
PHYSICAL REVIEW E 92, 043009 (2015)

Gravity-driven soap film dynamics in subcritical regimes
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We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions.
We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers
Me = O(10−1). Considering the associated set of nondimensional numbers that characterize this flow, we show that
the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film
dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of
the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.
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I. INTRODUCTION

Since the mid-1990s a large number of studies concerning
the dynamics of films driven to flow under the action of
various forces such as gravity, centrifugation, capillarity,
thermocapillarity, and intermolecular forces has been a topic
of interest for different researchers [1]. The usual modeling of
this dynamics relies on exploiting the disparities in the length
scales arising naturally in thin-film flows. In such flows the
thickness of the film is much smaller than the characteristic
length scales of the midplane flow, enabling the use of small
parameters for perturbation expansions. This may simplify
the dynamics involved in the depth coordinate through a
rational asymptotic approach and thus reduce the Navier-
Stokes equations to a more tractable, yet highly nonlinear,
set of partial differential equations, capable of capturing the
dominant physics.

Within this framework the fluid dynamics of soap films has
been studied in different works with different objectives such
as determining the stability of the film or establishing the possi-
ble analogies that can be found between the behaviors of three-
dimensional (3D) draining films and 2D general flows. Among
the last group of studies is the work of Chomaz [2], who con-
sidered horizontal films and performed an asymptotic analysis
under the assumption that the bending wave velocity vb (veloc-
ity of the varicose mode that produces antisymmetric deforma-
tions of the sheet) is much larger than the mean velocity of the
flow. From the leading-order equations obtained, two limiting
cases were derived. The first one is related to the behavior as an
incompressible 2D flow. In this case the midplane velocity field
distribution of the film complies with the incompressible 2D
Navier-Stokes equation and the sufficient condition found for
this is that the typical flow velocity U be very small compared
to the elastic wave velocity ve (or, equivalently, elastic
Mach number Me = U

ve
� 1). The other case corresponds to

situations at much larger velocities in which an analogy could
be expected with the compressible 2D Euler equation of a
compressible gas. However it was found that the observed
dynamics becomes very specific to soap films and could only
correspond to a two-dimensional compressible gas flow with
an unusual ratio of specific heat capacities (equal to unity).
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The elastic wave velocity ve is the speed at which the
symmetric perturbations of the film thickness travel on the
surface of the film. In general, the symmetric and antisymmet-
ric modes propagate at similar velocities (ve ∼ vb) but often
in experiments vb is smaller than ve [2,3]. The value of ve is
related to the surfactant concentration at the surface that in turn
depends on the soap molecule flux between surface and bulk.
In consequence, it is strongly dependent on the experimental
device used to produce the film and on the soap solution
considered. The ratio of the midplane flow velocity with this
celerity, expressed by the value of Me, enables us to classify the
flow as subcritical or supercritical. Without any information on
its value, a simple identification of supercritical flow behavior
on an experimental facility can be done, for instance, by
piercing the stream with pins that will produce diamondlike
fringes [4]. The supercritical regime Me > 1 has attracted the
attention of different authors [5,6]. The elastic Marangoni
shocks characteristic of these regimes have been analyzed and
the experimental evidence has been contrasted against models.

The soap tunnels may have a horizontal [7,8] or vertical
configuration [9–12]. In vertical soap tunnels typical velocities
are larger than the horizontal case and in many experimental
conditions it is observed that Me = O(10−1). Here we propose
analysis if, under these experimental situations, it is possible
for the draining film to behave as a 2D flow with divergence-
free velocity fields. To derive the leading master equations we
will relax the assumption concerning the relative smallness of
the mean flow velocity compared to elastic wave velocity and
directly assume that this lies in the range of our interest. This
work therefore tries to link the soap film dynamics with the one
of 2D flows in a “gray zone” not covered by previous analysis.
Let us note that the soap films and classical 2D flows share the
existence of a supercritical behavior, respectively, when Me or
Ma = U

c
(with c = sound speed) are equal or larger than 1 and

also that both flows show velocity fields that are divergence
free when the values of these nondimensional numbers are
quite small compared to unity, but this coincidence does not
necessary imply that both flows will show the same behavior
for intermediate values.

