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A crucial challenge in network theory is the study of the robustness of a network when facing a 
sequence of failures. In this work, we propose a dynamical definition of network robustness based on 
Information Theory, that considers measurements of the structural changes caused by failures of the 
network’s components. Failures are defined here as a temporal process defined in a sequence. Robustness 
is then evaluated by measuring dissimilarities between topologies after each time step of the sequence, 
providing a dynamical information about the topological damage. We thoroughly analyze the efficiency 
of the method in capturing small perturbations by considering different probability distributions on 
networks. In particular, we find that distributions based on distances are more consistent in capturing 
network structural deviations, as better reflect the consequences of the failures. Theoretical examples 
and real networks are used to study the performance of this methodology.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

There are several works dealing with the concept of robust-
ness, however, there is still no consensus on a definitive defini-
tion. Robustness is usually described as the ability of the network 
to continue performing [1], or, as the capacity in maintaining its 
functionality after failures or attacks [13,14,16]. These general def-
initions are perhaps the most used in the literature, however, they 
cannot exactly grasp the complexity of the concept that network’s 
robustness could have. Some other works describe robustness as 
the capacity of the network in maintaining its efficiency in the 
presence of failures [11,12]. In some sense, this definition provides 
more information about the network’s topological structure, as its 
efficiency depends on the network’s shortest path lengths [17].

The study of how robust a network is when facing random 
failures or targeted attacks is a major challenge in network the-
ory. Several methodologies have been proposed to measure net-
work robustness. Approaches based on information routing [4,24,
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25], structural controllability [19,23] or in the proposal of a more 
destructive attack strategy in networks [3,22] can be found in the 
literature; being the most popular those based on percolation the-
ory [1,7,9], and on the size of the biggest connected component 
(BC) [2,15,16,26]. Although these measures showed to be useful in 
many cases, they are not as sensitive as they should, to the detec-
tion of failures that do not disconnect the network or that do not 
modify its diameter. Depending on the network structure, it is pos-
sible to attack great part of it, keeping these measures blind to the 
changes.

In this work, we propose a measure for network robustness 
based on the Jensen–Shannon divergence, an Information Theory 
quantifier that already showed to be very effective in measur-
ing small topological changes in a network [8,27,28]. This method 
considers failures occurring in a temporal sequence capturing, in 
some sense, the dynamics of the role of the remaining links af-
ter each single failure. The Jensen–Shannon divergence quantifies 
the topological damage of each time step due to failures, and the 
robustness measure provides the cumulative information of these 
sequential topological damages. It is worth noticing that this ap-
proach does not consider the consequences of the dynamical pro-
cess operating through the network.
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2. Methodology

Quantification of network robustness could be thought as the 
distance that a given topology is apart from itself after a failure. 
We assume that the robustness value ranges from 0, the greatest 
variation, to 1, unchanged characteristics. In other words, a higher 
robustness value implies in smaller structural changes. In this work 
we consider a link failure, its removal, and a node failure in the 
removal of all it incident links.

Let G be a network defined by a set V (G) of N nodes, a 
set E(G) of M links and a set W (E(G)) containing the edges 
strengths. A network failure event f is defined as the removal of 
a subset of edges f ⊂ E(G). A time-ordered sequence of failures 
F = { ft1 , ft2 , . . . , ftn } in G can be interpreted as a sequence of 
the resulting networks after each event (Gti )i∈{0, 1,...,n} such that 
Gt0 = G and Gti is the network obtained after the failure fti in 
Gti−1 . For simplicity, here we consider only discrete time intervals 
given by ti = i.

Considering the set NF of all possible sequences of failures 
in a network G , a robustness function with respect to G is a function 
R: NF → [0, 1]. The distance between two networks is computed 
as the distance between probability distributions used to charac-
terize them. Without loss of generality, discrete distributions will 
be considered henceforth.

The Jensen–Shannon divergence between two probability distri-
butions P and Q is defined as the Shannon entropy of the average 
minus the average of the entropies. This measure was proven to 
be the square of a metric between probability distributions [18], 
bounded by 1, and defined as:

J H (P , Q ) = H

(
P + Q

2

)
− H(P ) + H(Q )

2
,

being H(P ) = − 
∑

i pi log2 pi , the entropy that measures the 
amount of uncertainty in a probability distribution. Readers are 
referred to the Supplementary Information material (SI) for a dis-
cussion on the continuous case.

