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Summary: Objectives. The aim of this study was to propose a state space-based approach to model perturbed pitch
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period sequences (PPSs), extracted from real sustained vowels, combining the principal features of disturbed real PPSs
with structural analysis of stochastic time series and state space methods.
Methods. The PPSs were obtained from a database composed of 53 healthy subjects. State space models were devel-
oped taking into account different structures and complexity levels. PPS features such as trend, cycle, and irregular
structures were considered. Model parameters were calculated using optimization procedures. For each PPS, state es-
timates were obtained combining the developed models and diffuse initialization with filtering and smoothing methods.
Statistical tests were applied to objectively evaluate the performance of this method.
Results. Statistical tests demonstrated that the proposed approach correctly represented more than the 75% of the
database with a significance value of 0.05. In the analysis, structural estimates suitably characterized the dynamics
of the PPSs. Trend estimates proved to properly represent slow long-term dynamics, whereas cycle estimates captured
short-term autoregressive dependencies.
Conclusions. The present study demonstrated that the proposed approach is suitable for representing and analyzing
real perturbed PPSs, also allowing to extract further information related to the phonation process.
Key Words: Perturbed pitch periods–Stochastic pitch model–Jitter–Structural time-series analysis–State-space
models.
INTRODUCTION

Precise period perturbation assessment is one of the most difficult
tasks in speech pathology and voice therapy.1 This is because the
perturbations arise in an unpredictable fashion and are usually
concealed in the speech records. Specialists have not yet reached
a full agreement on the nature and origin of these irregularities.2

Indeed, it can be shown that irregularities arise even in a nonpatho-
logic stable voice.3,4 In the last few decades, this situation has
drawn great attention from researchers and clinicians in the
speech community. They have found that perturbations arise as
a result of the combination of neurologic, biomechanical,
aerodynamic, and acoustic sources throughout the speech
production system.5Additionally, it has been argued that perturba-
tions behave noticeably different in pathologic and nonpathologic
voices.6,7 In this work, we propose a method for analyzing and
modeling a pitch period sequence (PPS), consisting of
successive pitch periods extracted from a voice signal, which
explicitly considers fluctuations and instantaneous perturbations.

Real PPSs are generally composed by identifiable structures
presenting short- and long-term behavior.8 Short-term struc-
tures carry information related to period perturbations, con-
sisting of random cycle-to-cycle variations denominated
jitter.3,9 In objective voice analysis, there are diverse
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acoustical parameters conceived to quantify jitter, which can
be classified as absolute measures (eg, perturbation factor or
directional perturbation factor) or fundamental frequency-
related measures (eg, jitter factor, jitter ratio, or coefficient
of variation).6 However, these objective features are highly
sensitive to slow long-term components, normally associated
with prosody information or intonation. Consequently, relative
average perturbation features have been defined (eg, average
absolute perturbation or period perturbation quotient).6 Never-
theless, these parameters are inadequate where long-term
components are strong. Therefore alternative methods are
required for robust perturbation assessment. To solve this
problem, we propose a state-space approach to PPS structural
analysis, and we show that it allows to optimally separate
jitter and long-term components.
Recent advances in PPS characterization have found great

applicability in modern technology. It has been demonstrated
that PPSs carry information belonging to the speaker itself (eg,
identity, gender, or mood)10–12 and related to the physiological
condition of the speech production system (eg, vocal folds
dynamic).13 Therefore, theoretical models, considering jitter
and long-term fluctuations, were developed and successfully
used in several applications, eg, to enhance the naturalness of
artificial voices in synthesis methods,14 to synthesize expressive
voices in human-computer interfaces,11 to verify speakers in
security systems,10 and to simulate pathologic voices under
controlled conditions.15 Moreover, these models provide a theo-
retical framework to understand period perturbations.5

Nowadays, there is a great number of PPSmodels available in
speech literature. The simplest one consists of a sequence of
constant fundamental periods, not allowing the representation
of aperiodic signals. On the other hand, versatile perturbed
PPS models have been developed using simple stochastic
laws. A straightforward strategy for jitter generation involves
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a constant fundamental period perturbed by random noise. This
approach has been applied in expressive speech synthesis for
neutral voice transformation, where fundamental period and
random noise depend on different emotions.16 Moreover,
Gaussianmixturemodelswere applied to emotional speech syn-
thesis, where different emotions were characterized considering
long-term components as multimodal processes.17 Recently, we
developed a strategy to synthesize both normal and pathologic
perturbed sustained vowels, where PPSs were obtained from a
stochastic model based on jitter factor. This method proved to
be useful for testing algorithms for fundamental frequency esti-
mation15 and for voice synthesis with high perceptual quality.18

All the methods mentioned previously assume that PPSs are
independent and identically distributed stationary stochastic
processes. Nevertheless, examination of real sequences demon-
strates that these hypotheses are unrealistic and, as a conse-
quence, previous methods are not able to suitable represent a
real PPS. Schoentgen19 has summarized the principal features
of PPSs extracted from real normal voices. For the present
work, some of those were considered:

� PPS presents Gaussian probability distribution;
� adjacent periods in a PPS are correlated where correlation

degree varies with voice signals;
� there are structures that reinforce period correlation

(microtremors);
� jitter size is small (0.1–1% relative to fundamental

period);
� jitter appears to be a genuine stochastic phenomenon;
� meaningful statistics of jitter can be obtained from sus-

tained vowel waveforms.