Our work could compare in some sense with that of Ida and
Miksis [13] in which it was considered the Mb = U

vb
∼ O(1).

However, in their work the film was not flat. The curvature
introduced in their analysis gives other leading-order equations
(in which pressure terms play a significant role) and cannot be
applied for the case we study.
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One of the most attractive characteristics of soap film is
the quality of flows visualization that can be attained. The
usual diagnostic of soap film dynamics is performed with the
interferometry technique that gives patterns of fringes that are
function of the thickness variations of the soap film. Other
techniques to measure thickness of the film in single points or
larger regions have also been applied to soap film analysis
[14–16]. The thickness variations of the film have been
correlated by different authors to the dynamics of either passive
tracers or pressure and vorticity fields [17–20]. The work of
Chomaz has, however, established that when Me � 1 any of
this dynamics could be observed depending on the experi-
mental conditions and particularly on the kinetics to attain
an equilibrium between the bulk and surface concentration
of surfactant. In this work we also try to give a suitable
interpretation of the observed patterns for the regime under
analysis.

A. Soap film equations

Soap films used in hydrodynamics experiments may be
considered a three-layer structure: two surfaces and a bulk
fluid in between (Fig. 1).

The vertical unperturbed film has a thickness 2H that we
assume constant in the region of interest. The film is driven by
gravity forces and we consider that the dynamics of the bulk
film variables (velocity u and pressure p) can be described by
the 3D incompressible Navier-Stokes equation,

∇ · u = 0,

∂u
∂t

+ u · ∇u = g − 1

ρ
∇p + ν∇2u. (1)

FIG. 1. Soap film internal structure.

The perturbed interfaces are at z = H + η. Therefore we
will consider the following conditions:

p − pa + 2Cσ = μn̂ · (∇u + ∇ut ) · n̂,

0 = t̂i · ∇sσ + μt̂i · (∇u + ∇ut ) · n̂, (2)

where ∇s is the gradient surface operator, ∇s = (I − n̂n̂) · ∇,
with I the spatial idemfactor. These equations represent the
Young-Laplace law projected on the unit normal n̂ and on the
tangents t̂i to the interface. In the first expression C is the mean
surface curvature, pa the ambient pressure, and μ the viscosity
coefficient,

2C = −∇ · n̂

=
∂2η

∂x2

[
1 +

(
∂η

∂y

)2
]

− 2 ∂η

∂x

∂η

∂y

∂2η

∂x∂y
+ ∂2η

∂y2

[
1 +

(
∂η

∂x

)2
]

[
1 +

(
∂η

∂x

)2
+

(
∂η

∂y

)2
] 3

2

. (3)

Note that like in Chomaz and for the sake of simplicity we
have not incorporated any drag of the film with the surrounding
atmosphere. The following kinematic condition is used to link
the surface deformation with w the velocity component along
z coordinate,

Dη

Dt
= ∂η

∂t
+ u · ∇η = w. (4)

The surface tension σ is related to the surfactant concen-
tration at the surface through the following expression:

σ = σa − σr�, (5)

in which σa is the surface tension in the absence of surfactant
and the elasticity σr = ∂σ

∂�
|�=0. The dynamics of the surfactant

concentration is quite complex and can be described as follows:

∂�

∂t
+ �(∇s · n̂)(u · n̂) + ∇s · (us�) = Ds∇s

2� + j, (6)

where us represents the components of the velocity u along the
surface [us = (I − n̂n̂) · u]. In this equation the second term on
the left-hand side represents the rate of change of concentration
due to the dilatation of the surface, a contribution that is simply
related to the product of the mean curvature and the normal
velocity [21]. The first term of the right-hand side equation
accounts for the process of diffusion of soap film molecules at
the surface and is usually described with a constant value for
the surface diffusivity coefficient Ds ; meanwhile, the flux of
soap molecules between the bulk and the surface j is generally
described as an adsorption-desorption process for which time
constants have to be specified.

