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Abstract. We investigate the role that nonlinearity in the interatomic 
potential has on the thermal conductance of a suspended nanoribbon when it 
is subjected to a longitudinal strain. To focus on the first cubic and quartic 
nonlinear terms of a general potential, we propose an atomic system based on 
an α–β Fermi–Pasta–Ulam nearest neighbor interaction.

We perform classical molecular dynamics simulations to investigate the 
contribution of longitudinal, transversal and flexural modes to the thermal 
conductance as a function of the α–β parameters and the applied strain. We 
compare the cases where atoms are allowed to vibrate only in plane (2D) with 
the case of vibrations in and out of plane (3D). We find that the dependence 
of conductance on α and β relies on a crossover phenomenon between linear/
nonlinear delocalized/localized flexural and transversal modes, driven by an 
on/off switch of the strain.
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1. Introduction

The understanding of heat conduction in lattices of interacting particles is still a chal-
lenging and fundamental problem of statistical physics [1, 2]. In particular, heat trans-
port in atomic chains has received much attention largely stimulated by its relevance 
to the nanotechnological applications [3]. Many works on this topic have strongly evi-
denced that harmonic as well as anharmonic chains can display the so-called anomalous 
heat conduction, i.e. the heat flow does not follow Fourier’s law. In other words, the 
size dependence of the heat conductivity is one of the most striking feature of anoma-
lous conductors. In this scenario the Fermi–Pasta–Ulam (FPU) [4] model and its vari-
ants provides an ideal test-bed of the impact of first nonlinear terms of short range 
general potentials. These models address fundamental issues in statistical mechanics 
such as the validity of macroscopic laws in low dimensional systems [5, 6].

Much of the research on energy transport at the nanoscale has been focused on 
electronic properties unlike purely thermal (phononic) properties, due to the challeng-
ing task of thermal measurements. Low dimensional devices based on Si, B–Ni or 
C are prominent candidates for nanoscale thermal engineering [7–9], because they 
exhibit rich thermal physics and potentially offer a route to tailored thermal properties  
[10, 11]. Through the confinement of these materials in planar superlattices with one 
or few atomic planes, many interesting phononic effects emerge. Examples are the 
role that the flexural phonon band, the effect of 2D superlattices structures, defects or 
disorder have on the thermal conductivity κ [12–14]. Furthermore, these nanomem-
branes can operate under different conditions as free-standing or on a substrate, and 
may also be subjected to different types of mechanical actions that can affect their 
thermal capability [15]. For example, recent works show that tensile strains applied 
on Si-nanomembranes, C-based systems as graphene can be used to tune the flexural 
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phonon bands affecting the thermal conductance when the system is small or its asymp-
totic behavior with the length [16–21].

Phononic thermal properties are determined essentially by the vibrations of their 
constituent atoms. Several fundamental theoretical works devoted to study thermal 
transport in bidimensional arrays of atoms are based on models that consider mainly 
in-plane vibrations, i.e. transverse and longitudinal phonon bands [2, 22]. However, 
recent predictions from numerical works and experiments with nanomembranes show 
evidence that flexural modes make a significant contribution to κ in suspended few-
layer graphene and h-BN [15]. That is, vibrations out of plane or flexural phonons play 
a key role on thermal conduction [20] and cannot be neglected in the models used for 
theoretical analysis. In addition, the presence of anharmonic terms in the interatomic 
potentials plays also a relevant role on the reduction of thermal conductivity due to 
the change on the distribution of phonon lifetimes through phonon–phonon interac-
tions [23].

In this context, an interesting question is how the interplay between anharmonici-
ties and strain affects the phonon modes and consequently the thermal transport. Our 
work try to put some light on these phenomena by a simple model, first allowing atoms 
to vibrate only in plane (2D case), and secondly we consider the full motion including 
the out of plane vibrations (3D case). This methodological approach provides an insight 
into the role of different kind of modes on the thermal transport.

The outline of this paper is the following: in section 2 we present the model of a 
nanoribbon with interactions given by the α–β Fermi–Pasta–Ulam (FPU) potential. 
In section 3 we show numerical results for the heat conduction and frequency spectra, 
analyzing separately the roles of β, α, and the width and length of the nanoribbon. 
We relate these results with an expansion of the potential when strain is applied. We 
conclude in section 4 by summing up our results and giving some insight into how non-
linearity, phonon bands and strain can be related to the heat transport.

