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Abstract Defensivemutualism iswidely accepted as providing
the best framework for understanding how seed-transmitted,
alkaloid producing fungal endophytes of grasses are maintained
in many host populations. Here, we first briefly review current
knowledge of bioactive alkaloids produced by systemic grass-
endophytes. New findings suggest that chemotypic diversity of
the endophyte-grass symbiotum is far more complex, involving
multifaceted signaling and chemical cross-talk between endo-
phyte and host cells (e.g., reactive oxygen species and antioxi-
dants) or between plants, herbivores, and their natural enemies
(e.g., volatile organic compounds, and salicylic acid and
jasmonic acid pathways). Accumulating evidence also suggests
that the tight relationship between the systemic endophyte and
the host grass can lead to the loss of grass traits when the lost
functions, such as plant defense to herbivores, are compensated
for by an interactive endophytic fungal partner. Furthermore,
chemotypic diversity of a symbiotum appears to depend on the
endophyte and the host plant life histories, as well as on fungal
and plant genotypes, abiotic and biotic environmental condi-
tions, and their interactions. Thus, joint approaches of
(bio)chemists, molecular biologists, plant physiologists, evolu-
tionary biologists, and ecologists are urgently needed to fully
understand the endophyte-grass symbiosis, its coevolutionary
history, and ecological importance. We propose that
endophyte-grass symbiosis provides an excellent model to study
microbially mediated multirophic interactions from molecular
mechanisms to ecology.
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Introduction

Defensive mutualism has been the predominant framework for
studies on endophyte-grass symbiosis since the mid 1970s
when Bacon et al. (1977) found that livestock disorders in tall
fescue variety “Kentucky 31” were attributable to alkaloids
produced by fungal endophytes (Cheplick and Faeth 2009;
Clay 1988, 2009; Saikkonen et al. 2006, 2010). Today, these
epichloid fungi comprising Neotyphodium endophytes and
their sexual antecedents in the genus Epichloë are known to
form a lifelong systemic infection throughout the above-ground
parts of many pooid grasses (Cheplick and Faeth 2009; Clay
and Schardl 2002; Saikkonen et al. 2006; Schardl et al. 2012).

In the symbiosis, fungal hyphae grow asymptomatically
and intercellularly throughout the above-ground host plant
parts, including developing inflorescences and seeds. By
growing into host seeds, the fungus is vertically transmitted
from mother plant to offspring (Clay and Schardl 2002;
Saikkonen et al. 2004). This promotes stable interaction
between the fungal genotype and the host lineage until one
or the other partner loses its viability. Thus, vertical trans-
mission and the interdependence of fungal and host fitness
generally are thought to align the interests of partners so that
the fungus–host association becomes mutualistic (Ewald
1987; Saikkonen et al. 2004). Because of many demonstrat-
ed reciprocal benefits to the partners, ‘grass-endophyte’ has
become synonymous with ‘mutualist’ in biological lexicon
(Clay 1990; Clay and Schardl 2002; Saikkonen et al. 2004,
2006, 2010), and remains one of the text book examples of
microbial mediated terrestrial plant-herbivore interactions
(Thompson 2005). Accumulating evidence suggests that
the ecological consequences of grass-endophyte symbiosis
can further extend from plant-herbivore interactions to plant,
microbial and animal communities as well (Clay and Holah
1999; Lemons et al. 2005; Omacini et al. 2001, 2004;
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Rudgers et al. 2010; Saari et al. 2010a,b; Saikkonen 2000;
Saikkonen et al. 2006, 2013; Wäli et al. 2006).