B. Nondimensional problem

To obtain the set of equations in terms of nondimensional
variables we will consider the same notation and choice of
parameters as in the work of Chomaz [2]. As is usually done,
we propose an asymptotic expansion of the solution of the
problems in terms of a small parameter ε = H

L
that is the ratio

between the mean half thickness of the film H and the length
scale of the in-plane velocity variations L. This parameter is
typically quite small [ε = O(10−3)]. As main differences with
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Chomaz work in which it is assumed that Mb

ε
∼ Me

ε
= O(1), we

will analyze flow regimes in which

Me = O(10−1). (7)

This condition agrees well with the situations encountered
in vertical soap tunnels for which the free-stream velocities
are frequently U ∼ 1−2 m/s and the elastic wave velocities
ve attain values ∼ 4 m/s. For the flows taking place in these
tunnels we will take into account as typical values of the mean
thickness 2H ∼ 10 μm and length scales of the midplane
flow L ∼ 10−3−10−2 m. The value of the the antisymmetric
bending wave velocity vb depends on fluid solution and on
the film thickness. In the facilities we consider it is verified in
general that the bending mode speed vb is of the same order
as ve but customarily vb is smaller than ve, which implies that
Mb is larger than Me. The development of the antisymmetric
(bending) mode associated with this kind of wave can be
excluded as, in general, it is not present in experiments.

1. Scaling

The following nondimensionalization of variables is pro-
posed for the space variables

x = x ′L; y = y ′L; z = z′εL;
(8)

η = η′H ; Z′ = η′ + 1 (interface).

Time and velocity variables are scaled with

t = t ′
L

U
; u = u′U ; v = v′U ; w = w′εU ; (9)

meanwhile, for surface tension and pressure we take

σ = σm + σ ′ρHU2 = σm + σ ′ρεLU2

(10)
p = pa + p′εσm/L.

Here σm is the mean surface tension of the film. It is
important to signal here that we keep the same scaling for
pressure as did Chomaz. Other authors [4], for instance, have
proposed the scaling for pressure with p = pa + p′ Uμ

L
. In the

derived set of equations with this last scaling the terms where
pressure appears become altered by εχ = ε σm

Uμ
. Typical values

for the experiments we consider give χ = O(1). Finally, the
surfactant concentration at the surface is scaled as

� = �′�m (11)

with �m the surface mean concentration.

2. Nondimensional equations

For convenience let us drop the primes of all nondimen-
sionalized quantities; the nondimensional bulk equations then
read as

∇ · u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= 1

Fr2
− ε2

M2
b

∂p

∂x
+ 1

Re

(
∂2u

∂x2
+ ∂2u

∂y2
+ 1

ε2

∂2u

∂z2

)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − ε2

M2
b

∂p

∂y
+ 1

Re

(
∂2v

∂x2
+ ∂2v

∂y2
+ 1

ε2

∂2v

∂z2

)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

M2
b

∂p

∂z
+ 1

Re

(
∂2w

∂x2
+ ∂2w

∂y2
+ 1

ε2

∂2w

∂z2

)
, (12)

in which Re = UL
ν

,Fr2 = U 2

gL
,Mb = U

vb
, and vb =

√
σm

Hρ
. Note that this last velocity depends on the experimental condition

considered through the amount of surfactant concentration present in the solution considered and through the thickness of the
film. At the same time, the thickness of the film depends on the flow rate considered and width of the film. At the interface we
have

∂η

∂t
+ U

∂η

∂x
+ V

∂η

∂y
= W

P + 2C
(
1 + M2

bσ
) = 2M2

b

1

ε2Re

(
∂w

∂z
− ∂η

∂y

∂v

∂z
− ∂η

∂x

∂u

∂z
+ O(ε2)

)

2C = ∂2η

∂x2
+ ∂2η

∂y2
+ O(ε2)

∂σ

∂x
= 1

ε2Re

{
∂u

∂z
+ ε2

[
−2

∂η

∂x

∂u

∂x
− ∂η

∂y

(
∂v

∂x
+ ∂u

∂y

)
+∂w

∂x
−

(
∂η′

∂x ′

)2
∂u′

∂z′ − ∂η

∂x

∂η

∂y

∂v

∂z
+ 2

∂η

∂x

∂w

∂z

]
+ O(ε4)