2. The model

To analyze the impact of nonlinearity on the thermal transport when strain is applied 
to a suspended membrane, we propose a model that consists of a Nx ×Ny bidimen-
sional array of identical interacting atoms that can move in the three x, y and z direc-
tions, vibrating in and out of plane (see figure 1).

Particles are located at positions Ri with i = (ix, iy) whose equilibrium positions are 
R0i = (ixax, iyay, 0) with ax = ay = l0 the natural equilibrium distance between atoms 
when no strain is applied. We characterize the motion of the particles by the displace-
ment with respect to their equilibrium position ri = Ri −R0i.

The particles in the x-ends with ix = 0 and ix = Nx + 1 are fixed for all times, while 
particles in columns ix = 1 and ix = Nx

 are in contact with two Langevin thermal res-
ervoirs at different temperatures, respectively. We remark that particles with iy = 0 
and iy = Ny − 1 are free to move.

The length of the layer is (Nx + 1)l0, however when an uniaxial tension is applied 
along the longitudinal direction, the tension can be parametrized by the change in the 
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lattice constant ax > l0 or by the strain ǫ = (ax − l0)/l0. On the other hand, as the layer 
is free in the y-direction, ay = l0 in all cases.

We consider a nearest neighbor interaction up to fourth-order given by an α–β 
Fermi–Pasta–Ulam potential that depends on the relative distance ri,j = |Ri −Rj|.

v(ri,j) =
1

2
k(ri,j − l0)

2 +
1

3
α(ri,j − l0)

3 +
1

4
β(ri,j − l0)

4. (1)

Therefore, the total potential energy V can be written as the sum of pair potentials 
(bonds) that depend on the atom positions

V =
∑

bonds

v(ri,j)

=
Nx
∑

ix=0

Ny
∑

iy=1

v(
∣

∣R(ix+1,iy) −R(ix,iy)

∣

∣)

+
Nx
∑

ix=1

Ny−1
∑

iy=1

v(
∣

∣R(ix,iy+1) −R(ix,iy)

∣

∣)

 (2)

being the first term a double sum over longitudinal bonds (x direction), and the second 
term a double sum over transversal bonds (y direction).

The dynamical evolution of each particle is given by a Langevin type equation of motion 
with a viscous term proportional to velocity and a decorrelated random force acting on the 
particles in contact with the reservoirs. The equation of motion for each particle is

d2
ri

dt2
= −

∂V

∂ri
− γi

dri
dt

+ ξ
i
(t) (3)

where γi = 1 for ix = 1 and ix = Nx
, and zero otherwise. The space-time correlations of 

the random forces are

〈ξi,µ(t) ξj,ν(t
′)〉 = 2 γ kB Ti δi,j δµ,ν δ(t− t′). (4)

where the index µ and ν run over x, y and z directions. Ti  =  TL or TR if ix = 1 or 
ix = Nx

, respectively.
For a given realization of the random forces, equations of motion are integrated. 

Thermal properties are calculated in the stationary regime where the statistical behav-
ior is constant.

Figure 1. Schematic of the system. Each x-end is fixed and particles in the first 
and last columns are coupled to Langevin thermal baths at temperatures TL (red) 
and TR (blue), respectively. Particles can vibrate in x-y directions (2D) or in x-y-z 
directions (3D).
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Due to Newton’s third law and the purely pairwise nature of the forces, the steady 
state energy current per bond Ji,j can be expressed as

Ji,j = 〈Fi,j.(vi + vj)〉 (5)

with Fi,j = −∇riv(ri,j) the force on particle i due to the neighboring particle j, and 
brackets indicate time average. Due to the temperature difference in the x direction, 
the heat current through transversal bonds vanish on average.

In stationary regime, the currents through consecutive longitudinal bonds are statis-
tically equal. The currents for different rows are not necessarily equal due to the asym-
metry given by the free boundary conditions. However, this border effect is washed out 
as Ny is much bigger than one.

Thus, we calculate the mean heat current through the nanoribbon as the average J 
per row in a transversal plane or column of atoms of the layer as

J =
1

Ny(Nx − 1)

Nx−1∑

ix=1

Ny−1∑

iy=0

Ji,j (6)

where i, j are two consecutive particles in the x direction.
The thermal conductance per row can be calculated from the current J in the 

horizontal direction determined by temperature gradient ∆T/Nx between the thermal 
reservoirs.

