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Abstract

Herbivory by domestic and wild ungulates is a major driver of global vegetation

dynamics. However, grazing is not considered in dynamic global vegetation models, or

more generally in studies of the effects of environmental change on ecosystems at

regional to global scale. An obstacle to this is a lack of empirical tests of several

hypotheses linking plant traits with grazing. We, therefore, set out to test whether some

widely recognized trait responses to grazing are consistent at the global level. We

conducted a meta-analysis of plant trait responses to grazing, based on 197 studies from

all major regions of the world, and using six major conceptual models of trait response to

grazing as a framework. Data were available for seven plant traits: life history, canopy

height, habit, architecture, growth form (forb, graminoid, herbaceous legume, woody),

palatability, and geographic origin. Covariates were precipitation and evolutionary

history of herbivory. Overall, grazing favoured annual over perennial plants, short plants

over tall plants, prostrate over erect plants, and stoloniferous and rosette architecture

over tussock architecture. There was no consistent effect of grazing on growth form.

Some response patterns were modified by particular combinations of precipitation and

history of herbivory. Climatic and historical contexts are therefore essential for under-

standing plant trait responses to grazing. Our study identifies some key traits to be

incorporated into plant functional classifications for the explicit consideration of grazing

into global vegetation models used in global change research. Importantly, our results

suggest that plant functional type classifications and response rules need to be specific to

regions with different climate and herbivory history.

Keywords: dynamic global vegetation models, functional traits, global plant functional types, grazing

history, grazing models, ungulate herbivores
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Introduction

Grazing by domestic and wild ungulates is the most

globally widespread land use (FAOSTAT data 2004,

http://faostat.fao.org/). After fire, grazing is the most
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important disturbance of vegetation in terms of both

area and biomass loss (Huntly, 1991). Grazing is both

dependent on (e.g. Day & Detling, 1990; Huntly, 1991)

and affects (e.g. Briske, 1996) plant morphological and

functional traits. This codependency can generate

powerful feedback cycles between the structure and

biochemistry of vegetation and the cycling and storage

of nutrients (Huntly, 1991; Wardle & Bardgett, 2004).

Effects include altered disturbance regimes, especially

fire (e.g. Scholes & Archer, 1997; Bachelet et al., 2000;

Bond et al., 2003; Bond, 2005), and regional climate

(Eastman et al., 2001), and changes to above- and below-

ground diversity (Landsberg et al., 1999; Wardle &

Bardgett, 2004). For these reasons, changes in grazer

densities in response to climate and/or land use change

are increasingly considered an important element of

global change (Wardle & Bardgett, 2004).

Dynamic global vegetation models (DGVMs) seek to

represent vegetation dynamics generically in order to

project the effects of global environmental change on

the distribution of vegetation types and on key biogeo-

chemical cycles at continental scales (Cramer et al.,

2001). An important advance in achieving this has been

the simplification of vegetation composition using plant

functional groups (Lavorel et al., 2007). However, suc-

cessful selection of relevant plant functional groups,

and representation of vegetation dynamics require

identification of the key processes that drive species

distribution. Initial developments of DGVMs focussed

mainly on plant responses to climate and atmospheric

CO2 concentration, and have successfully captured the

distribution of biomes and their contribution to the

carbon cycle (Cramer et al., 2001; Sitch et al., 2003).

Although recent models successfully include effects of

land use change and agricultural land cover modifica-

tion (McGuire et al., 2001), the approach has been a

‘static’ one, which incorporates land cover effects,

rather than the processes causing the change. The next

generation of DGVMs needs to include dynamic simu-

lations of fire and other disturbances (Bond et al., 2003).

There have been attempts to incorporate grazing in

regional models of vegetation dynamics (Bachelet

et al., 2000; Daly et al., 2000; Bond et al., 2003), but

grazing is not yet incorporated in DGVMs. A major

obstacle to this is the lack of information about which

plant traits are positively or negatively associated with

grazing at the global scale (Dı́az et al., 2002; Skarpe,

2000).

There are thousands of published studies of plant

responses to grazing. Those which use plant traits

provide a more general and mechanistic basis for un-

derstanding plant behaviour (Dı́az et al., 2001; Lavorel

& Garnier, 2002; see also Vesk & Westoby, 2001), but

have generally focused on local conditions. As a result,

most current models of plant trait responses (see Briske,

1996 for review) are extrapolated from these local

studies, and there are very few examples of compar-

isons of grazing effects between regions with contrast-

ing climates and/or evolutionary histories of herbivory

(Bock et al., 1995; Adler et al., 2004). Because of this, the

validity of many hypothesized trait responses to graz-

ing remains untested at the global level. None of the

studies that focus on grazing from a global perspective

(Milchunas et al., 1988; Milchunas & Lauenroth, 1993;

Briske, 1996; Landsberg et al., 1999) have explicitly

tested the generality of plant trait responses to grazing

over a range of environments.

Current conceptual models of trait response to

grazing provide a framework of our analysis of the

global-level consistency of associations between plant

attributes and responses to grazing. Of the models

available, we restrict our framework to (1) those models

that offer explicit predictions of plant trait responses to

grazing; and (2) only those predictions that could be

tested, at least partially, with the published data avail-

able. The conceptual models considered lead to predic-

tions about specific plant trait responses to grazing.

These predictions vary in the extent to which they reflect

common knowledge among range managers and

scientists. Our analyses enable some of the predictions

(Table 1) to be tested objectively using a global dataset.

The first model of plant trait response to grazing is

the range-succession model (Dyksterhuis, 1949; Arnold,

1955). The range-succession model predicts an increase

in annual plant cover and a decrease of perennials with

grazing, replacement of palatable plants by unpalatable

ones, and replacement of tall and midheight grasses by

short grasses, subshrubs, and perennial prostrate forbs.