Ultimately, the ecological role of fungal endophytes origi-
nates in fungal- and plant-origin bioactive alkaloids, hormones,
and other metabolites that regulate fungal and plant responses to
abiotic and biotic environments separately and/or as a pheno-
typic unit (Bacon et al. 1977; Hamilton et al. 2012; Leuchtmann
et al. 2000; Panaccione et al. 2013; Rasmussen et al. 2012;
Saikkonen et al. 2004; Siegel and Bush 1996; Siegel et al.
1990). Although the literature of endophyte driven chemical
ecology has blossomed in the past 35 years, the majority of
studies have focused on the toxicity of fungal origin bioactive
alkaloids to herbivores. The mounting body of recent literature
suggests that in addition to fungal origin defensive alkaloids,
other fungal and plant products may play roles in endophyte‐
grass symbiosis such as chemical cross‐talk between endophyte
and host cells, or signaling between plants, herbivores and their
natural enemies (Cheplick and Faeth 2009; Eaton et al. 2010,
2011; Gundel et al. 2012; Hamilton et al. 2012; Moon et al.
2004; Nanda et al. 2010; Pieterse and Dicke 2007; Pineda et al.
2013; Rasmussen et al. 2012; Rodriguez and Redman 2005,
2008; Schardl et al. 2012; Simons et al. 2008; Tanaka et al.
2006, 2008; White and Torres 2010).

In this paper, we first present a summary of bioactive
alkaloids produced by systemic grass-endophytes. We then
discuss the current knowledge of other chemotypic diversity
of endophyte-grass interactions, the ecological and evolu-
tionary consequences of the diversity, and finally present
potential gaps in knowledge and testable hypotheses for
future studies.

Epichloae Alkaloids

Several distinguished papers have thoroughly reviewed bioac-
tive alkaloids in epichloae endophytes (see e.g., Leuchtmann
et al. 2000; Panaccione et al. 2013; Schardl et al. 2012; Siegel
and Bush 1996; Siegel et al. 1990), with the following
conclusions:

First, alkaloids with detected anti-herbivore effects fall into
four classes: pyrrolizidines (lolines), ergot alkaloids, indole-
diterpenoids (including lolitrems), and a pyrrolopyrazine alkaloid
(peramine). Although epichloae endophytes can produce high
levels of alkaloids, both inter- and intraspecific variation in
amount and composition of chemicals in infected plants is re-
markable (Siegel and Bush 1996). Peramine appears to be the
most commonly detected alkaloid. Endophyte colonized grasses
usually contain two or three chemical classes, but all four classes
have not been detected in any examined symbiotum. Strictly
vertically transmitted asexual Neotyphodium endophytes appear
to produce high levels of alkaloids while sexual Epichloë species
tend to produce smaller amounts of alkaloids, typically peramines
(Schardl et al. 2012).

Second, the ergot alkaloids have been demonstrated to
provide plant defense against both vertebrate and inverte-
brate herbivores. In contrast, the lolitrems appear to have
only anti-vertebrate properties, and lolines and peramines
only anti-invertebrate properties (Schardl et al. 2012).
Accumulating evidence suggests that the sensitivity of both
invertebrate and vertebrate herbivores to different alkaloid
patterns may vary among species and/or feeding guilds
(Huitu et al. 2008; Miranda et al. 2011; Saari et al. 2010b;
Saikkonen et al. 2010; Vesterlund et al. 2011). In addition to
anti-herbivore effects, for instance, some ergot alkaloids
such as agroclavine have antimicrobial activity (e.g., Eich
and Pertz 1999), thus potentially having direct effects on the
host plant and indirect effects on other trophic levels.

Third, alkaloid content tends to vary within an individual
plant, with highest levels in young leaves, stems, panicles (or
spikes), and seeds (Ball et al. 1995; Justus et al. 1997).
However, the distribution and variation in alkaloid concentra-
tions within and among the plant parts depend on the particular
alkaloid (Hovermale and Craig 2001; Spiering et al. 2005).

Fourth, present knowledge and analytical methods have the
potential to reveal more about the chemotypic diversity and
genetic regulation of endophyte-plant phenotypes. For example,
peramine is a single chemical derived from three precursors
(Tanaka et al. 2005). In contrast, ergot alkaloids and lolines are
products of complex but linear pathways, and lolitrem B biosyn-
thesis is based onmetabolic grid (Panaccione et al. 2013; Schardl
et al. 2012). Novel steps, precursors, associated enzymes and
end-products are continuously characterized in new studies (see
e.g., Jensen and Popay 2004; Panaccione et al. 2013; Popay and
Gerard 2007; Schardl et al. 2012; Stewart 2005) and genes and
gene clusters for biosynthesis of the alkaloids are partly described
(Schardl et al. 2012; Tanaka et al. 2005). However, the effects of
environmental conditions on gene regulation are still poorly
understood (Zhang et al. 2009).