Considering the previously listed features, it is clear that
more versatile models, able to represent complex structures,
are required. The first attempt to understand period correlation
made use of time series analysis methods based on autoregres-
sive (AR) or AR moving average models.20 These methods al-
lowed to represent the existing strong correlation in both
normal and pathologic voices, where model order depended
on the analyzed voices.12,21 Later, Ruinskiy and Lavner14 pro-
posed a jitter bank-based approach to characterize the relative
amplitude and correlation in the PPSs, suitable for naturally
hoarse voice synthesis. Despite the ability to represent correla-
tion information, the previously mentioned methods assume
that PPSs are stationary signals. Although it has been shown
that short-term jitter is indeed a stationary process, PPSs are
not necessarily stationary signals.5

Stochastic difference equations have demonstrated to be use-
ful for modeling complicated random dynamics. Therefore,
these methods provide the required theoretical framework for
perturbed PPSs representation. Using this method, a jitter model
able to represent aperiodic vocal folds oscillations was pro-
posed,19 and it was used to analyze the influence of glottal and
external factors in period perturbations. Moreover, this model
was applied in hoarse voice synthesis, showing that hoarseness
strongly depends on jitter dynamics.22,23 Additionally, artificial
voices synthesized by this method were used to evaluate the
effects of experience and training of voice pathologists in the
correct identification of periods in perturbed sustained vowels,
under controlled conditions of jitter24 and additive noise.25

Other strategies for PPS modeling have been published in
speech literature, eg, strategies based on biomechanical
models,13,26 spectral information of perturbation signals,27 and
nonlinear or chaotic signal processing.28 Although most of pre-
viously mentioned methods have been successfully applied in
voice synthesis tasks and theoretical perturbation modeling,
only few of them can be applied to real PPS analysis. As far
as the authors know, none of these methods incorporates the
principal PPS features pointed out by Schoentgen19 into the
objective analysis of real voice signals. Therefore, in this article,
we propose a state space-based approach to analyze and model
PPSs extracted from real sustained vowels. State-space methods
(SSMs) allow combining the PPS features with model-based,
stochastic, time-series analysis. Within this framework, real
PPSs are analyzed, and stochastic trend and cycle structures
possessing a straightforward relationship with PPS features
are estimated. In addition, the performance of this method is
evaluated through statistical tests.
MATERIALS AND METHODS

PPS samples

In this section, the required procedure to obtain the PPSs and the
principal materials used throughout this article are presented.
Voice database

In this work, the database (DB) developed by theMassachusetts
Eye and Ear Infirmary (MEEI) Voice and Speech Lab29 is used,
which includes sustained vowels =a= of healthy individuals and
patients with a wide range of voice disorders—eg, organic,
neurologic, traumatic, and psychogenic. Voice samples are
accompanied by detailed medical information gathered from
tests and professional opinions. Only voices from healthy par-
ticipants were considered. The participants were 21 males
and 32 females, 38.81 ± 8.49 years and 34.16 ± 7.87 years,
respectively. All samples in the DB were collected in a
controlled environment and the duration of each signal was
3 seconds. The sampling rate and quantization level were
50 kHz and 16 bit, respectively.
PPS calculation

Voice samples were processed to extract PPSs with Praat soft-
ware, developed by Boersma and Weenink30 of the Institute of
Phonetic Sciences, University of Amsterdam. Praat is one of
the most widely used software in objective voice perturbation
analysis. It applies a short-term analysis procedure, where pitch
periods are obtained by waveform-matching methods. The
technique applies autocorrelation analysis to estimate the loca-
tion of fixed points in the glottal cycle, called pitch marks,
where two consecutive waveforms look maximally similar.
Therefore, pitch periods are calculated as the difference be-
tween consecutive pitch marks and the PPS {P_1,P_1,.,P_N}
is obtained, with N the number of elements in the sequence.
In Figure 1, 20 milliseconds of a typical sustained vowel =a=



FIGURE 1. Pitch period sequences estimation. Solid line represents

20 milliseconds of a sustained vowel /a/, in arbitrary units (a.u.), and

dashed lines indicate time pitch marks. Double arrows correspond to

consecutive pitch periods.
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are displayed in solid line and time pitch marks, calculated with
Praat, are superimposed in vertical dashed line. Double-arrows
represent consecutive pitch periods.

In Figure 2, circle marks represent a typical PPS obtained us-
ing the previously explained method, corresponding to a sus-
tained vowel =a= phonated by a healthy female. The random
structure and the long-term fluctuations composing this PPS
can be appreciated. This behavior was also observed in the re-
maining signals of the corpus. Although these signals corre-
spond to stable sustained vowels, the assumption of a constant
fundamental period—implying a constant fundamental
frequency—is not realistic.
State space theory

SSMs, originally proposed by Kalman31 from an engineering
standpoint, have achieved great interest in diverse areas—ie,
statistics, econometrics, medicine, and physics—and have
been widely considered in applications like tracking, process
control, forecasting, and failures detection, among others. In
speech processing in particular, it has been used in fundamental
frequency estimation,32 formant and antiformant tracking,33

and glottal source modeling,34,35 among others. The main
FIGURE 2. A typical PPS, in milliseconds, extracted from a sustained vo

smoothed bxð1ÞkjN trend components. State estimates were calculated consideri
feature of SSMs is that it allows a stochastic model-based rep-
resentation for nonstationary time series.36 The SSMs consid-
ered in this article are presented in the following.
State-space model