}

∂σ

∂y
= 1

ε2Re

{
∂v

∂z
+ ε2

[
−2

∂η

∂x

∂v

∂y
− ∂η

∂y

(
∂v

∂x
+ ∂u

∂y

)
+∂w

∂y
−

(
∂η

∂y

)2
∂v

∂z
− ∂η

∂x

∂η

∂y

∂v

∂z
+ 2

∂η

∂y

∂w

∂z

]
+ O(ε4)

}

σ = 1

M2
e

(1 − �). (13)
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C. Asymptotic expansion

The discrepancy of scales allows us to introduce the small
parameter ε = H

L
. Since this parameter is quite small compared

to unity we can use this knowledge to identify those terms
that vary slowly across and along the fluid layer and thus can
be discarded. This procedure then gives a quantifiable and
legitimate way of reducing the equations to a simpler form;
it also enables us to make clear the limits when the theory
will break down. The following expansion is proposed for all
variables:

f = f0 + ε2f2 + ε4f4 + · · · . (14)

We define the 2D operators

∇0 = ∂

∂x
r̂x + ∂

∂y
r̂y (15)

and (
∂u0

∂x
+ ∂v0

∂y

)
= ∇0 · u0. (16)

1. Leading-order equations

Considering the first-order terms of the expansion we have
for the bulk

∂u0

∂x
+ ∂v0

∂y
+ ∂w0

∂z
= 0, (17)

0 = 1

Re

∂2u0

∂z2
, (18)

0 = 1

Re

∂2v0

∂z2
, (19)

0 = 1

Re

∂2w0

∂z2
. (20)

At the interface we have

η = η0 =⇒ Z = 1 + η0, (21)

2C0 = ∂2η0

∂x2
+ ∂2η0

∂y2
, (22)

∂η0

∂t
+ U0

∂η0

∂x
+ V0

∂η0

∂y
= W0. (23)

As we consider

Mb = M

ε
= O(1) (24)

we have

0 = 2M2
b

1

Re

∂w0

∂z
|Z. (25)

Note that if it were considered as Chomaz did,

M = O(1), (26)

the following equation would result:

P0 +
(

∂2η0

∂x2
+ ∂2η0

∂y2

)[
1 +

(
Mb

Me

)2

(1 − �0)

]

= 2M2 1

Re

∂w0

∂z
|Z. (27)

For the rest of equations we have

0 = 1

Re

∂u0

∂z0

∣∣∣∣
Z

, (28)

0 = 1

Re

∂v0

∂z0

∣∣∣∣
Z

, (29)

∂�0

∂t0
+ ∂(u0�0)

∂x
+ ∂(v0�0)

∂y0
+ �0

(
∂2η0

∂x2
+ ∂2η0

∂y2

)
W0 = 0,

(30)

σ0 = M−2
e (1 − �0). (31)

As

0 = 1

Re

∂2w0

∂z2
, (32)

we can write that ∂w0
∂z

is only a function of x and y. At the
interface

∂w0

∂z
|Z= 0. (33)

Therefore at the bulk it will be verified that

∂w0

∂z
= 0. (34)

Thus the velocity w0 will be a function only of x and y but,
for symmetry reasons, we have

w0 |Z=0= 0. (35)

Hence we conclude that w0 = 0 in any point of the flow.
We also have the incompressibility condition defined as(

∂u0

∂x
+ ∂v0

∂y

)
= ∇0 · u0 = 0 (36)

and this is satisfied for the leading-order term. Also as

w0 = ∂η0

∂t
+ u0

∂η0

∂x
+ v0

∂η0

∂y
= 0. (37)

The leading-order deformations of the film will not change
with time. Therefore when the initial deformations of the
membrane are negligible [η(x,y,0) = 0], the surface at the
leading order remains flat, that is,

η0(x,y,t) = 0. (38)

Note that in this set of equations u0, v0, and �0 remain
undetermined.
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2. Next-order equations

Considering terms of the next order we have

∇ · u2 = ∂u2

∂x
+ ∂v2

∂y
+ ∂w2

∂z
= 0,

∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y
= 1

Fr2
+ 1

Re

(
∂2u0

∂x2
+ ∂2u0

∂y2
+ ∂2u2

∂z2

)