It is possible then, to define the robustness of G , for any given 
sequence of n failures (Gt)t∈{1, 2,...,n} and probability distribution P
as:

R P (G|(Gt)t∈{1, 2,...,n}) =
n∏

t=1

[
1 −J H (P (Gt), P (Gt−1))

]
, (1)

being G0 = G .
A more suitable form of equation (1) can be obtained via recur-

rence relation:

R P (G|(Gt)t∈{1, 2,...,n}) =
n∏

t=1

R P (Gt−1|Gt), (2)

in which, for each time step, R P (Gt−1|Gt) indicates how affected 
the topology of the network Gt−1 is after a single failure resulting 
in Gt . The robustness function depends on the network’s topol-
ogy, and also on the sequence of failures. The same link possesses 
different importance (effect) in the topology, depending on its po-
sition in the failure sequence. The use of the product of the tem-
poral fluctuations (R P (Gt−1|Gt)) allows us to have a perception of 
the temporal damage due the sequence of failures.

It is important to notice that the computation of the network 
robustness, when defined as in equation (1) could consider any 
probability distribution able to represent features of the network. 
This work specifically considers the degree distribution, commonly 
used to characterize network’s structures, and the distance distri-
bution that contains rich information about the graph structure. 
The degree and distance distributions are here defined for un-
weighted and undirected networks. In Section I of the SI readers 
can find a discussion other network robustness measurements and 
in section VI the analysis of a directed and weighted network is 
performed.

Given a node i, its degree, represented by ki , is the number of 
edges incident to it. Then, the degree distribution Pdeg(k) is the frac-
tion of nodes with degree k. The distance from the node i to node 
j, di, j , is the length of the shortest path from i to j. If there is 
no such path from i to j, di, j equals ∞. Then, the distance distri-
bution Pδ(d) is the fraction of pairs of nodes at distance d. Both 
degree and distance distributions are discrete and defined on the 
sets {0, 1, . . . , N − 1} and {1, 2, . . . , N − 1, ∞}, respectively.

3. Discussions and computational experiments

With the aim of comparing the performance of the methodol-
ogy based on R Pdeg and R Pδ with commonly used methods based 
on the biggest connected component (Rbc ) and percolation (Rπd ), 
we consider the deletion of a single link on a complete graph with 
N nodes, the most robust unweighted and undirected graph.

Rbc is obtained by computing the fraction of nodes belonging 
to the biggest connected component. In this case, Rbc does not 
notice the removal of any link, as no disconnection is achieved. It 
is possible to strategically remove N2/2 −2N +1 links, leaving just 
the minimum spanning tree, where robustness measures based on 
the biggest connected component remain blind to these attacks.

Percolation based measures correlate the robustness value of 
the network with the critical percolation threshold and can be 
computed in several ways. One of the most common methods 
depends on the number of links removed until increasing the di-
ameter of the network. Rπd indicates the variation of the original 
diameter d0 with respect to diameter d after a sequence of failures, 
computed by Rπd = d0/d.

In the case of the complete graph, the deletion of a single link 
increases the network diameter in one unit, however, after the first 
attack Rπd may become unable to detect subsequent events. In 
order to increase the network’s diameter in one more unit, the 
removal of N − 2 specific links are needed.

The proposed robustness measure is able to detect the removal 
of any single link of the network, independently of which proba-
bility distribution (Pdeg , Pδ) is evaluated. Values for R Pdeg and R Pδ

can be then, easily computed as functions of N . The removal of a 
single link in a complete graph with 106 nodes, implies in changes 
of the order of 10−6 for R Pdeg and 10−13 for R Pδ . For a complete 
graph of N = 107, changes are of the order of 10−7 for R Pdeg and 
10−15 for R Pδ .

Among the measures here considered, only R Pdeg and R Pδ

showed to be capable of capturing the removal of any single link, 
showing a gradual decrease in the robustness values, as more links 
are removed from the network. This could be of relevance in situ-
ations in which it is necessary to plan the inclusion of new links 
to improve the robustness of the network. Methodologies based on 
the size of the biggest connected component, or on the percolation 
threshold, are not able to properly guide in this purpose. It is im-
portant to point out, that the robustness measure here proposed, 
depends not only on the network topology but on the sequence of 
failures over time, aiming to quantify the vulnerability of a given 
structure under a series of deterministic or stochastic failures. The 
process of fixing failures cannot be measured in the same way, but 
the degree and distance probability distributions seem to be ade-
quate to this purpose.

