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We compare the quantum and classical properties of the (Quantum) Isoperiodic Stable Structures
– (Q)ISSs – which organize the parameter space of a paradigmatic dissipative ratchet model, i.e. the
dissipative modified kicked rotator. We study the spectral behavior of the corresponding classical
Perron-Frobenius operators with thermal noise and the quantum superoperators without it for
small ~eff values. We find a remarkable similarity between the classical and quantum spectra.
This finding significantly extends previous results – obtained for the mean currents and asymptotic
distributions only – and on the other hand unveils a classical to quantum correspondence mechanism
where the classical noise is qualitatively different from the quantum one. This is crucial not only
for simple attractors but also for chaotic ones, where just analyzing the asymptotic distribution
reveals insufficient. Moreover, we provide with a detailed characterization of relevant eigenvectors
by means of the corresponding Weyl-Wigner distributions, in order to better identify similarities
and differences. Finally, this model being generic, it allows us to conjecture that this classical to
quantum correspondence mechanism is a universal feature of dissipative systems.

PACS numbers: 05.45.Mt, 03.65.Yz, 05.60.Gg

I. INTRODUCTION

Research in directed transport has been steadily evolv-
ing since the main idea re-emerged in the 60’s [1] to
consolidate into a well established field nowadays [2–4].
Out of equilibrium spatiotemporal periodic systems are
at the heart of these investigations, where the second law
of thermodynamics no longer applies. Many disciplines
have found the concept of ratchet transport very useful,
they include such different areas as biology [5] on one end
and nanotechnology [6] on the other. In chemistry, for ex-
ample isomerization reactions have been recently charac-
terized by directed transport properties [7]. Cold atoms
[8, 9] and also Bose-Einstein condensates have been trans-
ported, these latter by means of quantum ratchet accel-
erators [10], where the current has no classical counter-
part [11] and the energy grows ballistically [12, 13]. This
short list is incomplete and many other theoretical and
experimental areas have been omitted here.

Breaking all spatiotemporal symmetries leading to mo-
mentum inversion [14] allows a net current. In particu-
lar, we are interested in deterministic ratchets with dis-
sipation which have been historically associated with a
classical asymmetric chaotic attractor [15]. Dissipative
quantum ratchets, interesting for cold atoms experiments
have been introduced in [16]. In recent works, the pa-
rameter space of the classical counterpart of this sys-
tem has been studied in detail [17]. These new results
have pointed out that not only chaotic attractors, but
also several families of isoperiodic stable structures (ISSs,
which are Lyapunov stable islands of different periods
grouped into structures in parameter space, sometimes
called “shrimps” due to their shape) have a fundamental
role in understanding the current behavior. Moreover,
they have been identified as a means to obtain optimal
ratchet transport which is temperature resistant [18]. It
is worth noticing that these ISSs are a common feature,

found in generic dissipative dynamical systems. In fact,
some of their properties have recently been studied in the
dissipative kicked rotator model [19].

Their quantum manifestations, the so-called QISSs
have been investigated in [20]. There it has been found
that the QISSs look like the quantum chaotic attractors
at their vicinity in parameter space (these corresponding
to values of the parameters where the classical counter-
parts are already chaotic), with the exception of compar-
atively few cases. Recently, a complete parameter space
picture has been obtained for the quantum system [21].
It was also shown in [20] that a thermal coarse-graining
of the classical dynamical equations (i.e., adding thermal
noise of the order of ~eff) is sufficient to obtain a good ap-
proximation for the QISSs. In this paper we carry out a
detailed spectral study of both the Perron-Frobenius op-
erators associated with the classical evolution with ther-
mal noise and the quantum superoperators without it,
finding a great similarity between them. A known re-
sult in the decoherence literature [22] states that diffusive
noise makes the quantum mechanical spectrum converge
to that of the coarse grained Perron-Frobenius, the dif-
fusive process being applied to both the classical and the
quantum cases. Here, we find that for dissipative systems
an effective way to reach the classical to quantum corre-
spondence consists in applying a thermal (diffusive-like)
noise solely at the classical level. We underline that this
is not meant to be an example of the emergence of clas-
sicality [23]. It is important to say that in this work all
the possible representative asymptotic cases have been
considered, i.e. those in which the classical limiting set
is either simple (in its main forms) or chaotic. Neverthe-
less a systematic study is left for the future. Finally, we
study the similarities and differences of relevant eigenvec-
tors with the help of Weyl-Wigner distributions in phase
space. Thanks to this we are able to identify the limits
of this correspondence mechanism.
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This paper is organized as follows: In Sec. II we
present the system under study, i.e. a modified kicked
rotator with dissipation and the methods we use to in-
vestigate it from the classical to quantum correspondence
perspective. We introduce the Perron-Frobenius oper-
ator and the quantum superoperator. In Sec. III we
analyze their spectra, showing the classical to quantum
correspondence details. In Sec. IV we look at the behav-
ior at the phase space level by means of the Weyl-Wigner
distributions of the eigenvectors. Finally, in Sec. V we
present our conclusions.