∂v0

∂t
+ u0

∂v0

∂x
+ v0

∂v0

∂y
= 1

Re

(
∂2v0

∂x2
+ ∂2v0

∂y2
+ ∂2v2

∂z2

)

0 = − 1

M2
b

∂p0

∂z
+ 1

Re

∂2w2

∂z2
. (39)

At the interface z = Z we have

W2 = ∂η2

∂t
+ U0

∂η2

∂x
+ V0

∂η2

∂y
, (40)

P0 = 2M2
b

1

Re

∂w2

∂z
|Z. (41)

Also we can write

∂σ0

∂x
= 1

Re

∂u2

∂z
|Z, (42)

∂σ0

∂y
= 1

Re

∂v2

∂z
|Z. (43)

As the symmetry imposes that (u,v) are even equations at

the bulk, this determines that (u2,v2) are parabolic in z since
all other terms in these equations are leading-order variables
that do not depend on z. Taking into account the equations of
the interface we can write

u2 = Re
∂σ0

∂x

z2

2Z
+ U2

v2 = Re
∂σ0

∂y

z2

2Z
+ V2, (44)

where (U2,V2) are functions of x and y and Z = 1 + η2ε
2.

Therefore the momentum equation reads as

∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y

= 1

Fr2
+ 1

Z

∂σ0

∂x

1

Re

(
∂2u0

∂x2
+ ∂2u0

∂y2

)

∂v0

∂t
+ u0

∂v0

∂x
+ v0

∂v0

∂y
= 1

Z

∂σ0

∂y
+ 1

Re

(
∂2v0

∂x2
+ ∂2v0

∂y2

)
.

(45)

Introducing the 2D operators

D0

Dt
= ∂

∂t
+ u0∇0; ∇2

0 = ∇0 · ∇0 (46)

and considering (45) we have

∇0 · u0 = 0,
D0u0

Dt
= 1

Fr2
− 1

ZM2
e

∇0�0 + 1

Re
∇2

0 u0.

(47)

As we can see under the conditions we analyze, the leading-
order equations that govern the soap film dynamics enables us
to undertake an analogy with the case of an incompressible
two-dimensional fluid flow. The role of pressure is here
determined by the surface tension concentration �0 that
becomes an equivalent pressure. The role of the equivalent
density is determined by ZM2

e . Also it is of interest here to
analyze the laws that determine the variables of the bulk. For a
fixed value of x and y the first derivative of the normal velocity
has to be parabolic in z because

− ∂w2

∂z
= ∂u2

∂x
+ ∂v2

∂y
. (48)

As u2 and v2 are both parabolic in z, then w2 will be cubic
in z [with a null value at the midplane w2(0) for symmetry
reasons] and the second derivative − ∂2w2

∂z2 has to be linear in z.
For this reason we can write

− ∂2w2

∂z2
= αz + β, (49)

where α = α(x,y) and β = β(x,y). As pressure is related
with the normal velocity through Eqs. (39) we can observe
that the derivative of the pressure ∂p0

∂z
will be linear with z.

Because of the symmetry of the deformations of the film at the
midplane ∂p0

∂z
|z=0 = 0. As a consequence, the pressure p0 will

be parabolic with z across the film thickness and thus β has to
be equal to 0.

II. DISCUSSION

It is of interest here to compare our results with the previous
results of Chomaz which, as noted, were performed under
the assumption that Me = O(ε2). With this assumption the
nondimensional thickness variations appear as leading-order
terms. The leading-order solution changes when modifying the
relative values of the nondimensional parameters. Therefore
it is not surprising that in our analysis of the leading-order
terms the film remains flat and surface deformations appear
with higher-order terms. Under both analyses when the flow
behaves as an incompressible 2D flow, the equivalent pressure
is determined by the leading order of �0. Although Chomaz
obtained that the flow would correspond to a fluid with
constant mass density we found that it would correspond to
a fluid with an equivalent density that will not be uniform
in the fluid domain. Typical values of Z lie in the range
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comprised by ∼0.9−1.1. Therefore it is expected that the
equivalent density will show variations of a few percentages.
As the flow is divergence free and the density variations
from the background density is of a few percentages, an
immediate analogy with a Boussinesq flow seems pertinent.
The importance of the buoyancy term characteristic of this
kind of flow it is not expected to be very considerable as
flow velocities are relatively large and therefore the potential
energy of typical density perturbation of a parcel of fluid will
be, in general, much lower than the associated kinetic energy.
Non-negligible density variations may have an influence on
vorticity dynamics. We introduce here the operator ∇0× such
that for any vector F = (Fx,Fy)