A linear Gaussian state-space model (GSSM) is a useful and
versatile instrument for representing stochastic time series.
Mathematically, GSSMs are defined by a system of stochastic
difference equations31:

xkþ1 ¼ Axk þ Bwk; wk � N ð0;QÞ;
zk ¼ Hxk þ vk; vk � N ð0;RÞ; (1)

where k is period index, xk˛ℝp is the unobservable state vector
and zk˛ℝr is the measurable observations vector. Factors
A˛ℝp3p,B˛ℝp3q, andH˛ℝr3p are called state transition, error
and measurements matrices, respectively. Finally, wk˛ℝq and
vk˛ℝr correspond to state and measurement errors with covari-
ance matricesQ˛ℝq3q andR˛ℝr3r, respectively. Errorswk and
vk are assumed to be mutually and serially independent and in-
dependent of the initial state x0.
Model (1) represents the common situation where actual

state of a system, determined by xk, can not be directly observed
or measured, but an ensemble of noisy measurements zk is
available. The first equation rules the state transitions into the
system and is therefore called state transition equation, whereas
the second one controls instantaneous measurement values and
is called observation equation.37 In general, time-dependent
changes in model matrices are allowed.31 Nevertheless, here
we only consider model (1) ruled by a stochastic difference
equation with constant coefficients.
Structural analysis

Structural time series analysis consists of decomposing a signal
of interest into elements possessing a simple and straightforward
interpretation. This framework provides a systematic strategy
for model-based signal processing, helping with the understand-
ing of underlying dynamics in complex processes.36,38 For the
present work, a structural analysis considering trend, cycle,
wel /a/ phonated by a healthy female, along with the filtered bxð1Þkjk and

ng GSSM (I).
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and irregular components is applied. According to this, a PPS is
represented as follows:

Pk ¼ mk þ jk þ εk; εk � N
�
0; s2

ε

�
; (2)

where mk, jk, and εk correspond to trend, cycle, and irregular
components, respectively. Disturbance εk is assumed a
Gaussian serially independent stochastic process. To ensure
the required flexibility, each component is allowed to evolve
stochastically over time.

Considering the features pointed out by Schoentgen, the pre-
viously defined structural components are associated with spe-
cific events in PPS. Trend mk represents the slow long-term
fluctuations, resulting as a consequence of control mechanisms
acting during phonation.5 Cycle jk models microtremors or any
other phenomena reinforcing temporal correlation.19 Finally,
disturbance εk is associated with jitter phenomenon.

In this article, three different alternatives for modeling the
trend component are considered. The simplest form is a local
level T(1) or random walk process, given by,

mkþ1 ¼ mk þ hk; hk � N
�
0; s2

h

�
: (3)

An alternative form corresponds to the so-called integrated
random walk T(2) process, defined as follows:

mkþ1 ¼ mk þ bk;
bkþ1 ¼ bk þ zk; zk � N

�
0; s2

z

�
;

(4)

where bk represents the stochastic slope describing the trend
change. Form T(2) generates a smoother trend component
than the one obtained with T(1). Finally, a more general strategy
is formulated combining the two trend models mentioned pre-
viously, a local linear trend T(3) process, defined as follows:

mkþ1 ¼ mk þ bk þ hk; hk � N
�
0; s2

h

�
;

bkþ1 ¼ bk þ zk; zk � N
�
0; s2

z

�
:

(5)

It can be observed that, assuming s2z/0 and b0 ¼ 0, this
form reduces to T(1). Otherwise, assuming s2h/0, Equation
(5) reduces to T(2). It is interesting to notice that, despite their
simplicity, these forms successfully represent smooth, long-
term, nonstationary, and temporal-dependent time series.38

The stochastic cycle component is represented considering
an AR model AR(r), given by the following equation:

jkþ1 ¼ �a1jk � a2jk�1 �.� arjk�rþ1 þ xk; (6)

where r is model order, xk � N ð0; s2xÞ and minus signs are
used for convenience only. To represent a stochastic cycle
component, the coefficients fa1; a2;.; arg need to be esti-
mated to ensure that AR(r) generates a wide-sense stationary
process.36

Considering the structural representation (2), each PPS can
be expressed in the form of a GSSM. In particular, observation
zk corresponds to element Pk in a PPS, for k ¼ 1,.,N. Given
that each PPS is a univariate series; hereafter, the measurement
dimension becomes r ¼ 1. As an example, assume this
sequence was generated by the T(3) and the AR(r) processes.
Combining trend and cycle components in a vector form, the
state vector in (1) can be defined as follows:

xk ¼
�
x
ð1Þ
k x

ð2Þ
k x

ð3Þ
k x

ð4Þ
k . x

ðp�1Þ
k x

ðpÞ
k

�T

¼ �
mk bk jk jk�1 . jk�rþ2 jk�rþ1

�T
:

Then, considering (5) and (6), the state transition matrix can
be formulated as:

A ¼

0
BBBBBBBB@

1 1 0 0 . 0 0
0 1 0 0 . 0 0
0 0 �a1 �a2 . �ar�1 �ar
0 0 1 0 . 0 0
0 0 0 1 . 0 0
« « « « 1 « «
0 0 0 0 . 1 0

1
CCCCCCCCA
;

and, similarly, error and observation matrices can respectively
be defined through expressions:

B ¼

0
BBBBBB@

1 0 0
0 1 0
0 0 1
0 0 0
« « «
0 0 0

1
CCCCCCA

and H ¼ ð 1 0 1 0 . 0 Þ:

Structural disturbances are gathered together, then state and
measurement error vectors are defined by the following
equation:

wk ¼ ðhk zk xk ÞT and vk ¼ εk;
with covariance matrices:

Q ¼
0
@ s2

h 0 0

0 s2
z 0

0 0 s2
x

1
A and R ¼ s2

ε
;

respectively. These covariance matrices arise from the hypoth-
esis that disturbance processes εk, hk, zk and xk are serially and
mutually independent.