II. MODEL AND CALCULATION METHODS

We investigate the paradigmatic dissipative ratchet
system given by the map [16, 18]

{

n = γn+ k[sin(x) + a sin(2x+ φ)],
x = x+ τn,

(1)

where n is the momentum variable conjugated to x, τ is
the period of the map and γ is the dissipation parame-
ter. This represents a particle moving in one dimension
[x ∈ (−∞,+∞)] under the influence of a periodic kicked
asymmetric potential:

V (x, t) = k
[

cos(x) +
a

2
cos(2x+ φ)

]

+∞
∑

m=−∞

δ(t−mτ),

(2)
where τ is the kicking period, also having a dissipation
given by 0 ≤ γ ≤ 1. When γ = 0 the particle is in
the overdamped regime and when γ = 1 the evolution is
conservative. Breaking the spatial (a 6= 0 and φ 6= mπ)
and temporal (γ 6= 1) symmetries allows the net current
generation. As is customary in this model the classi-
cal dynamics can be made dependent on the parameter
K = kτ by means of introducing the rescaled momentum
p = τn. In order to consider a thermal noise of the order
of ~eff , the effective Planck constant which will be intro-
duced in the quantum version, we simply change n′ → n
in Eq. 1, where n′ = n + ξ. We can associate the noise
variable ξ with a temperature T by means of the rela-
tion < ξ2 >= 2(1 − γ)kBT , where kB is the Boltzmann
constant (which we take equal to 1). The factor (1 − γ)
has been taken to avoid having noise in the conservative
limit, however many other choices are possible. Finally
we have that T ≃ ~eff/[2(1− γ)].
Quantizing this model (without thermal noise) is

straightforward: x → x̂, n → n̂ = −i(d/dx) (~ = 1).
Since [x̂, p̂] = iτ (where p̂ = τ n̂), the effective Planck
constant is ~eff = τ . The classical limit corresponds to
~eff → 0, while K = ~effk remains constant. Dissipation
at the quantum level is introduced by means of the mas-
ter equation [24] for the density operator ρ̂ of the system

˙̂ρ = −i[Ĥs, ρ̂]−
1

2

2
∑

µ=1

{L̂†
µL̂µ, ρ̂}+

2
∑

µ=1

L̂µρ̂L̂
†
µ ≡ Λρ. (3)

Here Ĥs = n̂2/2+V (x̂, t) is the system Hamiltonian, { , }
is the anticommutator, and L̂µ are the Lindblad opera-
tors given by [25, 26]

L̂1 = g
∑

n

√
n+ 1 |n〉 〈n+ 1|,

L̂2 = g
∑

n

√
n+ 1 | − n〉 〈−n− 1|, (4)

with n = 0, 1, ... and g =
√
− ln γ (due to the Ehrenfest

theorem).
The classical densities in phase space evolve with

the Perron-Frobenius operator arising from the Liouville
equation corresponding to the map (1). A coarse grained
approximation to the Perron-Frobenius operator is ob-
tained by means of the Ulam method [27], based on a
discretization of the phase space. This method has been
recently used to study dynamical maps very successfully
[28]. To construct the Ulam matrix S, the phase space is
divided into M2 cells and then ntr random points from
each cell j are propagated according to the classical map.
The elements Sij of the M2 ×M2 matrix S are given by
Sij =

nij

ntr

, where nij is the number of trajectories arriv-
ing to cell i from the cell j. This discretization introduces
an effective diffusive noise of order hPF