Finally, although recent literature well recognizes the
diversity of these alkaloids (Leuchtmann et al. 2000;
Panaccione et al. 2013; Schardl et al. 2012), ecological and
evolutionary causes and consequences of variability within
fungal and plant species as well as in their genetic combina-
tions are largely unexplored (but see e.g., Faeth and Shochat
2010; Jani and Faeth 2010).

Variability and the Driving Forces of Alkaloid
Production

Presence of genes involved in alkaloid synthesis dictates po-
tential for alkaloid production. Collectively, past studies sug-
gest, however, that the profile and amount of alkaloids depend
on the endophyte and the host plant life histories, as well as the
interplay between fungal and plant genotypes, abiotic and
biotic environmental conditions and their interactions (Boning
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and Bultman 1996; Bultman et al. 2004; Schardl et al. 2012;
Sullivan et al. 2007; Vázquez de Aldana et al. 2003).

We propose that the temporal stability of fungus-plant inter-
action selects for defensive mutualism. For example, Schardl
et al. (2012) recently proposed that strict vertical transmission
of the fungus selects for enhanced host protection by alkaloids
of fungal origin. Empirical evidence supports this idea. Plants
infected by vertically transmitted asexual endophytes produce
substantially larger amounts of lolines than plants infected by
sexually reproducing endophytes (Leuchtmann et al. 2000;
Zhang et al. 2010). Similarly, the long life cycle of perennial
grasses should provide more opportunities for systemic growth
and asexuality of the fungi. The question is whether the length
of host life cycle selects for a specific or a more diverse
chemotypic defensive arsenal of endophytes in the given envi-
ronment. Relatively few annual grasses have been surveyed for
their chemotypic diversity, but a few empirical examples sup-
port the idea that the endophyte of annual ryegrasses (Lolium
spp.), Neotyphodium occultans, produces only loline alkaloids,
while the endophyte of tall fescue (Schedonorus phoenix),
Neotyphodium coenophialum, also produces ergovaline and
peramine (see Schardl et al. 2012). However, it is noteworthy
that selection for defensive mutualism depends not only on the
fungal and the host life cycle, and the stability of the interaction,
but also on herbivore pressure and its predictability as well as
on abiotic environmental conditions (Faeth 2002).

As nitrogen-rich compounds, alkaloid production should
depend on resource availability in soils (Faeth and Fagan
2002). A positive response of alkaloid production to the
amount of available soil nitrogen and phosphorus has been
reported (Arechavaleta et al. 1992; Belesky et al. 1988; Lyons
et al. 1986; Malinowski et al. 1998). However, more recent
research has revealed a negative effect of nitrogen on the
concentration of endophyte biomass and alkaloid quantities
in plants (Rasmussen et al. 2007). This may indicate different,
non-linear responses of plants and fungi to the resource gra-
dients (e.g., nitrogen) or interaction between nutrients in soils
and other environmental factors. For example, the level of
alkaloids parallels the growth dynamics of host plant in re-
sponse to seasons (Ball et al. 1995; Justus et al. 1997). The
endophyte growth follows the seasonal growth of the host
plant (di Menna and Waller 1986) suggesting a positive rela-
tionship between the amount of endophyte hyphae and the
alkaloid concentration (Ball et al. 1995; Rasmussen et al.
2007; but see also Spiering et al. 2005).

Complexity of Chemical Interplay
Between the Endophytic Fungus and the Host Grass

The vast majority of the literature on the chemical ecology of
endophyte-grass symbiosis has focused on mycotoxins and
defensive mutualism (Leuchtmann et al. 2000; Panaccione

et al. 2013; Schardl et al. 2012). Chemical interplay between
the partners is, however, more complex and multifaceted,
ranging from cell level signaling (Eaton et al. 2011;
Hamilton et al. 2012; Rasmussen et al. 2012) to chemical
signaling and crosstalk between players involved in multi-
trophic interactions (see e.g., Pineda et al. 2013).