There are interesting differences between Pdeg and Pδ . The 
computational complexity to obtain the degree distribution is lin-
ear, plus a constant cost to update it, after any link removal. The 
best known algorithm for obtaining Pδ requires O(N2.376) in time 
complexity [29], and the computational cost of the PDF update 
depends on the link removed. However new algorithms as the 
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Edge removed R Pδ
R Pdeg Rbc Rπd

�i 0.447 0.862 0.500 0.000
� j 0.943 0.922 1.000 0.750
�r 0.998 0.857 1.000 1.000

Fig. 1. Computation of the structural robustness for three different single edge re-
moval: �i , � j and �r , respectively.

ANF or HyperANF (algorithms based on HyperLogLog counters) of-
fer an extremely fast and precise approach [5,6,10,21], obtaining 
very good approximations of the distance probability distribution 
for graphs with millions of nodes in a few seconds. In the SI read-
ers can find a table with the computational complexity of the most 
common methods.

Another important comparison is the information that can be 
assessed from both distributions, and their correlation with topo-
logical structures. The network’s average degree, mean degree and 
the minimum and maximum degree are immediately obtained 
from the degree distribution. The network’s efficiency, diameter, 
average path length, fraction of disconnected pairs of nodes and 
other distance features are easily obtained from the distance dis-
tribution.

Fig. 1 shows a simple network structure to analyze the corre-
lation of the robustness values with different topological changes. 
Individual removal of links �i , � j and �r are performed. Rbc only 
detects the disconnection of the biggest connected component, be-
ing not sensitive to the removal of � j and �r . Rπd detects the 
removal of � j and �i , but fails in capturing the removal of �r , 
as there is no modification in the diameter. The R Pdeg detects 
every single failure, however, its value does not properly reflect 
the network’s disconnection (�i ). The measure based on the dis-
tance distribution (R Pδ ) captures, in a more appropriate way, each 
of the above-mentioned network failures, especially those aspects 
concerning disconnections on a connected network. This example 
captures important advantages and disadvantages of each robust-
ness measure. In the SI, other quantifiers to measure robustness 
are also evaluated. However, the use of the distance distribution 
shows to be the most adequate for this analysis.

Let us now analyze two sequences of failures considering �i

and � j . If link �i fails at instant t = 1 and link � j fails at instant 
t = 2, R Pδ = 0.4377. Now, if the sequence is inverted considering 
link � j failing at instant t = 1 and link �i failing at instant t = 2, 
R Pδ = 0.4564. This example depicts how the roles and topologi-
cal importance of the remaining links after a failure are reflected 
by R Pδ .

We test the proposed methodology on several real networks, 
nevertheless, only the results for two of them are depicted in the 
main text, the Dolphin Social Network [20] and the Western States 
Power Grid of the United States network [30]. Readers are referred 
to the SI section V for applications on other networks.

The Dolphin network is an undirected social network of bot-
tlenose dolphins (genus Tursiops). The nodes are the bottlenose 
dolphins of a community from New Zealand, where an edge indi-
cates a frequent association between dolphin pairs occurring more 
often than expected by chance [20]. The dolphins were observed 
between 1994 and 2001. It presents N = 62, M = 159, an average 
degree of 5.13, an average path length of 3.357, and a clustering 
coefficient of 0.258.
The Power Grid Network is the undirected and unweighted rep-
resentation of the topology of the Western States Power Grid of the 
United States, compiled by Duncan Watts and Steven Strogatz [30]. 
It presents, N = 4941, M = 6594, an average degree of 2.67, an 
average path length of 18.99, and a clustering coefficient of 0.103.

In both cases, at each time step a single link is randomly re-
moved until the global disconnection of approximately 10% of 
their links. Thirty independent experiments were performed and, 
at each time step, the robustness measure for each experiment is 
computed. Fig. 2 depicts the composition of violin plots of the ro-
bustness value, where Rm

P indicates the minimum robustness value 
found at each time step.

It is possible to see from Figs. 2(a) and 2(c) that the robustness 
measure computed from the degree distribution shows a smoother 
behavior, as it is unable to detect cluster disconnections. This is 
not the case for the distance distribution, in which the fraction of 
disconnected pairs of nodes is detected (see Figs. 2(b) and 2(d)). 
The large decrease in the R Pδ values usually represents cluster dis-
connections from the network. As we are analyzing average values, 
the disconnection may occur in a fraction of the thirty indepen-
dent experiments only.