eff ∝ 1
M

. For ho-
mogeneous systems and sufficiently large values of M the
Ulam method is expected to converge to the spectrum of
the continuous system. When thermal noise is included
in the classical calculation we have checked that the re-
sults obtained from the diagonalization are independent
of the value of hPF

eff as long as hPF
eff ≤ heff , i.e., the coarse

graining inherent to the Ulam procedure is smaller than
the thermal fluctuations. In the following we will refer to
the Perron-Frobenius operator but the calculations are
understood to be done with its Ulam approximation.
In the quantum case the evolution of the density ma-

trix is given by ρt+1 = eΛρt, where eΛ is a non-unital
superoperator of dimension N2 ×N2 constructed by nu-
merical integration of Eq. 3. Here heff ∝ 1

N
.

For the diagonalization of S (with and without ther-
mal noise) and eΛ we have used the Arnoldi method,
which allowed us to go to large dimensions, correspond-
ing to 0.15 < hPF

eff < 0.247 for the classical matrix and
0.082 < heff < 0.247 for the quantum one. We should
point out that these values mean diagonalizing matri-
ces of a maximum size of 160 000 × 160 000 for the
classical case (which takes longer to construct) and of
531 441 × 531 441 for the quantum case. Of course,

we have compared similar ~
(PF)
eff sizes in both cases, ex-

pecting to improve the construction time for the classical
matrix in the future, in order to compare with the already
obtained quantum results.

III. CLASSICAL TO QUANTUM

CORRESPONDENCE FROM SPECTRA

We will first look at the properties of the spectra of the
Perron-Frobenius operator for the representative cases
studied in [20]. These cases correspond to the three
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FIG. 1. (Color online) Phase space distributions correspond-
ing to the ISSs labeled by B1 (γ = 0.2, k = 8.2, first row), C

−1

(γ = 0.64, k = 5.6, middle row), and D
−1 (γ = 0.29, k = 11.9,

bottom row). Lower to higher values of these distributions
go from white to (rainbow colors) grays. Left column shows
the classical Poincaré maps while the right column shows the
Husimi functions. In (a), (c), and (e) the periodic points of
each ISS are marked by means of a black dot. The surround-
ing distributions correspond to the same ISSs with a thermal
noise of the order of ~eff . In (b), (d), and (f) ~eff ≃ 0.082.
Notice that for (e) and (f) p ∈ [−30, 30], while for the rest
p ∈ [−20, 20]. This Figure has been taken from [20].

main kinds of ISSs that were identified and called BM ,
CM and DM , where M stands for an integer or ratio-
nal number and corresponds to the mean momentum of
these structures, in units of 2π. These structures are the
main organizing features embedded in a chaotic back-
ground (named A) of the bidimensional parameter space
given by the kick strength k, and the dissipation γ. We
consider B1 (k = 8.2, γ = 0.2, the only one with an
asymptotic positive current), C−1 (k = 5.6, γ = 0.64),
D−1 (k = 11.9, γ = 0.29), and a chaotic attractor
(k = 11.9, γ = 0.26). The corresponding classical and
quantum phase space distributions (with the exception
of the chaotic attractor case, which is very similar to
D−1) can be seen in Fig. 1, which has been taken from
[20]. It is worth mentioning that we take a = 0.5 and
φ = π/2 throughout this work.

In Fig.2 we show the spectra of the Perron-Frobenius
operator S with no addition of thermal noise for two dif-
ferent values of the coarse graining: ~

PF
eff = 0.247 and

~
PF
eff = 0.15. By construction the spectra are contained

Im λ

10−1

0

Reλ

−1

1
a) b)

c) d)

FIG. 2. (Color online) 100 largest eigenvalues of the Perron-
Frobenius operator S for the a) B1, b) C

−1, c) D
−1, and d)

chaotic attractor cases. (Blue) gray squares correspond to
~
PF
eff = 0.15, while black dots to ~

PF
eff = 0.247.

in the unit circle and have a non-degenerate eigenvalue
λ0 = 1 [29]. The right eigenvectors corresponding to λ0

should reproduce the structure of the asymptotic clas-
sical distributions previously found (see Fig. 1), which
are point like ISS’s in cases a), b) and c), and a frac-
tal chaotic attractor in d). We have checked that this
is indeed the case, except for a small discrepancy at the
lowest resolution for case D−1, where the point like struc-
ture is slightly embedded in a distribution resembling the
neighboring chaotic attractor case. This suggests that in
this region of the parameter space ~PF

eff = 0.247 is not suf-
ficient to resolve neighboring maps with different prop-
erties, and one has to go to larger matrix dimensions.
As can be seen from the Figure, the leading eigenval-
ues remain approximately fixed as ~

PF
eff decreases. This

stability reflects the convergence of the Ulam procedure.