It can be observed that state space and error dimensions, p
and q respectively, are dependent on the components consid-
ered in the structural analysis. In Table 1, the compositions of
the different structural models considered in this article are pre-
sented, sorted in order of increasing model complexity.
State filtering

State filtering, also called Kalman filtering, is an iterated for-
ward method used for estimating the unobserved state vector
xk, considering past and present system information.31 Filtering
concerns on the calculation of conditional expected valuesbxkjk ¼ Eðxkjz1;.; zkÞ for period index k ¼ 1,.,N. This is an
optimal procedure, meaning that it computes the minimum
mean square linear estimator conditioned on the given



TABLE 1.

Structural State Space Models

GSSM Components p q

(I) T(1) 1 1
(II) T(2) 2 1
(III) T(3) 2 2
(IV) T(3) + AR(2) 4 3
(V) T(3) + AR(4) 6 3
(VI) T(3) + AR(6) 8 3
(VII) T(3) + AR(8) 10 3

Notes: Composition of GSSMs considered in this work according to state
space dimension p and error dimension q, where measurement dimen-
sion r ¼ 1 owing to PPS is univariate.
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observations {z1,.,zk}. Because of its simplicity and robust-
ness, it becomes a useful method in real-time applications.

In this article, we applied the so-called contemporaneous
Kalman filter.37,39 The algorithm consists of the following
three steps:

1. Prediction:

bxkjk�1 ¼ Abxk�1jk�1;
Pkjk�1 ¼ APk�1jk�1A

T þ BQBT;

2. Innovation:

byk ¼ zk �Hbxkjk�1;
Fk ¼ HPkjk�1H

T þ R;

3. Correction:

Kk ¼ Pkjk�1H
TF�1

k ;bxkjk ¼ bxkjk�1 þKkyk;
Pkjk ¼ ðI�KkHÞPkjk�1;

where bxkjk�1 and bxkjk are the a priori and a posteriori filtered
state vectors, with covariance matrices Pkjk�1 and Pkjk, respec-
tively. Factor byk is the innovation or one-step ahead forecast er-
ror, with covariance matrix Fk, and Kk is the so-called Kalman
gain matrix. For initialization, the simplest strategy is to assumebx0j0 � N ðx0;P0Þ, with x0˛ℝp and P0˛ℝp3p known. In this
work, an alternative procedure called diffuse initialization is
considered. Its theoretical background and main features are
discussed further in the following.

Figure 2 shows, superimposed, the corresponding trend state
estimate bxð1Þkjk , calculated through filtering procedure and
considering GSSM ðIÞ. It can be seen that the estimates accord-
ingly represent the slow long-term dynamics in the PPS. This is
better represented in the enlarged portion displayed in Figure 2.
State smoothing

State smoothing is an alternativemethod for state vector estima-
tion, which takes advantage of the entire observation sequence.
In particular, in this article the so-called fixed interval smooth-
ing method was considered.37 This is an iterated backward
procedure, which is applied after the forward filtering method
was performed. Smoothing concerns the smoothed state vector
calculation defined by the conditional expected valuesbxkjN ¼ Eðxkjz1;.; zNÞ; for period index k ¼ 1;.;N. This
is a noncausal method, which adds future information in the
state estimation procedure and is only applicable in situations
where stored signals are considered or in delay-tolerant real-
time applications.40

Fixed interval smoothing algorithm consists of the following
equations:

Lk ¼ AðI�KkHÞ;
rk�1 ¼ HTF�1

k yk þ LT
k rk;

Nk�1 ¼ HTF�1
k Hþ LT

kNkLk;bxkjN ¼ bxkjk�1 þ Pkjk�1rk�1;
PkjN ¼ Pkjk�1 � Pkjk�1Nk�1Pkjk�1

where bxkjN corresponds to smoothed state vector, with covari-
ance matrix PkjN. In this article, the factors Lk, rk�1, and
Nk�1 are considered auxiliary parameters.37

In Figure 2, the trend state estimate bxð1ÞkjN calculated through
smoothing method and considering GSSM ðIÞ is shown. It
can be seen that the smoothed trend presents a less fluctuating
behavior than the filtered one. This phenomenon gave rise to
the term state smoothing. Moreover, in the enlarged portion
of Figure 2, similarities and differences between filtered and
smoothed trends can be better appreciated. These features are
analyzed in more detail in the following.