∇0 × F =
(

∂Fx

∂y
− ∂Fy

∂x

)
rz. (50)

Applying this operator to the Eq. (47) and in the inviscid
limit (Re −→ ∞) we obtain the following equation for the 2D
vorticity � = �rz:

D0�

Dt
=

(
1

ZMe

)2

∇0Z × ∇0�0, (51)

where we observe that the vorticity of a fluid particle may
change with time when the right-hand-side term is non-
negligible. The nonalignment of the gradients of thickness
(density) and surfactant concentration at the surface (pressure)
acts therefore as a source term for vorticity. This effect is
obviously absent when the density of the fluid is constant.
The contribution of this baroclinic term may be interesting to
researchers working in the field of 2D turbulence, as it could be
possible to tune surfactant concentration to enhance or reduce
such an effect. Previous deviations from 2D hydrodynamics
found in experiments may be due to such an effect [9,20].

A simple analysis assuming that the parameter  = ZM2
e

remains small can still be performed. We proceed therefore to
a second expansion of any variable in terms of 

g0 = g00 + g01 + 2g02 + · · · . (52)

Hence at leading-order terms

∇0�00 = 0 ⇒ �00 = 1 (53)

and to order  the system reduces to

∇0 · u00 = 0, (54)

D0u00

Dt
= 1

Fr2 − ∇0�01 + 1

Re
∇2

0 u00, (55)

which represent the equations of an incompressible flow
with a pseudodensity constant equal to 1 and in which the
pseudopressure has to be identified as �01. Note that in this case
the set of equations agree with the one obtained by Chomaz,
as expected.

A. Analysis of film thickness field

In view of the following:

∂σ0

∂x
= 1

Re

∂u2

∂z
|Z;

∂σ0

∂y
= 1

Re

∂v2

∂z
|Z , (56)

taking derivatives of these equations with respect to x and y

we get

∇2
0σ0 = 1

Re

∂

∂z

(
∂u2(x,y)

∂x
+ ∂v2(x,y)

∂y

)
|Z , (57)

= − 1

Re

∂2w2

∂z2
|Z . (58)

As the second derivative of the velocity w2 is linear with z

we can write

∂2w2

∂z2
|Z∼ W2

Z2
∼ 1

Z2

D0η2

Dt
(59)

and then

∇2
0�0 ∼ M2

e

ReZ2
W2. (60)

When the expansion in terms of  can be performed, the
right-hand side of this equation plays the equivalent role of the
one played by the source term in the pressure Poisson equation
of an incompressible 2D flow:

∇2
0P = −∇0 · (u∇0u), (61)

where u = (u,v) is the velocity of the analogous 2D flow and
P represents the associated pressure field normalized with the
mass density of the flow (supposed constant).

The right-hand side of Eq. (61) can also be expressed as

− ∇0 · (u∇0u) = 1
2 (� 2 − s2) = � (62)

and is coincident with the value of the second invariant of the
velocity gradient tensor of the 2D flow. The value it attains
in different regions has been used as a vortex identification
criterion (Q or Okubo-Weiss criterion) [22]. Such a criterion
may be established on the basis of dynamical arguments
involving a comparison between the squared vorticity (� 2) and
the squared rate of strain [s2 = ( ∂u

∂x
− ∂v

∂y
)
2 + ( ∂u

∂y
+ ∂v

∂x
)
2
] or

considering local topological aspects of velocity fields [23,24].
For the experiments with soap film flows in which this

analogy takes place, as expressed in Eq. (60), the source
term is indeed associated with the 3D behavior of the film
determined by the field of the normal velocity. Equivalently,
from a Lagrangian point of view, this source term can be
associated to the rate of change of the thickness of a soap film
particle. In both approaches, these magnitudes only appear in
equations at the higher orders of the asymptotic expansion.