C =
J

∆T
. (7)

3. Results

In a previous work [24] it was shown that for a general case of particles moving 
in three directions and when an uniaxial tension is applied, the nonlinear α–β 
FPU potential can be expanded around the new equilibrium positions for small 
displacements.

For two neighboring atoms i and j the relative displacement vector is ∆ = ri − rj. If 
these atoms are neighbors in the x direction, ∆ = R(ix+1,iy) −R(ix,iy) − axx̂. Projecting 
in the longitudinal and perpendicular directions along the bond, the corresponding dis-
placements are defined as ∆long = ∆.x̂ and ∆2

⊥
= (∆.ŷ)2 + (∆.ẑ)2 respectively.

When both displacements are much smaller than the lattice constant ax, we can 
expand it up to fourth order obtaining

v(ri,j) = v0 + F0∆long +
1

2
keff∆

2
long +

1

2
k⊥∆

2
⊥
+

1

3
αeff∆

3
long + c3∆long∆

2
⊥

+
1

4
β∆4

long +
1

4
β⊥∆

4
⊥
+ c4∆

2
long∆

2
⊥
,

 
(8)
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with

v0 = v(ax) =
1

2
kl2

0
ǫ2 +

1

3
αl3

0
ǫ3 +

1

4
βl4

0
ǫ4

F0 = kl0ǫ+ αl2
0
ǫ2 + βl3

0
ǫ3

keff = k + 2αl0ǫ+ 3βl2
0
ǫ2

αeff = α + 3βl0ǫ

k⊥ =
F0

l0(1 + ǫ)

β⊥ =
c3

l0(1 + ǫ)

c3 =
1

2

k

l0(1 + ǫ)2
+

1

2
α

(

1−
1

(1 + ǫ)2

)

+
1

4
βl0

(

2

(1 + ǫ)2
− 2 + 4ǫ

)

c4 = −
1

2

k

l2
0
(1 + ǫ)3

+
1

2

α

l0(1 + ǫ)3
+

1

2
β

(

1−
1

(1 + ǫ)3

)

.

 

(9)

F0 gives the stress as a function of longitudinal strain ε. keff is an effective force constant 
in the longitudinal direction that can increase or decrease with strain, depending on α 
and β. αeff is a term proportional to the cube of the displacement in the longitudinal 
direction. k⊥ is the constant corresponding to the leading term for transversal displace-
ment, which vanishes in case of no strain. In this case the leading term is quartic in 
the displacement and proportional to β⊥. c3 and c4 are two constants which couple the 
longitudinal and transversal coordinates at third and fourth order in the displacements, 
respectively. These terms are the responsible for the mixture and coupling of modes.

A similar procedure can be done for two neighboring atoms in y direction where 
∆ = R(ix,iy+1) −R(ix,iy) − ayŷ. Thus ∆long = ∆.ŷ and ∆2

⊥
= (∆.x̂)2 + (∆.ẑ)2 respec-

tively. As there is no strain in this direction (ǫ = (ay − l0)/l0 = 0) these expressions are 
simplified.

The integration of the equations of motion (equation (3)) has been performed by 
means of a standard stochastic second-order Runge–Kutta algorithm with a time step 
of dt = 0.001. Initially the state of the isolated system corresponds to a thermal equi-
librium distribution at a temperature T = (TL + TR)/2. Then the baths are connected 
to the system, and after a long enough transient time the heat current is calculated to 
guarantee that a steady state is reached.