For the ISSs cases, λ1 (the eigenvalue following λ0 in
decreasing order of their moduli) is very close to 1 in ac-
cordance with the very long times required for the equi-
libration of these structures. As can be seen from Table
I the decay times tλ1

given essentially by the value of
the spectral gap 1 − |λ1|, are in fairly good agreement
with the equilibration times obtained in [20] by means of
the ratchet currents. Again, we notice that in the D−1

case the time tλ1
characterizing the decay towards the

complex invariant state, although large, is substantially
shorter than the equilibration time of about 700 steps
obtained with the exact classical dynamics [20].

In Fig. 3 the quantum spectra for ~eff = 0.15 ((red)
gray squares) are shown together with the classical re-
sults obtained from the diagonalization of the Perron
Frobenius operator with a thermal noise satisfying <
ξ2 >= ~eff (black dots). Comparing with Fig. 2 it is
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PF PFth QM

λ1 tλ1
λ1 tλ1

λ1 tλ1

B
−1 0.900 43.7 0.840 26.4 0.818 22.9

C
−1 0.994 765.2 0.727 14.4 0.701 13.0

D
−1 0.992 573.3 0.449 5.7 0.376 4.7

attr 0.523 7.1 0.452 5.8 0.410 5.2

TABLE I. Perron-Frobenius λ1 values and equilibration times

tλ1
(defined by λ

tλ1

1 = 0.01) are shown in columns 1 and 2
for all 4 cases analyzed in the main text. Columns 3 and 4
show the same for the Perron-Frobenius with thermal noise,
and columns 5 and 6 for the quantum mechanical case. We

take ~
(PF)
eff = ~eff = 0.15.

Im λ
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FIG. 3. (Color online) 100 largest eigenvalues for the quantum
superoperator eΛ and for the Perron-Frobenius operator with
thermal noise Sthermal for the a) B1, b) C

−1, c) D
−1, and

d) chaotic attractor cases. (Red) gray squares correspond to
the quantum model, while black dots to the classical one.

~
(PF)
eff = ~eff = 0.15.

clear that the bare coarse graining (even the greatest
one ~

PF
eff = 0.247) involved in the Ulam procedure is not

enough to reproduce the quantum features in any of the
studied ISSs, not even in the D−1 nor in the attractor
case. The inclusion of the temperature makes the clas-
sical spectra change dramatically in all cases, becoming
remarkably similar to those of the quantum system for
the set of eigenvalues of modulus closer to 1. Even so,
it should be noticed that the quantum dynamics is more
contractive in spectral terms than the classical one. In
fact, a huge fraction of the quantum eigenvalues have ab-
solute values very close to 0. This was already pointed
out in [30] for the dissipative baker map, where the dif-
ferences between a full quantization and a discretization
procedure were studied.
In all cases the spectral gap “jumps” to the “correct”

quantum mechanical one. This is a highly non-trivial
effect that underlines the classical and quantum similari-

ties. The chaotic attractor case presents a singular prop-
erty, this being that the value of the quantum mechanical
λ1 is in good agreement with its classical counterparts,
with or without thermal noise. Therefore the tλ1

is about
the same in all cases (see last row of Table I) confirm-
ing the results of Fig. 4 of [20] which shows that in the
case of the chaotic attractor, classical and quantum cur-
rents have similar equilibration times. For the remaining
eigenvalues the correspondence is not exact, but the sim-
ilarities are evident.
We observe that the spectra of D−1 and the chaotic

attractor cases are very close. This deepens on the hy-
pothesis that chaotic attractors could be approximated
by neighboring ISSs, suggesting that the approximation
could be extended to the superoperator itself. As a mat-
ter of fact, from these results we can conjecture that the
correspondence is at the (super) operator level and that
there should exist an approximate formal equivalence be-
tween them, at least in their long-lived sector, i.e. the
block associated to the largest eigenvalues. In the follow-
ing we will identify some limits to this conjecture.