Hence, the value of the instantaneous thickness of a material
element of the film depends not only on the value of the
invariant in the region it flows (a measure of the rate of change
of thickness) but also on the time of permanence of the particle
in the different regions. When a soap film particle flows in
regions where the invariant is null (null normal velocity) it
keeps its original thickness. On the contrary, if the particle
travels in regions where the invariant is non-negligible, then it
will change its thickness and the variations can be revealed by
the interferometry technique.

Note that regions with ∇2
0P > 0 (usually named elliptic

domains) can be associated to regions that tend to make
humps in the film, while the regions with ∇2

0P < 0 (hyperbolic
domains) can be associated to those that tend to form
depressions in the film.
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Even if the sign of the invariant cannot be determined by
direct observation of images produced by the interferometry
technique one can take advantage of some a priori knowledge
of the flow and try to associate the topology of the thickness
patterns with the hyperbolic or elliptic characteristic of the
regions. For instance, in the particular case of 2D turbulent
flows without presence of walls, on average, particles are
trapped in highly elliptic or hyperbolic regions [25]. The
first case corresponds to strong vortex cores, where rotation
dominates strain deformation, with quite axisymmetric centers
[26]. The regions where deformation highly dominates rotation
generally take place in the organized structures surrounding the
vortex cores [25]. In consequence, it is expected that regions
with the largest thickness variation correspond to regions of
the flow with presence of strong centers or saddles (high
hyperbolic regions). In the background turbulent regions (the
region in between these regions with low values of �) the
invariant may in general adopt any sign, but as particles are not
trapped there, the passage of soap film elements through these
regions is expected to produce only slight changes of thickness.

This analysis seems to be in agreement with results
concerning the statistics of thickness fluctuations obtained
by Ref. [19] for experiments at low flow rates (that can be
associated to ranges of low values of ) and those of the
statistics of centers and saddles obtained by [23,26]. The
asymmetric shapes of the curves of probability distribution
functions (PDF) of film thickness and those of parameter �

are quite in concordance, showing in both cases an asymmetric
distribution with a bias towards the positive values (associated
respectively to the humps of the films and to predominant
vorticity). In the experiments of Ref. [19] at the higher values
of flow rates (that can be associated to ranges of larger values
of ) the PDF curves for the thickness are distorted and,
therefore, as expected, the analogy no longer holds.

Note that, in general, the identification of the elliptic or
hyperbolic flow regions is performed within the framework
of a Eulerian approach with snapshots of the velocity field
of the flows [23,26]. Although direct visualizations of soap-
film dynamics does not enable a direct identification of these

regions, it has the advantage of being a complementary tool of
analysis that does not rely on velocity field estimation.

III. CONCLUSIONS

In this article we revisit the equations that govern soap film
dynamics in the conditions often observed in vertical soap film
tunnels [Me ∼ O(10−1)]. We consider here the eventual link that
may exist between the dynamics observed and the analogous
2D flow. The flows analyzed fall into a range not previously
covered by theories based on the asymptotic expansions of the
parameter Me.

The main differences with previous works are that in
these conditions the analogous flow corresponds to a 2D
divergence free flow with small variations of the equivalent
density (associated to the film thickness variations). This flow
is in some sense analogous to a 2D Boussinesq flow but the
buoyancy term in general is not very important for this kind of
flow. However, the nonalignment of the gradient of thickness
variations and surfactant concentration at the surface acts in
this case as a source of vorticity. When these density variations
are small a second expansion can be proposed in terms of the
parameter (ZM2

e ) and, as expected, we recover the classical
incompressible 2D flow equations.

In this situation we could link the rate of thickness
variation of the fluid particle to the local value of the second
invariant of the velocity gradient tensor. Interpretation of
fringe patterns dynamics obtained by interferometry technique
reveals therefore a difficult task. It depends on the local value
of the invariant and on the time of residence of the particles
within regions where this invariant is relatively important.
However, the analysis of thickness variations gives information
of the dynamics of this invariant that in general can only be
determined when having access to the precise velocity field.
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