We consider the equilibrium distance l0 between atoms as unit of length, the mass m 

of atoms as unit of mass, τ0 =
√

m/k as unit of time, kl2
0
 as unit of energy, and therefore 

Θ0 = kl2
0
/kB as unit of temperature. Although this is a simple theoretical model, we can 

make some relations with a real carbon-based structure, at least to some orders of mag-
nitude. For carbon atoms in graphene l0 ≈ 0.14 nm and k ≈ 650 nN nm−1 typically, giv-
ing Θ0 ≈ 10

6 K and 1/τ0 ≈ 180 THz for temperature and frequency units, respectively. 
We work with TL = 3.8 · 10

−4 and TR = 2.0 · 10
−5, which would correspond to 380 K 

and 20 K, respectively, or an average temperature of 200 K. Expanding the Tersoff-
Brenner potential [25], usually used for carbon-based or Si-based nanosystems, around 
the equilibrium position up to fouth order we obtain the dimensionless values α ≈ −5.5 
and β ≈ 16.9. Even though we present some results for these particular parameters, we 
address in general the role of α and β on the thermal conductance of the strained layer. AQ2
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3.1. Role of β

For a symmetric potential, the quartic anharmonic term represents the lower non-linear 
order of an attractive force. It is expected to play a relevant role on the heat conduction 
since it is related to phonon–phonon scattering processes. However, it is interesting to 
analyze if the impact of this term is enhanced or not when a strain is applied, and in 
particular when due to the dimensionality of the system flexural modes are considered. 
In figure 3 the thermal conductance C for the 2D and 3D cases is plotted as a function 
of β and for different values of ε. To do a more exhaustive analysis of the role of β we 
assume at this point that no cubic term is present (α = 0).

We find that for a non strained ribbon (ǫ = 0), C takes almost the same value both 
in 2D and 3D. From equation (9) we observe that the effective constants depend on β 
only when strain is applied. If ε is close to zero constants c3 and c4 mostly depend on k 
and so the coupling between longitudinal (x) and transversal (y-z) displacements.

To analyze the contribution to conductance from different types of modes, we plot 
in figure 4 the spectra of the longitudinal and flexural displacements of a central atom 
for two values of β. We observe that for the unstressed case, flexural modes are present 
with a considerably energetic contribution and at a frequency that is almost indepen-
dent of β. As the transversal effective elastic constant is zero, the flexural modes are 
essentially non linear. Moreover, from figure 3 it seems that their contribution to ther-
mal conductance is almost negligible, suggesting that these flexural modes are localized 
(see appendix for a detailed explanation).

On the other hand when ε is finite, the effective constant k⊥ is also finite and 
increases with β. Thus the system behaves closer to a harmonic one and the main 
contribution comes from the linear modes. In addition as c3 and c4 also increase, the 
coupling between in/out of plane modes is stronger. Therefore, the energy stored in the 
flexural modes, now essentially linear and non localized, contributes to thermal conduc-
tance increasing C with β. These effects are more evident for larger strains because the 
effective coupling constants are also larger (see equation (8)). Consequently the thermal 
conductance in 3D is enhanced respect to 2D case, as it is shown in figure 3.

Regarding the spectra, the mean peak of the longitudinal band is shifted towards 
larger values of the frequency for finite ε, corresponding to modes with higher energy. 
This shift is greater as long as β increases. In addition, the second peak of the flexural 
spectra and the main peak of the longitudinal spectra are located in the same frequency 
band. This is an evidence of the coupling between in plane/out of plane modes that 
contributes to thermal conductance.

Additionally in figure 4 the frequency of the first linear mode, computed analytically 
from keff and k⊥, is indicated for each case. For finite ε there is a strong match with the 
first peak of each spectrum showing the linear nature of these modes, and consequently 
an almost ballistic regime. For ε going to zero the frequencies of linear flexural modes go 
to zero unlike the longitudinal ones. Moreover the frequency of the longitudinal linear 
modes do not coincide with those in the spectra, pointing out their non linear nature.

3.2. Role of α

Usually in an expansion around the equilibrium distance of a real interatomic two-body 
potential, the cubic term is negative. This is due to the characteristic core repulsion 



Thermal conductance of suspended nanoribbons: interplay between strain and interatomic potential nonlinearity

8doi:10.1088/1742-5468/2017/00/000000

J
. S

ta
t. M

e
c
h
. (2
0
1
7

) A
A
8
C
1
8

which makes the potential to rapidly increases at short distances, while it soften at 
longer distances, where it usually tends to zero. Therefore the α term is important to 
take into account the asymmetry of interatomic potentials. Here we study the depend-
ence of the conductance on α while keeping β = 16.93 fixed, in order to always have a 
bound motion.

We checked that for this value of β and the used range of values for α, there is only 
one equilibrium distance between atoms. A second equilibrium distance would produce 
a different equilibrium conformation of the ribbon.