The large variability of single robustness values for the Dol-
phin network reflects the extent of the damage that certain failures 
can cause, showing the Dolphin network more susceptible to ran-
dom failures than the US Power Grid. The robustness measures, 
in particular those computed through the distance distributions, 
Figs. 2(b) and 2(d) also show big leaps when the link removal is 
around 6% and 9% for Dolphin and 3% and 6% for the Power Grid, 
indicating network’s disconnections.

Fig. 3 compares the Rm
P values with two sequences of fail-

ures for each experiment; the sequences presenting the lowest 
robustness value at the end of the attack (R Pδ (16) for Dolphin 
and R Pδ (660) for Power Grid) and the sequences with the low-
est robustness value at the first time step (R Pδ (1)). Note that the 
sequences of failures resulting in lower robustness values are not 
the most efficient in destroying the network at the beginning of 
the process. This behavior occurs because the robustness mea-
sure provides cumulative information about the evolution of the 
state of the network (see Equation (2)). A small R P (Gt |Gt−1) value 
indicates that, at time t , the failure of certain links is critical, gen-
erating bigger changes in the topology.

This methodology could also be applied to detect critical ele-
ments, such as the nodes and links in the US power grid network 
that, when individually removed, cause a major disturbance in the 
network’s structure. Fig. 4 shows the 10 most critical links and 
nodes that produce the largest robustness values variation (see 
table in Fig. 4). Critical elements for US power grid network identi-
fied by R Pdeg , as well as results for Dolphin network, can be found 
in SI; cf. Figs. S3–S5.

The knowledge of critical elements is of great importance to 
plan strategies either to protect or to efficiently attack networks. 
In both scenarios, the knowledge about how the network continues 
to perform after failures is of paramount importance. It is interest-
ing noticing that the problem of finding the best sequence of links 
to destroy the network can be solved through combinatorial op-
timization approaches. Readers are referred to SI, section VI for a 
computational experiment considering targeted attacks in two di-
rected and weighted real networks.

4. Final remarks

We propose a novel methodology to measure the robustness of 
a network to component failures or targeted attacks. This mathe-
matical formulation is based on the consideration that the network 
robustness is a measure related to the distance that a given topol-
ogy is apart from itself after a sequence of failures, rather that a 
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Fig. 2. Robustness measures under random failures for Dolphin and Power Grid networks. At each time step, a random edge is disconnected from the network and R Pdeg , R Pδ

functions are computed. The experiment is independently executed 30 times. Results for the Dolphin networks are depicted in (a) R P deg and (b) R Pδ
. Results for the Power 

Grid network are presented in (c) R Pdeg and (d) R Pδ
. In all cases, at each time step, the minimum robustness values are also indicated by Rm

P .

Fig. 3. Evolution of the R Pδ
of two different sequences of failures: the sequence that ends with the lowest robustness value, R Pδ

(16) and R Pδ
(660), and the sequence in 

which the first removal is most effective, R Pδ
(1). In both cases, at each time step, the minimum robustness values are also indicated by Rm

Pδ
. (a) Dolphin network and (b) US 

Power Grid network.
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Fig. 4. Detection of the ten percent of the most critical links and nodes, considering R Pδ
over the Western States Power Grid of the United States network. Wider nodes (red 

in the web version) represent the fraction of 10 of network’s vertices such that its single disconnection causes a big reduction on the R Pδ
value. Wider links (blue in the web 

version) represent the fraction of 10 of network’s edges such that its single disconnection causes a big reduction on the R Pδ
value. The table shows the robustness values of 

the top 10 critical network elements.
single characteristic of the topology. This sequence is defined as a 
time dependent process in which, a subset of links is disconnected 
at each time step. The method provides a dynamic robustness pro-
file that shows the response of the network’s topology to each 
event, quantifying the vulnerability of these intermediate topolo-
gies.