Diffuse state filtering and smoothing

As previously mentioned, filtering and smoothing methods
depend on initial state vector x0. This information is totally or
partially unknown; hence, these conditions need to be properly
fixed or estimated. In other situations, an ensemble of similar
signals is analyzed taking the same GSSM, making imperative
to know or estimate appropriate initial state vector for each
signal. Usually, the setting of x0 becomes a complicated and
cumbersome task in practice. Fortunately, there is an analytical
solution to the initialization problem that is both, easy to imple-
ment and computationally efficient.39,40 It is based on a
stochastic model for initial conditions given by the following
equation:

x0 ¼ bx0 þ Tdþ B0w0; w0 � N ð0;Q0Þ; (7)

where bx0˛ℝp is known, d˛ℝs is unknown, andw0˛ℝðp�sÞ. The
selection matricesT˛ℝp3s andB0˛ℝp3ðp�sÞ consist of columns
of the identity matrix Ip, under the restriction T

TB0 ¼ 0. More-
over, it is assumed that matrix Q0˛ℝðp�sÞ3ðp�sÞ is positive def-
inite and known.
In model (7), unknown information is represented by the

diffuse vector d, assuming d � N ð0; kIsÞ. Considering the
diffuse model (7) and the condition k/N, an alternative
filtering method independent of initial conditions is obtained.
This method is called diffuse filtering. In practice, a few iter-
ations d are required to lose the dependence of state estimates



FIGURE 3. Flowchart describing the parameter estimation proce-

dure for GSSMs ðIVÞ, ðVÞ, ðVIÞ, and ðVIIÞ. The method is initialized

with observations and the chosen GSSM, then covariance matrices Q

and R and AR coefficients fa1; a2;.; arg are optimally estimated.
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on k, where generally d � N40. Estimates from k ¼ dþ 1 to
N are obtained using the original Kalman filtering. Smoothed
estimates are calculated from k ¼ N to dþ 1 applying state
smoothing procedure; whereas the remaining states are ob-
tained through diffuse smoothing, a modified smoothing
algorithm considering again the model presented in (7) and
the condition k/N. Here, diffuse filtering and smoothing
methods proposed by Koopman and Durbin39 were
implemented.

Parameter estimation

As can be observed in Equation (1), GSSMs depend on some
unknown parameters Q, which need to be estimated from ob-
servations. Here, the unknown parameters are the covariance
matricesQ andR, and the AR coefficients fa1; a2;.; arg. Stra-
tegies for parameter estimation based on optimization proce-
dures consisting on computationally maximize the associated
log-likelihood function logLðQjz1;.; zNÞ have been pro-
posed.40,41 This approach requires solving the optimization
problem:

cQ ¼ arg max
Q˛D

logLðQjz1;.; zNÞ; (8)

where D is the domain of definition of Q, and cQ is the so-
called maximum likelihood estimate. Generally, only relative
values of logLðQjz1;.; zNÞ are important in this optimiza-
tion procedure. Because of the diffuse methods, in this article,
the diffuse version of log-likelihood function is applied.37

In the case of GSSMs ðIÞ, ðIIÞ, and ðIIIÞ, the parameter esti-
mation procedure is simple because the calculation of AR coef-
ficients is not required. Therefore, covariance matricesQ andR
are estimated combining both expectation and maximization
(E-M) algorithm and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. Otherwise, an iterated procedure was applied
to solve problem (8), considering observations fz1;.; zNg and
a particular GSSMðjÞ, where j˛fðIVÞ;.; ðVIIÞg. The flow-
chart of Figure 3 shows this procedure.

First considering the simplest GSSM ðIÞ, matrices R and Q
are estimated applying the E-M algorithm, starting from random
initial matrices, and state vector estimates are obtained through
filtering and smoothing methods. Error bekjN ¼ zk � bxð1ÞkjN is
computed, where bxð1ÞkjN is the trend component in the smoothed
state vector. Given that GSSM ðIÞ is not capable of representing
the cycle component, this information is completely preserved
in bekjN. Therefore, parameters fa1; a2;.; arg are roughly esti-
mated from bekjN through the linear prediction (LP) method,
which ensures that these coefficients generate a wide-sense
stationary AR model. Then matrix A in GSSMðjÞ is defined.

Then, matricesR andQ are adjusted again by E-M algorithm
and the state vector estimates are obtained through filtering
and smoothing methods, considering the GSSM ðjÞ. ErrorbekjN ¼ zk � bxð1ÞkjN is calculated, preserving cycle information.
Next, fa1; a2;.; arg coefficients are estimated from bekjN,
through the LP method, and then matrix A in GSSM ðjÞ is up-
dated. The Euclidean distance between present and previously
estimated AR coefficients is calculated and the convergence
criterion is checked. If this distance is above a set threshold,
additional parameter estimations are required. Otherwise, it is
considered that the AR coefficient estimations are good enough
and, finally, a precise covariance matrices calculation through
BFGS method is performed.

The proposed optimization strategy has useful features. As it
was previously stated, the covariance matrices are adjusted each
iteration and, then, AR coefficients are estimated. This strategy
allows separating the problem (8) into two simple and easy to
solve subproblems and, as a consequence, the convergence of
the optimization procedure is accelerated. Additionally, the LP
method guarantees that the obtained AR coefficients generate
a wide-sense stationary process, which is an essential require-
ment in time series analysis. Finally, this procedure has shown,
in preliminary studies, to be robust with respect to random
initialization of covariance matrices.
Diagnostic checking

Essential hypotheses concerning GSSMs in general, and their
applicability to structural analysis in particular, were presented
previously. It is assumed that state and measurement errors
behave normally, with zero mean and constant covariance