Without strain on the ribbon, the conductance does not depend on α (see figure 5). 
Moreover, the same value C0 ≈ 0.18 is observed for 2D and 3D motion, pointing to a 
negligeable contribution of the flexural modes to the conductance, although they can 
store vibrational energy.

On the other hand, as soon as the ribbon has some strain, the conductance displays 
a monotonic increase with α. For a given strain, there exist a critical value α∗ for which 
C is bigger than C0 for α > α

∗, while C < C0 for α < α
∗. This critical value α∗ is more 

negative as long as the strain increases. This effect is more evident in the 3D case than 
in the 2D case. For example in the 3D case and for ǫ = 0.15, α∗

≈ −5 and in the 2D 
case α∗

≈ −4.
These behaviors can be understood from equation (9), specially from the value of 

keff. In figure 2 we see the dependence of this effective harmonic constant as a func-
tion of α for different strains, and it strongly correlates with the behavior of the con-
ductance. When keff becomes smaller than one, the ribbon softens in the longitudinal 
direction.

The constant k⊥ ≈ ǫ k for small strains, and it contributes to both the increasing 
frequencies of transversal and flexural modes (in y and z directions respectively). So, 
this can also explains the larger conductance in the 3D case compared to the 2D.

In figure 6 we plot the spectra of the x and z displacements for one atom in the 
center of a ribbon with Nx ×Ny  =  20  ×  20. We consider the 3D case with and without 
strain.

For ǫ = 0, only minor differences are observed among the spectra for different values 
of α, which is compatible with the already observed constant conductance. For ǫ = 0.1 
we observe a smaller frequency of the first peak for α = −6 as compared to α = −2. 
This correlates again with the values of keff = 0.969 and k⊥ = 0.088, for α = −2, and 
keff = 0.569 and k⊥ = 0.052, for α = −6.

3.3. Conductance versus Nx and Ny

To investigate the dependence of the conductance with the size of the ribbon, we fix 
the interatomic potential to k = 1, α = −5.45, β = 16.93. These values are given by the 
expansion of the Tersoff-Brenner potential for carbon atoms, as it was explained in the 
model.

We first fix the length of the ribbon to Nx = 50, and we vary its width Ny. The 
results are in the left plot of figure 7. We observe a decay of conductance for small 
values of Ny, which is faster for the non strained configuration ǫ = 0. In all cases the 
conductance (per row) converges to a constant value for Ny ≈ 10. The case Ny = 1 
corresponds to a single wire of atoms (one dimensional geometry) being qualitatively 
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different from a ribbon (two dimensional geometry). This corresponds to a crossover of 
the conductance from a one dimensional behavior to a two dimensional one ([27–29]), 
suggesting that eventual effects coming from the free lateral boundaries of the ribbon 
are washed out rapidly as Ny grows.

Secondly, we fix the width of the ribbon (Ny = 20) and we vary its length Nx (see 
right plot in figure 7). We observe in general that conductance is lower for the strained 
case as compared to the non strained. This is due to the particular value of α which is 
lower than α∗.

However, there is a qualitative difference: for the strained ribbon the conductance 
barely decreases with length, while for the non strained case the decreasing is more 
evident.

Figure 2. Effective longitudinal keff and transversal k⊥ elastic constants as a 
function of α (upper row) and β (bottom row). Black dots corresponds to ǫ = 0, 
green squares to ǫ = 0.05 and magenta triangles to ǫ = 0.1.

Figure 3. Conductance C as a function of β for 2D (left) and 3D (right) cases. For 
both panels different values of ε are considered: ǫ = 0 (dots), ǫ = 0.05 (squares), 
ǫ = 0.1 (triangles) and ǫ = 0.15 (diamonds). Nx = 20, Ny = 20, TL = 3.8 · 10

−4, 
TR = 2.0 · 10

−5 and α = 0.
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We explain this behavior from the presence of harmonic modes in all directions 
when ε is finite, which are delocalized and entail a constant conductance [26]. For the 
non strained case, some transversal and all flexural modes are non-linear, being some 
of them localized (see appendix). These modes do not contribute to the conductance 
producing more scattering of phonons, and conductance reduces with the length of the 
system. Moreover, this can also explain why in the 3D case the conductance is smaller 
than in the 2D case. All flexural modes are non linear and they reduce the conductance 
given by the harmonic longitudinal and tranversal modes.