IV. THE PHASE SPACE PICTURE

In order to give a complementary point of view to ana-
lyze this classical to quantum correspondence mechanism
we study the phase space behavior. We will compare the
right eigenvectors of the Perron-Frobenius operator with
thermal noise, with the Weyl-Wigner symbol for the right
eigenvectors of the quantum superoperator. Regarding
the former it is worth noting that the invariant eigen-
states (with λ = 1) are real and non negative, in agree-
ment with the Perron-Frobenius theorem, and can be in-
terpreted as probability distributions in phase space. The
remaining eigenvectors are real (although non positive)
for eigenvalues on the real axis and complex otherwise.
In the quantum case the invariant eigenstates have the
property of being density matrices with Tr(R̂λ0

) = 1,
while the remaining ones are traceless.
The Weyl-Wigner representation improves on previ-

ous results obtained by using Husimi distributions [20],
since we are able to appreciate interference fringes (co-
herences) and finer details of the quantum eigenvectors.
Weyl-Wigner symbols for a N dimensional Hilbert space
are defined in a redundant 2N ×2N discrete phase space
[31]. This is formed by the grid of points x = 1

N
(a, b)

with a and b semi integer numbers running from 0 to
N − 1/2. In this way, the Weyl-Wigner symbol R(x) of

the operator R̂ is obtained from its matrix elements in
the coordinate representation as

R(x) =
N−1
∑

n=0

< q2b−n|R̂|qn > exp

(

i2π

N
2a(b− n)

)

.

In order to get rid of redundancies and “ghost images”
derived essentially from the cylindrical topology of our
phase space, we use a method that has been developed
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by Argüelles and Dittrich [32] consisting of Fourier trans-
forming the Weyl-Wigner symbol to its symplectic ana-
logue, known as the “chord symbol”. Then, after per-
forming a cut off for the longer chords and antifourier
transforming, the new Weyl-Wigner symbol with the de-
sired properties is obtained. This latter is supported by a
N×N discrete phase space formed by points x = 1

N
(i, j)

where now i and j are integer numbers running from 0
to N − 1. This is the symbol we use in the following.
It is important noticing that the eigenvectors are de-

fined within a global phase factor. For the invariant
eigenstates the property of being a density matrix en-
sures that the Weyl-Wigner symbol is real. However,
differently from the classical case, the quantum symbols
display negative values due to interference fringes. In-
deed as it has been shown in [33] for dissipative Marko-
vian systems in the semiclassical limit, any initial pure
Wigner function evolves into a positive-definite phase
space distribution. For the remaining traceless eigen-
vectors, adjusting the phase factor, we obtained that, in
accordance with the classical case, the Weyl-Wigner sym-
bols are real for eigenvalues on the real axis and complex
otherwise. The complex eigenvalues come in complex
conjugated pairs. Their corresponding eigenvectors form
pairs of complex conjugated distributions in phase space
also, both for the classical and the quantum case.
In Table II we compare the overlaps between the Weyl-

Wigner symbol of the eigenvectors of the quantum su-
peroperator with the corresponding eigenvectors of the
Perron-Frobenius operator with thermal noise. We do
this up to the 5th pair in decreasing order of the mod-
uli of their corresponding eigenvalues. To calculate these
overlaps we take into account that any state R̂ can be rep-
resented by R(x) with x = (p, q) a point in phase space.
For the classical states, R(x) stands for the right eigen-
vector, while for the quantum ones, R(x) is the Weyl-

Wigner symbol. Hence, given any two states R̂1 and R̂2

, their overlap is defined as:

O(R̂1, R̂2) = Tr
(

R̂1R̂2

)

/

√

[

Tr
(

R̂2
1

)

Tr
(

R̂2
2

)]

=

∑

x

R1(x)R
∗
2(x)/

√

√

√

√

[(

∑

x

|R1(x)|2
)(

∑

x

|R2(x)|2
)]

,

where R∗(x) and |R(x)| stand respectively for the com-
plex conjugate and absolute value of R(x). The overlap
defined above is a complex magnitude, its modulus is in-
variant even though its argument depends on the relative
phase between the eigenvectors. Also, when this relative
phase is null O(R̂1, R̂2) is real. In all cases the value
of the overlap is about 0.9 for the invariant states and
progressively decreases as we go to smaller |λ|.
In the following Figures we display the phase space

portraits of selected eigenvectors of the Perron-Frobenius
operator with thermal noise and the Weyl-Wigner sym-
bols of the corresponding eigenvector of the quantum su-
peroperator.