Although the methodology is comprehensive enough to be used 
with different probability distributions, the use of distances shows 
to be more consistent in capturing network structural deviations, 
in the sense that their values are correlated with the consequences 
of the failures in the network topology. Different from the meth-
ods found in the literature, the method can efficiently work with 
disconnections, as the distance PDF is able to acknowledge the 
fraction of disconnected pairs of nodes. Furthermore, it is able to 
detect all changes, including those perceived by Rbc and Rπd , re-
sulting in a more general approach.
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A crucial challenge in network theory is the study of the robustness of a network when facing a
sequence of failures. In this work, we propose a dynamical definition of network robustness based
on Information Theory, that considers measurements of the structural changes caused by failures of
the network’s components. Failures are defined here, as a temporal process defined in a sequence.
Robustness is then evaluated by measuring dissimilarities between topologies after each time step
of the sequence, providing a dynamical information about the topological damage. We thoroughly
analyze the efficiency of the method in capturing small perturbations by considering different prob-
ability distributions on networks. In particular, we find that distributions based on distances are
more consistent in capturing network structural deviations, as better reflects the consequences of
the failures. Theoretical examples and real networks are used to study the performance of this
methodology.

PACS numbers: 89.75.-k,89.75.Fb, 89.70.Cf

I. MEASUREMENTS ON COMPLEX NETWORKS

A. Classical complex networks measurements

There are several measures to characterize networks [1, 4] and, many of them, are important to deal with the
network robustness problem [3]. Here, we give a brief definition of measures of connectivity, distances, betweenness,
clustering and spectral analysis.

Given a network G = (V (G), E(G)), being V (G) and E(G) sets of vertices and edges, respectively, we denote by
BC(G) the size of the biggest connected component of G. For any two vertices i, j ∈ V (G), the distance d(i, j) is
the length of the shortest path between i and j and, if there is no path between i and j, d(i, j) = ∞. The network
diameter, d, is the maximum over the set {d(i, j) | i, j ∈ V (G)} and the average path length (apl):

apl =
2

|V (G)|(|V (G)| − 1)

∑
x∈Dfin

x.

being Dfin = {d(i, j) | i, j ∈ V (G) and d(i, j) <∞}.
The closeness centrality measure of a vertex i ∈ V (G) is the sum of the inverse of all pairs of distances from i:

Cl(i) =
∑
j, j 6=i

1

d(i, j)

∗Electronic address: martin.ravetti@dep.ufmg.br
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The efficiency of a network (E) is the average of the inverse of all pairs of distances:

E =

∑
i Cl(i)

|V (G)|(|V (G)| − 1)
.

The clustering coefficient (C) characterizes the presence of triangles in the network and is given by the fraction
between the number of triangles and the number of connected triples present in the network. Thus, a complete graph
possess C = 1 and, a tree graph, C = 0. The vertex clustering coefficient, C(i), is given by:

C(i) =
3#Delta(i)

#e(i)
,

where, #Delta(i) is the number of triangles involving vertex i and #3(i) is the number of connected triples having i
as a central vertex.

The betweenness centrality quantifies the importance of an element (node or edge) in terms of interactions via
the shortest paths among them. For a vertex v ∈ V (G) or an edge e ∈ E(G) the betweenness centrality is defined,
respectively, by:

Bv =
∑

i 6=j∈V (G)

n(i, j, x)

2n(i, j)
Be =

∑
i 6=j∈E(G)

n(i, j, e)

2n(i, j)
,

where, n(i, j) is the number of shortest paths connecting i and j and n(i, j, x) is the number of shortest paths
connecting i and j passing through x. The same holds for e. Here, we denote by Bmax

v = max{Bv |v ∈ V (G)},
Bmax
e = max{Be |e ∈ E(G)} and Bav

v and Bav
e the average of the sets {Bv |v ∈ V (G)} and {Be |v ∈ E(G)},

respectively.
The eigenvector centrality of a vertex i is the i-th position of the leading eigenvector of the graph adjacency matrix.
The second smallest eigenvalue of the Laplacian matrix (see [2] for a deeper discussion on the topic) is called

algebraic connectivity, λ, and is related to network connectivity.
From the computational complexity point of view, Table I depicts the algorithm space/time complexity of some of

the above-mentioned measures. For a deeper discussion on the topic readers are referred to [5]. Table II shows how
these measures capture the individual removal of links li , lj and lr in Figure 2 in the main body of the paper.

TABLE I: Algorithm Space/Time Complexity

Algorithm Space Time
Shortest path Dijkstra O(|V |2) O(|V ||E|log|E|+ |V |)

Shortest Path (unweighted network) O(|V |2) O(|V |2 + |E||V |)
Average Path Length - O(|V ||E|)

Diameter - O(|V ||E|)
Closeness Centrality O(|V |) O(|V ||E|)

Betweenness Centrality O(|V |) O(|V ||E|)
Edge Betweenness O(|V |) O(|V ||E|)

Eigenvector Centrality O(|V |) O(|V |)
Clustering coefficient O(|V |) O(|V | × av. degree)

TABLE II: Individual removal of links li, lj and lr in Figure 2 in the main body of the paper.