FIGURE 4. Structural analysis of a PPS. Top: PPS, in milliseconds, extracted from a sustained vowel =a= phonated by a healthy female, along with

the filtered bxð1Þkjk and smoothed bxð1ÞkjN trend components. Bottom: filtered bxð2Þkjk and smoothed bxð2ÞkjN estimates corresponding to stochastic slope in the

trend. State estimates were calculated through SSMs and considering GSSM ðIIÞ.
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matrices and are serially and mutually independent. Under these
assumptions and the fact that r ¼ 1, the standard one-step ahead
forecast error38:

ek ¼ byk

F
1=2
k

; (9)

is a normally distributed and serially independent univariate
sequence, with zero mean and unit variance. Therefore, the stan-
dard error (9) becomes a useful instrument to evaluate the capa-
bility of GSSM and structural analysis method for accurately
representing PPSs. In this work, diagnostic tests are considered
to statistically analyze the standard errors ek obtained from the
state space representation of the PPS corpus. Under the null-
hypothesis, ek is a normally distributed, homoscedastic, white
random process with zero mean and unit variance.
RESULTS

In this section, SSMs for structural analysis are applied to PPS
modeling, and the results are presented. Also, the proposed
method is evaluated through statistical and graphical tools.
State space methods

In Figure 2, we show a PPS from a female participant and trend
estimates calculated through filtering and smoothing methods,
considering the simplest GSSM ðIÞ. Notice that this PPS corre-
sponds to a sustained vowel =a= presenting a fairly stable
fundamental period. Furthermore, it can be observed that both
filtered and smoothed states are suitable trend component rep-
resentations, carrying information related to an individual itself
and its abilities and skills to phonate.6 Nevertheless, the flexi-
bility and modeling capabilities of GSSM ðIÞ are extremely
limited, and therefore, this model is not suitable for represent-
ing the different PPS features presented in the Introduction
appropriately.19

A different situation can be appreciated in Figure 4. At top,
the PPS corresponding to another healthy female is plotted.
Although it was also extracted from a sustained vowel, this
sequence presents oscillations with abrupt transitions. This is
a characteristic phenomenon of persons who are not able to
phonate sustained vowels with a stable fundamental period14

and occurs as a result of the action of control systems, both
voluntary and involuntary, acting during phonation.5 The pro-
posed method was applied to represent this PPS, considering
a GSSM ðIIÞ. Trend components bxð1Þkjk and bxð1ÞkjN calculated
from filtering and smoothing methods, respectively, are shown
superimposed at top of Figure 4. It can be concluded that both
estimates represent fluctuations and transitions in the PPS accu-
rately. At the bottom of Figure 4, components bxð2Þkjk and bxð2ÞkjN
are displayed corresponding to estimates of the stochastic slope
in the trend. These estimates properly characterize the dy-
namics of this PPS and seem to anticipate abrupt transitions.
Therefore, this result suggests that slope estimates are useful
tools to analyze the stability of a sustained vowel. A time delay
between filtered and smoothed states is appreciated in Figure 4.
This phenomenon is analyzed in the following.
In Figure 5, structural analysis of a PPS corresponding to a

healthy male and considering GSSM ðVÞ is presented. At the
top, this PPS is displayed, showing a stable dynamic with small
oscillations. Superimposed trend component estimates bxð1Þkjk andbxð1ÞkjN obtained through filtering and smoothing methods, respec-
tively, are shown. At center, stochastic slope estimates bxð2Þkjk andbxð2ÞkjN are displayed. It can be appreciated that the stability of the
analyzed PPS is clearly represented by the combination of trend
and slope estimates because trends properly represent the slow
long-term dynamics in the PPS, although slope components pre-
sent near-zero values corresponding to small transitions. At the



TABLE 2.

Statistical Analysis of Standard Errors ek

GSSM c2 (%) t (%) H (%) LB (%)

(I) 86.79 100.00 86.79 41.51
(II) 90.57 100.00 81.13 41.17
(III) 88.68 100.00 83.02 50.94
(IV) 86.79 100.00 86.79 71.70
(V) 90.57 100.00 88.68 79.25
(VI) 86.79 100.00 84.91 84.91
(VII) 90.57 100.00 84.91 86.79

Notes: Percentage of the PPS corpus failing to reject the null hypotheses
of normality (c2test), zero mean (t test), homoscedasticity (H test), and
whiteness (LB test), according to different GSSMs. Significance level a
¼ 0.05 for all tests

FIGURE 5. Structural analysis of a PPS. Top: PPS, in milliseconds, extracted from a sustained vowel =a= phonated by a healthy male, along with

the filtered bxð1Þkjk and smoothed bxð1ÞkjN trend components. Center: filtered bxð2Þkjk and smoothed bxð2ÞkjN estimates corresponding to stochastic slope in the

trend. Bottom: filtered bxð3Þkjk and smoothed bxð3ÞkjN estimates corresponding to the AR cycle component. State estimates were calculated through

SSMs and considering GSSM ðVÞ.
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bottom, filtered bxð3Þkjk and smoothed bxð3ÞkjN cycle estimates, accord-
ing to an AR(4), are shown. By analyzing these sequences, it is
noticeable that this PPS presents an AR component reinforcing
the temporal correlation. This phenomenon corresponds to the
features observed in real PPSs19 and is properly captured by
the proposed method. The remaining elements on filtered and
smoothed state vectors do not add further information because
they correspond to lagged version of cycle estimates.