For example, recently Hamilton et al. (2012) emphasized
that reactive oxygen species (ROS) and antioxidants are likely
to have importance in endophyte-grass symbiosis. Reactive
oxygen species are multifunctional by-products of normal
aerobic metabolism such as photosynthesis and respiration,
and are produced in both plant and fungal cells. Reactive
oxygen species act in programmed cell death, stress responses,
plant defense, and systemic long distance signaling within and
among plant tissues in conjunction with antioxidants (Apel
and Hirt 2004; Foyer and Noctor 2005; Mittler 2002).
Oxidative balance is suggested to play a crucial role in the
evolution of endophyte-plant interactions, beginning with the
endophyte invasion into the host and including the establish-
ment of asymptomatic infection by modulating the recogni-
tion and defense responses against the fungus (Gundel et al.
2012; Hamilton et al. 2012; Nanda et al. 2010; Rodriguez and
Redman 2005, 2008; Tanaka et al. 2006, 2008; White and
Torres 2010). Recent evidence also has demonstrated that the
disruption of these signaling pathways can lead to a break-
down of the mutualistic interaction (Eaton et al. 2010, 2011;
Tanaka et al. 2006, 2008). The key questions are: 1) whether
oxidative balance of endophyte-grass symbiosis has been
modulated during their coevolution from pathogenic to endo-
phytic interactions, and 2) whether the oxidative balance
affects the endophyte-grass symbiotum’s ability to cope with
prevailing selection pressures (Hamilton et al. 2012).

Endophytes also may alter amount of available nutrients,
sugars, and water, which also affect herbivore fitness (Agee
and Hill 1994; Easton et al. 2002; Latch 1994; Leuchtmann
et al. 2000; Liu et al. 2011; Rasmussen et al. 2007, 2012;
Vázquez de Aldana et al. 2009). They also alter plant hor-
mones that modulate interactions between plants, herbivores,
and their natural enemies. Endophytes can enhance host
photosynthesis and potentially increase carbon reserves in
host plants (Marks and Clay 1996; Richardson et al. 1993),
and regulate host carbohydrate metabolism and utilization
(Liu et al. 2011; Rasmussen et al. 2007). In a collaborative
study with James Blande and Tao Li, we found that endo-
phytes reduce constitutive emissions of green leaf volatile
organic compounds (VOCs) but enhance the induction of
volatiles upon herbivore feeding. However, endophyte-
mediated volatile emission varied among grass species and
genotypes (Li et al. unpublished manuscript). Accumulating
evidence has demonstrated that volatiles may play a role in
plant-to-plant communication and serve as foraging cues for
herbivores and their natural enemies (Dicke and Baldwin
2010; McCormick et al. 2012; Xiao et al. 2012).

964 J Chem Ecol (2013) 39:962–968



Thus, endophytes may have either positive or negative
effects on herbivores. They may be an important source of
within plant variation that makes host plant quality more
unpredictable for herbivores depending on the complexity
of trophic interactions.

Interaction Between the Endophyte-Mediated
Anti-Herbivory Mechanism and Plant Defense
Mechanisms

Compared to many other types of plants, grasses are particu-
larly well adapted to tolerate herbivory. Grasses have
coevolved with vertebrate grazers since their early evolution
(Prasad et al. 2005), and intensive ungulate grazing often plays
amajor role inmaintaining grassland ecosystems by preventing
succession (McNaughton 1984; Vicari and Bazely 1993).
Because of strong selection by grazers, grasses quickly replace
the lost photosynthetic tissue, sometimes overcompensating
their growth after grazing. However, grasses appear to be less
resistant to herbivory than broad leaf plants, supporting the

resistance-tolerance trade-off hypothesis (Agrawal 2011;
Agrawal and Fishbein 2008; Coley et al. 1985; Van Der
Meijden et al. 1988). Although grasses produce some defen-
sive chemicals (e.g., hydroxamine acids, phenolics and poly-
phenolics, and cyanogenic glycosides), silica is suggested as
the principal chemical defense in grasses (Massey and Hartley
2006; Vicari and Bazely 1993). Tolerance and multiple resis-
tance traits may evolve together under spatially varying and/or
dynamic ecological and evolutionary conditions (Agrawal
2011; Romeo et al. 1996) and can be reinforced with coevolved
symbiotic micro-organisms such as endophytic fungi.