B
−1 C1 D1 Attr

λ0 0.9449 0.9349 0.8697 0.8654
λ1 0.9441 0.8132 0.5422 0.5186
λ2 0.5622 0.8504 0.6381 0.6689
λ3 0.5681 0.8505 0.6382 0.6689
λ4 0.4421 0.8141 0.5190 0.4178

TABLE II. Overlaps of the first 5 eigenvectors of the quan-
tum superoperator with the corresponding eigenvectors of the
Perron-Frobenius operator with thermal noise, for all cases.

p

q
π

d)c)

a) b)

2π0

0

30

−30

FIG. 4. Phase space portraits of two eigenvectors of the
Perron-Frobenius with thermal noise (left panels) and the
Weyl-Wigner symbols for the corresponding quantum eigen-
states (right panels), for the B1 ISS. In a) and b) we show the
eigenvectors associated with λ0, while in c) and d) the ones
corresponding to λ1 (λ1 = 0.840 in the classical spectrum and

λ1 = 0.818 in the quantum one). In all cases ~
(PF)
eff = 0.15.

We first analyze the B1 ISS. This is the only case where
the invariant distributions shown in Fig.4 a) and b) cor-
respond to point-like attractors, even though some traces
of the chaotic basin of attractor are visible in both pan-
els. As can be seen from Fig.4 a) a smearing out of the
order of heff is enough to turn the classical points cor-
responding to the ISS into a distribution of exactly the
same shape of the quantum one depicted in Fig.4 b). The
quantum-classical similarity is also striking for the 2nd
eigenvector pair displayed in Fig.4 c) and d) . Despite
both having a negative image of the basin of attraction
these states behave in a very similar way to the invariant
pair.

For the next case corresponding to the C−1 ISS, we
have chosen to show the details of the eigenvectors as-
sociated with complex λ2. The real parts shown in Fig.
5 a) and b) are different from the imaginary ones shown
in Fig. 5 c) and d), and again the coincidence between
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p

q
π

d)c)

a) b)

2π0

0

30

−30

FIG. 5. Phase space portrait of the eigenvector associated
with the complex eigenvalue λ2 (λ2 = 0.388 + i0.500 in the
classical spectrum and λ2 = 0.396 + i0.501 in the quantum
one) of the Perron Frobenius with thermal noise (left panels)
and the Weyl-Wigner symbols for the corresponding quantum
eigenstates (right panels) for the C

−1 ISS. In a) and b) we
show the real part of the distributions while in c) and d) the

imaginary one. In all cases ~
(PF)
eff = 0.15.

classical and quantum phase space portraits is remark-
able. This is also clearly reflected in the value of the
overlap. The main difference is in the presence of inter-
ference fringes in the quantum case which do not have
enough weight to spoil the overlap in a significant way.

The next two cases are better analyzed together since
they belong to the same region of the parameter space.
It can be seen that they coincide, having very similar
invariant states shown in Figs. 6 and 7, panels a) and
b). The differences are only present through interference
fringes at the quantum level. But they are clearly not
very relevant, both looking at these representations and
also at the values of the overlaps. On the other hand, we
show the eigenvectors corresponding to the worst per-
forming overlaps in both cases in Figs. 6 and 7, panels
c) and d). They show that in these cases the coher-
ences have a greater weight. Anyway if we look carefully
at the distributions they are quite alike for the remain-
ing of the distributions. This puts a limit on the previ-
ously mentioned hypothesis consisting of approximating
the long lived block of the quantum superoperators with
the Perron-Frobenius ones with thermal noise. A quan-
titative study is left for the future.

p

q
π

d)c)

a) b)