BC d apl C Bmax
v Bavv Bmax

e Bave λ E
Original 8 3 1.86 0.8 12 3 16 4 0.35 1.36

li 4 ∞ 1 1 0 0 1 1 0 0.86
lj 8 4 2.04 0.72 12 3.63 16 4.75 0.32 1.29
lr 8 3 1.89 0.69 12.5 3.13 16 4.42 0.35 1.32



3

B. Stochastic Measures

In terms of Information Theory quantifiers, given a network G and a set of measurements M on G, a stochastic
measure associated to G via M is a probability distribution (histogram) associated with M. Readers should refer
to [6] for a deeper discussion on the topic.

In this manuscript, we consider that a stochastic measure is obtained by classical positive measurements computed
over each network vertex or edge. Thus, for example, if Bv is the betweenness centrality of the vertex v ∈ V (G) =
{1, 2, . . . , N}, we can associate a probability distribution defined on {1, 2, . . . , N + 1} given by

Pv(G) =

{
Bv∑

v∈V (G)
Bv
, if

∑
v∈V (G)Bv > 0

0, otherwise
for all v 6= N + 1

PN+1(G) = 1−
∑
v∈V (G) Pv(G)

Given a stochastic measure, we use the Robustness measure, Equation (1) in the main text, to quantify how different
their topologies are from each other. Table III shows how these measures capture the individual removal of links li,
lj and lr from the network depicted in Figure 2 in the main body, considering four stochastic measures related to,
clustering coefficient, betweenness, closeness and eigenvector centrality.

TABLE III: Network Robustness of Figure 2 in the main body of the paper considering the individual removal of links li, lj
and lr for stochastic measures related to vertex betweenness, closeness, eigenvector and clustering coefficient.

Betweenness closeness Eigenvector Clustering
li 0 0.9958704 0.6870344 0.8774438
lj 0.9079178 0.9987776 0.9640551 0.9394804
lr 0.9898528 0.9998521 0.9763837 0.9636882

II. RANDOM FAILURE EXPERIMENT - CLASSICAL ROBUSTNESS MEASURES

In both cases (US Power Grid and Dolphin), 10% of their links were randomly removed and the fractional size of the
giant component, the diameter of the giant component, network efficiency and clustering coefficient were computed.
For each case, thirty independent experiments were performed, and Figures 1 and 2 depict the outcomes for Dolphin
and US Power Grid networks, respectively.

III. CRITICAL NODES OF DOLPHIN AND POWER GRID NETWORKS

US Power Grid - Single Attack for RPdeg : Figure 3 shows the detection of the ten most critical links and
nodes, considering RPdeg for the western States Power Grid of the United States network.
Dolphin - Single Attack: Figures 4 and 5 show the detection of the ten percent of the most critical links and nodes,
considering RPdeg and RPδ , respectively, in the Dolphin network.

IV. CONTINUOUS DISTRIBUTIONS

Let P, Q and µ probability distributions on a probability space (X,A) such that P and Q are absolutely continuous
with respect to µ. The Jensen-Shannon divergence between P and Q is given by

JH(P,Q) = H

(
P +Q

2

)
− H(P ) +H(Q)

2
,

being the Shannon entropy

H(P ) = −
∫
X

p(x)log2(p(x))dµ(x)
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FIG. 1: Random failure experiment in the Dolphin network. Composition of violin plots for (a) fractional size of the giant
component, (b) the diameter of the giant component, (c) network efficiency and (d) clustering coefficient with the minimum
obtained value of each measure among 30 independent experiments.

Here, we repeat the computation of the random attack experiment considering continuous the distribution of the
node betweenness centrality, Pb. Figure 6 depicts the outcomes.

V. ROBUSTNESS OF REAL NETWORKS - A RANDOM FAILURE EXPERIMENT

Here we present a random failure experiment performed on real networks. At each time step, 1% of the original
links are randomly removed until the global disconnection of approximately 10% of their links. Thirty independent
experiments were performed and the robustness measure for each experiment was computed considering the distance,
degree and stochastic measures given by the clustering coefficient, betweenness, closeness and eigenvector centrality.
All networks here presented are freely available at The Koblenz Network Collection [7]. Descriptions can also be found
at the Koblenz website (http://konect.uni-koblenz.de/). Figures 7-11 depict the outcomes.