We propose that an ecophysiological perspective is re-
quired for a more comprehensive understanding of the
endophyte-grass symbiosis, and grass defense mechanisms,
and particularly their relation to the endophyte-mediated
defense. Plant responses to herbivores, pathogens, and ben-
eficial microbes such as endophytic fungi are mainly regu-
lated by two evolutionary conserved phytohormone signal-
ing pathways, the salicylic acid (SA) and the Jasmonic acid
(JA) pathways (Fig. 1.) (Karban and Baldwin 1997; Pieterse
and Dicke 2007; Pineda et al. 2013). The SA pathway
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Fig. 1 Salicylic acid (SA) and
jasmonic acid (JA) pathways,
their inducers and targets in a
grass colonized by systemic
endophytic fungus. The two
pathways are suggested to be
mutually antagonistic and
consequently suppress each
other when induced
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mediates plant defense against biotrophic pathogens and
some sap-sucking insects, while the JA pathway is involved
mainly in defense against necrotrophic pathogens and
chewing herbivores (Fig. 1)(Thaler et al. 2012). The two
pathways are suggested to be mutually antagonistic
(Ballaré 2011; Pineda et al. 2013; Thaler et al. 2012). For
example, if the SA pathway is induced by a biotrophic
pathogen and consequently suppresses the JA pathway, it
might increase susceptibility to necrotrophic pathogens or
chewing herbivores or both. Because many endophytes are
biotrophic pathogens and strictly asexual (Neotyphodium
endophytes may be derived from biotrophic pathogens),
endophyte infection can be expected to induce or modulate
the SA pathway in its host plant.

Thus, we can assume that the evolution from pathogenic
plant interactions to grass-endophyte symbiosis involved mu-
tual recognition and adaptive plant responses. These adapta-
tions allowed asymptomatic fungal invasion, establishment of
symbiosis, and acquisition of the alkaloids conferring resis-
tance to herbivores (Cheplick and Faeth 2009; Moon et al.
2004; Pieterse and Dicke 2007; Schardl et al. 2012), and has
probably had consequences for the plant defense via phyto-
hormone signaling pathways. For example, heavy vertebrate
grazing should decrease grass resistance to biotrophic mi-
crobes by hindering the SA pathway, thus opening a window
for systemic endophytes. We can also assume that the endo-
phyte as a biotrophic parasite hinders the JA pathway in
endophyte-infected host grasses by inducing the SA pathway,
thus decreasing grass resistance to necrotrophic pathogens and
chewing herbivores. In some cases, crosstalk between symbi-
otic partners may lead to “compensated trait loss” when the
lost function is provisioned by the interacting partner (Ellers
et al. 2012). A study by Simons et al. (2008) found that
although methyl jasmonate treatment hindered tall fescue’s
endophyte-mediated resistance against aphids, the magnitude
of endophyte-mediated defense is higher compared to the JA-
mediated defense.

Concluding Comments

Multiple plant resistance traits and alkaloid production by
symbiotic endophytic fungi are not necessarily redundant or
mutually exclusive (Agrawal 2011). However, the balance
between antagonistic signaling pathways that determine
plant responses to different aggressors and endophyte-
mediated grass defenses may reflect dynamic selection pres-
sures (Saikkonen et al. 2004; Thompson 2005). This may
explain detected plant adaptations to systemic endophyte
infection, variability in grass-endophyte frequencies, and
chemotypic diversity of symbiota. For example, we may
expect strong herbivore pressure to select for high plant
tolerance to herbivory and defensive endophyte mutualism.

However, recent advances in chemical ecology, molecular
mechanisms of induced plant responses, ecology of biotic
interactions, and coevolutionary processes suggest that, sim-
ilar to other biotic interactions, endophyte-grass interactions
are far more complex and have far-reaching impacts on other
interactive species in communities.
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