As stated before, thePPS inFigure 4 shows ahighly oscillatory
dynamic,which is explained by trend and slope components. The
PPS in Figure 5 instead exhibits a stable dynamic with small
oscillations. In this case, the level is represented by the trend
and a near-zero slope, whereas the oscillations are explained
by the cycle component. Similar decompositions were obtained
for the remaining PPSs in the corpus. Therefore, the proposed
method seems to be effective and convenient for modeling com-
plex PPS behaviors by means of simple stochastic components
capturing the different features that can be involved.

The performance of filtering and smoothing methods can be
compared by analyzing the estimates, obtained through these
methods, and studying Figures 4 and 5. First, the noncausality
in smoothed states can be appreciated in Figure 4. Because of
the fact that only past and present information are considered
in filtering, filtered states are lagging behind PPS. Smoothing
method adds future information in state estimations and, there-
fore, no lag-time is observed. Second, the smoothing method
generates more stable and less fluctuating state estimates than
filtering at the expense of an increased computational cost.
Third, by analyzing the filtered Pkjk and smoothed PkjN state
covariance matrices, we observed that smoothed states achieve
the lowest variance, becoming more accurate estimates, than
filtered ones. Finally, filtered states show a transient at the
beginning, which is necessary to stabilize the estimation
process. Particularly, this phenomenon can be easily appreci-
ated at the center of Figure 5. By contrast, no transients are
appreciated in smoothed states. Accordingly, the smoothed
estimates are preferred for PPS modeling.

Statistical analysis

As stated previously, when a PPS is correctly modeled, given a
GSSM, standard error ek behaves as white Gaussian noise, with
zero mean and constant variance. In this section, capabilities of
the proposed method to model the PPS corpus are evaluated.
For this purpose, every PPS was analyzed, taking different
GSSM, and then the corresponding ek was calculated. The cen-
tral third of ek, approximately 1 second, was considered for the



FIGURE 6. Subjective goodness of fit analysis. Top left: standard error ek, central third, corresponding to PPS in Figure 5, along with a 95% stan-

dard Gaussian confidence interval. Top right: histogram of ek and theoretical standard normal distribution. Bottom left: Normal plot comparing ek
versus the theoretical standard normal distribution. Bottom right: correlogram of ek for lags 0,.,90, along with a 95% white process confidence

interval.
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evaluation because most voice signals showed the most stable
behavior in this portion.

Different objective statistical tests were considered in the
analysis of ek. Table 2 summarizes the results achieved with
these statistical tests according to the GSSMs presented in
Table 1. First, nonparametric c2 test was applied taking as a
null hypothesis that ek is Gaussian, against the alternative that
error is not Gaussian distributed.42 In the second column of
Table 2, the percentage of sequences in the corpus for which
ek fails to reject the null hypothesis is presented. This shows
that assumption of Gaussian behavior is appropriate for most
sequences, regardless the differences in GSSM structures.
Next, zero mean assumption was examined, applying a tradi-
tional t test with zero mean as the null hypothesis. Third column
of Table 2 presents the percentage of signals failing to reject this
null hypothesis. It can be deduced that, for every Gaussian ek,
there is not enough evidence to reject the null hypothesis and,
therefore, the zero mean assumption is considered appropriate.

Next, the standard error variances were evaluated consid-
ering the H test presented in the study by Harvey and Shep-
hard,36 taking homoscedasticity (constant variance) as a null
hypothesis, against the alternative of heteroscedasticity. Fourth
column of Table 2 presents the percentage of errors ek which
fails to reject the null hypothesis, considering the proposed
GSSMs. As a result, it is concluded that homoscedasticity
assumption is appropriate for most sequences. Finally, white-
ness assumption (no temporal correlation) is analyzed accord-
ing to the test proposed by Ljung and Box.43 In this LB test,
whiteness is assumed as a null hypothesis, against the alterna-
tive of ek presenting some correlation. In the fifth column of
Table 2, percentage of errors ek of the PPS corpus failing to
reject the null hypothesis is also reported. For GSSMs
fðIÞ;.; ðIIIÞg more than half of error sequences rejected the
null hypothesis because of some residual temporal correlation.
In contrast, the AR structures incorporated in GSSMs
fðIVÞ;.; ðVIIÞg improve the representation capabilities of
these models and, therefore, the portion of sequences failing
to reject the null hypothesis increases considerably. In view
of the previous analysis, it can be concluded that whiteness is
the most restrictive assumption in PPS structural analysis.
Subjective methods for goodness of fit analysis were also

considered. Graphical representations of standard error ek allow
evaluating the performance of the proposed method for PPS
modeling. In Figure 6, different graphical representations are
shown, corresponding to the PPS displayed in Figure 5. The
top left subfigure shows error ek (central third) obtained from
the filtering method and considering GSSM ðVÞ, along with a
95% standard Gaussian confidence interval in dashed lines.
Only 5.35% of the data (10 elements) are outside the confidence
interval. The histogram of ek is presented in the top right corner
of the figure, along with the theoretical standard normal distri-
bution function in dashed line. The bottom left subfigure shows
a normal plot, where error ek distribution is compared against
the standard normal distribution. Here, the solid line represents
the ideal situation where both distributions are equal. From
these three subfigures, it can be appreciated that the probability
distribution of error ek is similar to the standard normal distri-
bution, except for a few extreme values in both tails of the
function, and that zero mean is a valid assumption.
Furthermore, the correlogram of ek, for lags l ¼ 0;.; 90, is

displayed in the bottom right subfigure, along with a 95% white
process confidence interval in dashed line. Here, only 3.33% of
the data (three elements) in the correlogram remains outside the
confidence interval; therefore, there is not enough evidence to
reject the assumption that the error ek behaves like a white pro-
cess. In summary, these graphical methods show that error ek



TABLE 4.