CAIDA: This is the undirected network of autonomous systems of the Internet connected with each other from
the CAIDA project, collected in 2007. Nodes are autonomous systems (AS), and edges denote communication [7, 8].
It contains 26, 475 nodes, 53, 381 edges, clustering coefficient 0.007318732, average path length 3.875647 and diameter
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FIG. 2: Random failure experiment in the US Power Grid network. Composition of violin plots for (a) fractional size of
the giant component, (b) the diameter of the giant component, (c) network efficiency and (d) clustering coefficient with the
minimum obtained value of each measure among 30 independent experiments.

17. See Figure 7.
PGP: This is the interaction network of users of the Pretty Good Privacy (PGP) algorithm. The network contains

only the giant connected component of the network [7, 9]. It contains 10, 680 nodes, 24, 316 edges, clustering coefficient
0.378024687, average path length 7.48554 and diameter 24. See Figure 8.

HOMO SAPIENS: This is a network of protein-protein interactions in the species Homo sapiens, i.e., in Humans.
The data is curated by the Reactome project, an open online database of biological pathways [7, 20]. It contains 6.229
nodes, 146160 edges, clustering coefficient 0.6055493, average path length 4.213577 and diameter 24. See Figure 9.

EGO-FACEBOOK: This network contains Facebook user-user friendships. A node represents a user. An edge
indicates that two users are friends [7, 21]. It contains 2, 888 nodes, 2, 981 edges, clustering coefficient 0.0003593803,
average path length 3.867421 and diameter 9. See Figure 10.

ASTROPH: This is the collaboration graph of authors of scientific papers from the arXiv’s Astrophysics (astro-ph)
section. An edge between two authors represents a common publication [7, 8]. It contains 18771 nodes, 198050 edges,
clustering coefficient 0.3180016, average path length 4.193988 and diameter 14. See Figure 11.
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FIG. 3: Detection of ten percent of the most critical links and nodes, considering RPdeg in the western States Power Grid of
the United States network. Red nodes represent the fraction of 10% of network’s vertices such that, its single disconnection
causes a big reduction of the RPdeg value. Blue links represent the fraction of 10% of network’s edges such that, its single
disconnection causes a big reduction of the RPdeg value. The table shows the robustness values of the top 10 critical network
elements.

FIG. 4: Detection of the ten percent of the most critical links and nodes, considering RPdeg in the Dolphin network. Red nodes
represent the fraction of 10% of network’s vertices such that, its single disconnection causes a big reduction of the RPdeg value.
Blue links represent the fraction of 10% of network’s edges such that, its single disconnection causes a big reduction of the
RPdeg value. The table shows the robustness values of the top 10 critical network elements.
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FIG. 5: Detection of the ten percent of the most critical links and nodes, considering RPδ in the Dolphin network. Red nodes
represent the fraction of 10% of network’s vertices such that, its single disconnection causes a big reduction of the RPδ value.
Blue links represent the fraction of 10% of network’s edges such that, its single disconnection causes a big reduction of the RPδ
value. The table shows the robustness values of the top 10 critical network elements.

VI. WEIGHTED AND DIRECTED NETWORKS

Weighted networks has been the subject of interest of the scientific community in recent years because most real
networks are represented not only by the connection among vertices but also by the strength of these connections.
Several measures such as degree, distances between vertices, betweenness, closeness among others has been generalized
to such cases [24]. In particular, Newman [23] transformed the weight, in a collaboration network, into costs by
inverting them and computing shortest paths between pairs of vertices but, there exists several others distance
measurements in networks (see [22] for a deeper discussion on the topic).

Regarding the degree of a vertex in a weighted network, following [24] it is possible to define a degree centrality
measure considering both degree (kv) and weight (sv) by relating them with a tuning parameter α as

Cα(v) = k1−αv sαv

and, thus if α = 0 the centrality is given only by the degree centrality (the weights are forgotten). By setting α = 1
the centrality is given by the total vertex weight (the connections are forgotten).