Figure 4. Spectra of longitudinal (left pannels) and flexural (right panels) 
displacements for the 3D case. Top row corresponds to β = 4 and bottom row to 
β = 20. In each panel, black solid line corresponds to non strained case (ǫ = 0) and 
magenta solid line corresponds to ǫ = 0.1. In all cases α = 0, Nx = 20, Ny = 20, 
TL = 3.8 · 10

−4, TR = 2.0 · 10
−5. Vertical arrows indicate the analytical frequency of 

the first linear mode for each case.

Figure 5. Conductance C as a function of α for 2D (left) and 3D (right) cases. For 
both panels different values of ε are considered: ǫ = 0 (dots), ǫ = 0.05 (squares), 
ǫ = 0.1 (triangles) and ǫ = 0.15 (diamonds). Nx = 20, Ny = 20, TL = 3.8 · 10

−4, 
TR = 2.0 · 10

−5 and β = 16.93.
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4. Conclusions

We have investigated the role of nonlinearity in the interatomic potential on the ther-
mal conductance when a nanoribbon is subjected to a longitudinal strain.

We considered an α–β Fermi–Pasta–Ulam model as a general expansion of any 
potential that, besides a harmonic term, includes nonlinear cubic and quartic terms. 
Unlike other recent theoretical works, we considered a model for the potential that 
depends on the absolute distance between atoms and where atoms can vibrate in the 

Figure 6. Spectra of longitudinal (left pannels) and flexural (right pannels) 
displacements for the 3D case. Top row corresponds to α = −2.0 and bottom 
row to α = −6.0. In each panel, black solid line corresponds to non strained case 
(ǫ = 0) and magenta solid line to ǫ = 0.1. In all cases β = 16.93, Nx = 20, Ny = 20, 
TL = 3.8 · 10

−4, TR = 2.0 · 10
−5. Vertical arrows indicate the analytical frequency of 

the first linear mode for each case.

Figure 7. Left panel: C as a function of the width Ny for 2D (red) and 3D (green) 
with Nx = 50. Right panel: C as a function of the length Nx for 2D (red) and 3D 
(green) with Ny = 20. In both figures, circles correspond to ǫ = 0 and triangles to 
ǫ = 0.1. In all cases α = −5.45, β = 16.93, TL = 3.8 · 10

−4, TR = 2.0 · 10
−5.
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three directions, as it is expected in a real system. Consequently phonon bands are 
constituted by longitudinal, transversal and flexural modes.

We studied the role of these modes on the thermal transport from the expansion 
of the total potential energy around the new equilibrium positions. We analyzed how 
α, β and longitudinal strain affect effective coupling constants and consequently the 
thermal conductance.

We found that in the absence of strain the conductance in 3D is smaller than in 2D, 
unlike the strained case. This puzzling fact relies on the changeover from nonlinear to 
linear modes when the strain is ’switched on’. In the non strained case all flexural and 
some transversal modes are non linear, and some of them are localized. Therefore, they 
do not contribute to the conductance, or they even reduce it due to scattering processes 
with the remaining linear modes. In other words from a regime where phonons can be 
scattered to a regime where they can propagate ballistically.

It is interesting to note that this transition takes place even when the size of the 
system (Nx and Ny) is smaller than the mean free path of the phonons. This can bring 
innovative solutions to control the thermal conductance when operating with small 
size devices by tuning properly the applied strain. Or in other words, a thermal control 
in nanostructures based on the localization/delocalization of nonlinear/linear phonon 
modes.

Our proposed atomistic model is a suitable approach to understand thermal trans-
port in nanosytems mediated by acoustic phonons. Many challenging technological 
applications arise on the use of nanowires and nanotubes as strain sensors by inducing 
the system into a thermally nonlinear vibrational regime [24, 30]. Our model shows a 
complementary technological implication. Even at low temperatures and small system 
sizes where phonon–phonon scattering may not be relevant, the dependence of conduc-
tance on the strain allows, among other things, to extract information about character-
istic parameters of the first non linear terms in the interatomic potential.