2π0

0

30

−30

FIG. 6. Phase space portraits of two eigenvectors of the
Perron-Frobenius with thermal noise (left panels) and the
Weyl-Wigner symbols for the corresponding quantum eigen-
states (right panels), for theD

−1 ISS. In a) and b) we show the
eigenvectors associated with λ0, while in c) and d) the ones
corresponding to λ4 (λ4 = 0.391 in the classical spectrum and

λ4 = 0.313 in the quantum one). In all cases ~
(PF)
eff = 0.15.

p

q
π

d)c)

a) b)

2π0

0

30

−30

FIG. 7. Phase space portraits of two eigenvectors of the
Perron-Frobenius with thermal noise (left panels) and the
Weyl-Wigner symbols for the corresponding quantum eigen-
states (right panels), for the chaotic attractor. In a) and b)
we show the eigenvectors associated with λ0, while in c) and
d) the ones corresponding to λ4 (λ4 = −0.471 in the classical
spectrum and λ4 = −0.391 in the quantum one). In all cases

~
(PF)
eff = 0.15.
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V. CONCLUSIONS

By studying the behavior of the spectra and eigenvec-
tors of both the Perron-Frobenius operators with ther-
mal noise and the quantum mechanical superoperators
associated with the ISSs and chaotic attractors typical of
a paradigmatic model for dissipative directed transport,
we were able to identify a novel mechanism of classical to
quantum correspondence hinted in [20] (just looking at
the ratchet currents and asymptotic distributions). The
remarkable coincidence of both sets of eigenvalues is in-
dicative of an approximate formal equivalence between
the classical and quantum realms. In the following we
raise some important points derived from this result.
Firstly, it is interesting to link our approach with pre-

vious works. In [34] the dissipative kicked top model was
analyzed, with a special focus in the case where it decays
to a chaotic attractor. There it was found that the quan-
tum invariant state closely follows the structure of the
classical attractor, without the finer details. It was also
shown that in the semiclassical limit the leading eigen-
values of the quantum spectrum converge to the ones of
the Perron-Frobenius, thus implying that the quantum
mechanical time scales become independent of heff and
coincide with time scales set by the Ruelle resonances. In
the present work the classical to quantum correspondence
is investigated in representative regions of the parame-
ter space of a paradigmatic dissipative ratchet system,
corresponding to chaotic attractors and to ISSs as well.
Besides, we put the accent on small but finite ~eff values,
for which we find a correspondence mechanism based on
adding thermal noise at the classical level only. Our ap-
proach is also clearly distinct from the usual way in which
the quantum to classical correspondence is treated in the
decoherence literature where the procedure consists in
applying a diffusive noise to both the classical and the
quantum equations in order for the spectra to converge
to each other [22]. To summarize, our classical approxi-
mation to a dissipative quantum system is not in conflict
with decoherence theory, neither with semiclassical ap-
proximations. It is just a very simple and effective way
to obtain a classical to quantum correspondence for finite

~eff .

On the other hand, the consequences of this finding are
relevant not only to directed transport but to dissipative
systems in general. A very promising one is the possi-
bility to approximate the quantum asymptotic state in
the chaotic case by the classical dynamics with thermal
noise corresponding to a simple attractor in its vicinity.
This was previously conjectured in [20] but now with
the help of the Weyl-Wigner distributions we are able to
show that this is indeed possible. As a matter of fact, the
differences due to coherences are minor. Moreover, it is
worth noticing that even when having a classical chaotic
attractor the addition of thermal noise at this level is nec-
essary in order to find a spectrum similar to the quantum
one. Hence, studying these effects could be interesting
for many applications as for example in superconducting
quantum interference devices (SQUIDs) [35].

Finally, we would like to point out that the long-lived
sector of the quantum superoperators corresponding to
any kind of structure in parameter space could be well
approximated by means of Perron-Frobenius operators
with thermal noise. This conclusion can be drawn from
the remarkable similarity among the spectra for all the
cases shown in Sec. III. However, in our way to devise a
classical approximation we have found a problem hardly
visible using just Husimi distributions as in [20]. Thanks
to the Weyl-Wigner representations of Sec. IV we have
found that the eigenvectors, even some long-lived ones,
can have differences due to the coherences remaining in
the quantum system. Despite this, their weight seems to
be not so important. This keeps our hopes to find an
effective approximation theory in the future.
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