This methodology can be extended to directed networks as follows:

Cinα (v) = (kinv )1−α(sinv )α and Coutα (v) = (koutv )1−α(soutv )α (1)

being Cinα (v) and Coutα (v) the centralities related to the in and out degrees, respectively.
In order to exemplify our methodology, two real networks were analyzed: Florida ecosystem wet and Florida

ecosystem dry. Both networks contains the carbon exchanges in the cypress wetlands of South Florida during the wet
and dry seasons, respectively. Nodes represent taxa and an edge denotes that a taxon uses another taxon as food
with a given trophic factor (feeding level) [7, 25]. The networks possess 128 vertices. The experiment consists in the
attack of the most central nodes of the network given by Equation (1) for a given α. In the beginning of the process
the centralities are computed and the sequence of the attack is determined. At each time step, the most central vertex
is disconnected from the network until its the complete disconnection. The robustness is computed via stochastic
measure related with the betweenness centrality distribution, where distances were computed via costs given by the
inverse of the weights. Figure 12 depicts the outcomes.

From Figure 12(C) it is possible to see that when 10% of the nodes are disconnected, for α = 0 (without considering
edges weights) the most efficient strategy to attack the network is given by the sequence of the most central in-degree
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FIG. 6: Robustness measures considering the node betweenness centrality distribution under random failures in the Dolphin
and Power Grid networks. At each time step, a random edge is disconnected from the network and RPb function is computed.
The experiment is independently executed 30 times and the violin plots are presented for (a) for Dolphin and (c) for US
Power Grid. (b) and (d) also show a comparison between two different attacks: one most effective to destroy the network at the
beggining of the process, RPb(1), and the other at the end (RPb(16) for Dolphin and RPb(660) for US Power Grid, respectively).
In all cases, at each time step, the minimum robustness values are also indicated by RmP .

nodes in both dry and wet networks but the opposite occurs for α = 0.4, for example. The minimum robustness
measure for both networks is achieved for α = 0.2 and in-attack strategy. From Figure 12(D) it is possible to see that
when 50% of the nodes are disconnected, for α = 0 (without considering edges weights) the most efficient strategy to
attack the network is given by the sequence of the most central out-degree nodes in both dry and wet networks but
the opposite occurs for α = 0.3, for example. The minimum robustness measure for both networks is achieved for
α = 0.1 and out-attack strategy differently when only 10% of the nodes are disconnected.
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FIG. 7: Violin plots for robustness measures under random failures for CAIDA network considering: the distance distribution
(A.), the degree distribution (B.), and stochastic measures related to clustering coefficient (C.), betweenness (D.), closeness (E.)
and eigenvector centrality (F.). At each time step, 1% of the original links are randomly removed until the global disconnection
of approximately 10% of their links.

FIG. 8: Violin plots for robustness measures under random failures for PGP network considering: the distance distribution
(A.), the degree distribution (B.), and stochastic measures related to clustering coefficient (C.), betweenness (D.), closeness (E.)
and eigenvector centrality (F.). At each time step, 1% of the original links are randomly removed until the global disconnection
of approximately 10% of their links.
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FIG. 9: Violin plots for robustness measures under random failures for HOMO SAPIENS network considering: the distance
distribution (A.), the degree distribution (B.), and stochastic measures related to clustering coefficient (C.), betweenness (D.),
closeness (E.) and eigenvector centrality (F.). At each time step, 1% of the original links are randomly removed until the global
disconnection of approximately 10% of their links.

FIG. 10: Violin plots for robustness measures under random failures for EGO-FACEBOOK network considering: the distance
distribution (A.), the degree distribution (B.), and stochastic measures related to clustering coefficient (C.), betweenness (D.),
closeness (E.) and eigenvector centrality (F.). At each time step, 1% of the original links are randomly removed until the global
disconnection of approximately 10% of their links.
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FIG. 11: Violin plots for robustness measures under random failures for ASTROPH network considering: the distance dis-
tribution (A.), the degree distribution (B.), and stochastic measures related to clustering coefficient (C.), betweenness (D.),
closeness (E.) and eigenvector centrality (F.). At each time step, 1% of the original links are randomly removed until the global
disconnection of approximately 10% of their links.
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[10] R. Guimerà and L. Danon and A. DÍaz-Guilera and F. Giralt, and A. Arenas., Self-similar community structure in a
network of human interactions. Phys. Rev. E., (2003), v.68, pp. 065103.

[11] T. Opsahl and P. Panzarasa. Clustering in weighted networks., Social Networks, (2009), n. 2, pp. 155-163, v. 31.
[12] P. M. Gleiser and L. Danon. Community structure in jazz., Advances in Complex Systems, (2003), n.4, pp. 565-573, v.6.
[13] W. Zachary., An information flow model for conflict and fission in small groups., J. of Anthropological Research, (1977),

pp. 452-473, v. 33.
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