mortality, competition and seed set
can be predicted, and their influence on long-term evolutionary
dynamics can be accounted for.87 Effects of seasonal variation on
seed germination timing and herbicide application efficacy may
also be important, and incorporating these within herbicide resis-
tance models should be considered.

5.4 Genetics
The representation of genetic control of resistance could be fur-
ther developed. For example, resistance models have not explic-
itly represented the processes involved in gene amplification,
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which has been shown to be an important genetic mechanism
underlying resistance evolution.49,97,139 Herbicide resistance mod-
els with more explicit representation of relatively complex poly-
genic genetic mechanisms exist, but to date accurate data to
parameterise these models have been lacking, and so the mod-
els have mostly been used to understand how different genetics
would influence the efficacy of different management options.31

However, new genomic tools and high-throughput techniques
may help to provide such information,140,141 and there are already
examples for organisms besides weeds where such information
on polygenic resistance has been obtained and incorporated into
models.101,102,142 Simulationmodels could also be used for ‘inverse
modelling’, working backwards from observed data regarding
mortality over several generations of herbicide selection in the
field or glasshouse, to identify the likely genetic bases of any
observed increase in resistance, and give insights into the evolu-
tionary history of how the resistance is likely to have evolved.More
realistic representation of resistance genetics would make it pos-
sible explicitly to represent fitness penalties related to individual
genes and alleles, mutation rates at different loci and possibly the
influence of environmental stresses and low herbicide doses on
resistance mutation frequencies and selection efficiency.143

5.5 Economics
Economic considerations have not been much addressed in
herbicide resistance evolutionary modelling, or indeed in most
modelling of resistance evolution.6 Agricultural economists have
employed relatively simple models of weed population dynam-
ics to address important economic questions regarding weed
management, but these have generally ignored herbicide resis-
tance, compared analyses with and without resistance or perhaps
used very simple models of resistance evolution that assume
a given herbicide will lose efficacy after a certain number of
applications.16–21 Similarly, weed ecologists’ incorporation of
economics into their model frameworks has usually been of the
simplest sort, analysing only basic considerations of cost. The
challenge of incorporating economic evaluation with greater bio-
logical detail so that the economic costs and benefits of different
resistance management options can be properly evaluated still
largely remains.

5.6 Advantages and disadvantages of greater detail
and realism
Incorporating greater biological detail and reality into models will
have benefits. Developing new herbicide resistance models with
more explicit, detailed and realistic representation of space, vari-
ability between individual, competition, effects of environment
and weather and genetic mechanisms will make it possible to
revisit old questions previously addressed with models. Questions
regarding herbicide rotation, mixtures, combinations, doses and
tillage can be revisited to see if previous results hold up when
processes are representedmore realistically. It will also be possible
to look more closely at how results depend on a full range of pos-
sibly influential factors, and interpret results in more meaningful
ways. For example, models may provide a certain prediction when
the genetic basis is assumed to be monogenic and dominant,
the population is assumed to be homogeneous, pollen and seed
dispersal are assumed to be infinite and mating is assumed to be
perfectly random. Butwill the predictionbe the same if the genetic
basis is assumed to be polygenic and recessive, the population
spatiality is assumed to be heterogeneous and limited dispersal

of pollen and seed and pollen competition are accounted for?
And even if resistance evolves faster in terms of allele frequencies,
does this mean that the farmer experiences faster growth in weed
populations and quicker declines in yield and profit? New models
will also make it possible to address new questions, such as the
importance of gene flow through pollen or seed dispersal, or the
feasibility of the spatially targeted resistant patch management
mentioned previously. More detailed models will make it possible
to integratemore current knowledge, fromgenetic andphysiolog-
ical mechanisms within cells to ecological processes of individual
plants, populations and communities within fields, in order better
to understand and predict and ultimately manage evolutionary
processes operating across regions and many decades, including
selection, migration, mutation and genetic drift.6

Incorporating greater biological detail and reality into models
will also have costs. Building, calibrating, verifying, validating and
analysing models costs time and money, and generally, the more
detailed amodel is, themore complex it will be, and themore time
and money it will cost. There is also a direct cost of complexity;
large complex models with many parameters are less transpar-
ent in the sense that it is less clear exactly how each parameter
interacts with every other parameter to influence model outputs.
This makes a complete analysis of a complex model difficult and
eventually impossible, which is of course true of the real-world
systems as well. For example, if the simplifying assumption is
made that resistance is conferred by a single dominant gene, the
model will include many fewer genetic parameters than if multi-
ple genes are represented explicitly and separately, and different
genes are allowed to have different effects and dominance and to
interact with varying degrees of synergism or antagonism. In the
latter case, much more testing of the effect of varying parameter
values separately and in combination will be required than in the
former case. Another issue is that, while simpler models can often
be solved analytically to provide a complete solution,45 more
complex models usually need to be computationally simulated
to obtain predictions or analyse the effect of varying parameter
values (Table 1). Therefore, virtual experiments must be carefully
planned to address questions and interactions of most interest
and concern; while time consuming and providing less complete
analysis than an analytical solution, these are still likely to bemuch
faster, cheaper and safer than real-world experiments designed
to address the same questions to the same level of generality.
Nonetheless, an infinite number of models can be constructed,
and an endless series of virtual experiments conducted, and so
part of the ongoing goal must be to work out what details and
differences really matter and where simplifications and general-
isations can be made. For example, if dynamic plant growth and
competition processes are represented at scales of hours and indi-
vidual leaves, are results obtained that are importantly different
to those obtained when plant competition is represented more
simply and empirically?65 If the spatial variation in weed density
and allele frequency across a field is modelled in explicit detail at
the scale of a square metre, are the predictions or greater insights
achieved significantly different to those achieved when assuming
thewhole field to be a homogeneousmixed population? Does the
model developed to represent evolution of resistance to a specific
herbicide in a particular weed species in a specific cropping sys-
tem in a particular region of a certain country provide important
new insights compared with a similar model developed for a
different species or herbicide or system or region? A balance must
be sought between generality and specificity, understanding that
the strength of modelling as opposed to empirical study is more
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in the direction of abstraction and generality. Rather than building
a new, very specific model for every new situation, a more general
model can be used to investigate how characteristics of different
species, herbicides, resistance genetics and agricultural systems
are likely to interact with different management options to affect
the evolution of resistance. If modelling predicts that a certain
management option is likely to be effective, even as weed com-
petitiveness, seed production, outcrossing levels and dormancy
traits are varied across a wide range of values, then it can be
concluded that there is little need empirically to identify those
species traits. Or if modelling predicts that the efficacy of another
management option is likely to depend strongly on the genetic
basis of resistance, being highly effective for monogenic resis-
tance but non-effective for polygenic, then research effort could
be focused on better ways to identify genetic bases of resistance.
A similar balance must be sought when looking at similarities and
differences between organisms of different kingdoms; modellers
of herbicide resistance should learn all they can from modellers
of resistance evolution in insects, fungi and bacteria,6,144,145 while
also recognising that there are likely to be important differences
and trying to understand what these are and what effect they
have. In this way,modellingwill continue to evolve and improve as
a tool for integrating current knowledge and hypotheses regard-
ing the different factors and processes that influence evolution of
resistance, whichwill in turn help in understanding and predicting
herbicide resistance better, and thus in designing and evaluating
effective strategies tomanage, delay or even avoid its appearance.
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