More theoretical work should be done to better understand how localization affects 
the interplay between different linear/nonlinear vibrational modes and their contrib-
ution to the thermal conductance in strained systems. However, our results provide 
some valuable suggestions in this direction.
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Appendix

We sketch here an analytical computation of flexural nonlinear normal modes for the 
non strained case ǫ = 0. For this purpose we consider the special case where for each 
row of particles in the y direction, the particles vibrate at the same coordinate z, and 
the positions and velocities in the x and y directions are zero. In this case ∆long = 0 and 
∆⊥ = zix+1,iy − zix,iy = zi+1 − zi, because the motion does not depend on the index iy. 
Now, the only term in equation (8) contributing to the dynamics is β⊥∆

4

⊥
/4, and the 

equations of motion reduce to

AQ3
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m
d2zi

dt2
= β⊥

[

(zi+1 − zi)
3
− (zi − zi−1)

3
]

 (A.1)

for 1 6 i 6 Nx
, with fixed boundary conditions z0 = zNx+1 = 0. We propose a solution 

with all particles moving in phase

zi(t) = Aif(t)

which defines a normal mode of vibration for the system. This is a solution for all par-
ticles if and only if

d2f

dt2
= −γ2f 3(t) (A.2)

and

−γ2miAi = β⊥
[

(Ai+1 − Ai)
3
− (Ai − Ai−1)

3
]

. (A.3)

We have reduced the problem to one ordinary differential equation in time, and Nx 
algebraic equations, being γ and Ai parameters to be determined. Equation (A.2) has 
an analytical solution in terms of a Jacoby elliptic function

f(t) = cn(γt|1/2). (A.4)

This is an oscillating periodic function with period τ = Θ/γ, where Θ = 7.416 2987, and 
amplitude 1. The fundamental frequency of this function is ω = 2πγ/Θ = 0.847 213γ. 
Besides this numerical proportional factor, the parameter γ is a frequency.

Before solving the algebraic equations for the Ai coefficients, we remark an impor-
tant property of these equations. If the γ and Ai coefficients solve the equation (A.3), 
therefore γ′

= cγ and A′

i
= cAi will also solve the same equations. We see explic-

itely the property that the temporal frequency of the solution is proportional to the 

Figure A1. Nonlinear normal modes for Nx = 8. (a)–(c) correspond to the lowest 
frequency delocalized modes. (d)–(f) correspond to high frequency localized modes. 
All modes are normalized to the same energy.
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amplitudes, opposite to harmonic normal modes, where the frequency is independent 
of the amplitude.

To solve simultaneously the Nx equation (A.3), we proceed in an iterative way. We 
compute Ai+1 as a function of the two previous amplitudes Ai and Ai−1, and the fre-
quency parameter γ

Ai+1 = Ai +

[

(Ai − Ai−1)
3
−

γ2m

β⊥
Ai

]1/3

 (A.5)

always considering the real value of the cubic root. Imposing the fixed boundary condi-
tion A0 = 0, giving to A1 an arbitrary value, we obtain all the other amplitudes. On the 
other hand we should also obtain AN+1 = 0. This is the condition to find the solutions 
for the nonlinear normal modes. Plotting ANx+1 as a function of γ, each root provides 
a frequency γ for a particular normal mode. By the iterative equation (A.5), the ampl-
itudes Ai for the corresponding normal mode are obtained.

When f(t) is at a maximum or minimum, the velocity of all particles is zero, and 
the energy of the normal mode is equivalent to the potential energy

E =
1

4
β⊥

Nx∑

n=0

(Ai+1 − Ai)
4. (A.6)

To compare different normal modes, we can normalize the amplitudes of them to the 
same energy. We observe other peculiar properties of the nonlinear normal modes. For 
example, the number of modes seems to increase exponentially with the number of par-
ticles (for Nx = 8, there are 62 normal modes). The modes with lower frequencies look 
very similar in shape with the linear modes and are extended. On the other hand most 
of the high frequency modes are localized (see figure A1). In this localization phenom-
enon, some few particles (even 3 or 4) have a significant amplitude, while the others 
have an exponential small amplitude which practically vanishes. In addition, some 
modes have almost indistinguishable frequencies and amplitudes, just being different 
by a spatial translation (see panels (d) and (e) figure A1). We remark that these modes 
do not fulfill the superposition principle.

A systematic and more detailed study of nonlinear normal modes and their interest-
ing properties in connection to thermal transport should be done in the future.
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