Accumulated Percentage of the PPS Corpus Correctly

Modeled With the Proposed Methodology, According to

Progressive Increases in GSSMs Complexity (p + q +r)

Complexity GSSM Set a ¼ 0.05 (%) a ¼ 0.01 (%)

3 {(I)} 32.08 45.28
4 {(I),(II)} 45.28 64.15
5 {(I),.,(III)} 47.17 64.15
8 {(I),.,(IV)} 66.04 77.36
10 {(I),.,(V)} 73.58 84.91
12 {(I),.,(VI)} 75.47 84.91
14 {(I),.,(VII)} 75.47 86.79

Notes: Significance levels a ¼ 0.05 and a ¼ 0.01 were considered.

TABLE 3.

Percentage of the PPS Corpus Correctly Modeled With

the Proposed Methodology, According to Different

GSSMs

GSSM a ¼ 0.05 (%) a ¼ 0.01 (%)

(I) 32.08 45.28
(II) 37.74 58.49
(III) 41.51 54.72
(IV) 54.72 73.58
(V) 66.04 81.13
(VI) 64.15 81.13
(VII) 69.81 81.13

Notes: Significance levels a ¼ 0.05 and a ¼ 0.01 were considered
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can be considered a white normal process, white zero mean and
unit variance, confirming that the PPS under analysis is
correctly modeled by the proposed method, taking GSSM
ðVÞ. These graphical methods allowed to further understand
the results supplied by the statistical analysis presented in
Table 2.

Table 3 presents the percentage of PPSs in the corpus failing
to reject the null hypothesis for all statistical tests of Table 2 at
the same time, depending on the GSSMs proposed. In this anal-
ysis, significance levels a ¼ 0:05 and a ¼ 0:01 were consid-
ered, where the first significance level is more restrictive than
the second one. It can be appreciated that by increasing
GSSM complexity, improving its modeling capabilities, more
sequences could be correctly modeled but at the cost of consid-
erable increasing the computational requirements for the SSMs.
Moreover, when GSSM complexity increases, there are notice-
able differences in the performances between GSSMs ðIIIÞ,
ðIVÞ, and ðVÞ, but for the remaining models, these differences
are not so evident. This phenomenon demonstrates the exis-
tence of a cycle component in most real PPSs, which are not
correctly modeled by simple GSSMs. Nevertheless, this dy-
namic can be suitable represented by applying more versatile
GSSMs.

In the previous analysis, the performance of each model was
individually evaluated. Nevertheless, this experiment did not
consider that some PPSs were correctly modeled only with
one particular GSSM, whereas its representation became worse
when the model changed (even with more complex GSSMs).
Considering this situation, Table 4 introduces the accumulated
percentage of correctly modeled PPSs, depending on increasing
in GSSM complexity. Here, significance levels a ¼ 0:05 and
a ¼ 0:01 were considered. In this context, complexity is given
by the maximum total dimension ðpþ qþ rÞ in the embedded
GSSM sets, presented in second column in Table 4. This param-
eter indicates the capability of each set to correctly represent
PPSs. As expected, the percentage of correctly represented
PPSs, for a given complexity level, is higher than the percentage
provided by the previous analysis showed on Table 3. This oc-
curs because each correctly modeled sequence is accumulated,
regardless the GSSM. In addition, it can be appreciated, once
again, the markedly difference in the performances between
GSSMs ðIIIÞ, ðIVÞ, and ðVÞ because of the incorporation of
an AR component in the GSSM structure.

Finally, last row in Table 4 shows the total percentage of PPSs
in the corpus correctly modeled in this work. It can be seen that
more than 75% considering a ¼ 0:05, or more than 86% with
a ¼ 0:01, of the corpus was correctly modeled. This result pro-
vide enough evidence to concluded that structural analysis,
based on SSMs, is a suitable method for real PPS modeling.
CONCLUSIONS

In this work, we have proposed a state space-based method for
the structural representation of perturbed PPSs. Stochastic
Gaussian linear state space models were developed, consid-
ering the principal features observed on real period sequences
and different complexity levels.

For each sequence, structural trend, slope, and cycle compo-
nents were optimally estimated using the proposed approach.
Although trend and slope estimates proved to properly repre-
sent slow long-term dynamics which are normally associated
with prosody or intonation, cycle estimate preserved the AR
component present in the sequences. The obtained results sug-
gest that stochastic components could be associated with events
occurring in phonation. In particular, the trend captures adapta-
tion mechanisms in pitch periods, whereas cycle components
effectively represent microtremors or any other phenomenon
reinforcing temporal correlation. Objective statistical tests
demonstrated that most signals in the considered corpus could
be correctly represented. Therefore, the proposed method has
shown to be a suitable strategy for perturbed PPSs modeling, al-
lowing to generate statistical estimates carrying information
related to the phonation process.

Specialists have extensively argued that short-term random
period disturbances are important in clinical applications, espe-
cially in presence of pathologies. We have shown that the state
space models become suitable theoretical frameworks to delve
into this assertion because these models incorporate random
perturbations into their structure. Future work will focus on
optimal estimation and analysis of period perturbations, consid-
ering both healthy and pathologic signals. Also, the incorpora-
tion of the proposed method in natural voice synthesis systems
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to improve the perceptual quality of artificial voices will be
considered.
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