The range-succession model assumes that these pat-

terns are universal and unaffected by differences in the

characteristics of different regions.

In contrast, the generalized model of Milchunas et al.

(1988) focuses on the idea that precipitation (proxy for

productivity) and grazing history influence plant com-

munity response. This model assumes that aridity and

grazing select the same plant attributes. In humid

habitats, however, canopy competition and grazing

select opposite attributes. As a result, changes pro-

moted by grazing should be maximal in humid systems

with a short history of grazing. With a long history of

grazing, grazing response should be minimal in dry

systems for some traits (e.g. life history), but maximum

in humid systems for other traits (e.g. height, habit).

A third group of models are based on the idea of

plant strategies (i.e. general adaptations to resource

capture, use and release, and recognize disturbance,

of which grazing is a particular case, within their

context disturbance is simply removal of biomass) as
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an important regulator of plant traits. The other major

factor is stress, which limits biomass production. Pro-

minent examples of this approach are the models of

Grime (1977, 1990, 2001) and Westoby (1998, 1999).

Grime’s CSR model distinguishes three principal plant

strategies: Competitor, Stress-tolerator and Ruderal.

Grazing selects plants with a ruderal (short-lived,

small-sized, fast-growing) strategy. However, in dry

systems stress-tolerators (small, prostrate, perennial)

are also favoured. Similarly, grazing should lead to

shorter plants, especially in dry systems. Palatability

should increase in response to grazing in humid sys-

tems (grazing tolerance, involving fast regrowth of

high-quality tissue with very low structural defence),

and should decrease in dry systems (grazing avoidance,

involving slow-growing tissue, rich in structural

defence).

Westoby’s (1998) LHS (leaf–height–seed) model is

based on similar considerations to Grime’s CSR model,

but includes only three traits, specific leaf area, canopy

height and seed mass. Westoby (1999) adapted this

model to grazing response by examining which plant

attributes were favoured by different grazing intensi-

ties. According to this model, moderate, selective graz-

ing favours unpalatable plants, whereas heavy,

nonselective grazing favours palatable plants. Plant

response to grazing is not explicitly influenced by

climate or evolutionary history of grazing.

The resource availability (Coley et al., 1985) and

related models (e.g. growth-differentiation model, see

Herms & Mattson, 1992 and references therein) include

the interactive effects of productivity and herbivory,

and are based on the trade-off between plant allocation

to the production of new photosynthetic tissue and

antiherbivore defence. Like Grime’s CSR model, the

resource availability model predicts that grazing will

select an avoidance strategy in dry (less-productive)

systems, and a tolerance strategy through increased

growth in humid systems. Herms & Mattson (1992)

suggest that the stronger the historical impact of graz-

ing, the stronger the plant investment into grazing

avoidance, but in general these models do not explicitly

address the effects of evolutionary history of grazing.

Finally, it has been argued that predictions about

trade-offs between tolerance and avoidance strategies

could also be reached via detailed investigation of

physiological mechanisms underlying plant response

to grazing within a single system, with no need to

consider the effects of climate or evolutionary history

(Briske & Richards, 1995; Briske, 1996). We refer to this

approach as the ‘physiological’ model.

The CSR and resource availability models distinguish

between productive and unproductive systems without

reference to the determinants of productivity (e.g. water

or nutrient availability). In this study, we draw from the

generalized model, and treat dry systems as a special

case of unproductive systems. We base this on evidence

of the general convergence of plant attributes in floras

where the proximate cause of low productivity is water

or nutrient availability (Dı́az et al., 2004).

This paper presents a synthesis of 197 grazing studies

from a wide range of biomes across all inhabited con-

tinents. In it, we compare world wide, a range of studies

of plant trait responses to grazing, within a standard

framework and using a common set of descriptors. The

aim of this synthesis was to address the following

questions:

1. Do plant traits that are commonly accepted as being

associated with grazing, behave consistently as

expected when examined at a global scale?

2. Are associations between plant traits and grazing

dependent upon regional patterns of precipitation

and/or evolutionary history of herbivory?

3. Are the most commonly used conceptual models of

plant trait response to grazing supported at a global

scale?

4. Is the incorporation of grazing into global or regional

models of vegetation dynamics justified? If so, which

plant traits should be used to enhance them?

Methods

Data sources

We compiled and analysed literature from: Africa,

Australia and New Zealand, Central Asia, North America,

the Eastern and Western Mediterranean region, North-

ern and Central Europe and South America. The studies

described in this literature cover different biomes

including grasslands, managed pastures, savannahs,

shrublands, tundra deserts and several types of

woodland (Table 2). In the analysis, and following

Lavorel et al. (1997), we distinguished between plant

traits (e.g. canopy height, habit) and their attributes

(i.e. the categories of traits, such as tall, short, erect,

prostrate, etc.). Our focus was on plant trait responses

to grazing and so we did not consider the papers whose

sole focus was changes in biogeochemical processes or

those containing taxonomic composition information

that could not readily be translated into individual

plant attributes.

In our data collection, we distinguished between

publications, studies, and observations. Publications

presented results of one or more studies of the effects

of grazing (including browsing) on species richness

and/or plant attributes. Some publications provided

only site information so that a study or observation
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could be supported by more than one publication.

Each study was a dataset representing an independent

investigation of the responses to certain traits within

a certain context (e.g. a comparison between different

grazing regimes at one site and/or along a certain time

sequence). Each observation was an identified response

(positive, neutral or negative) in species richness or

abundance of an attribute to two levels of grazing.

Individual publications provided one or more studies,

each containing one or (generally) more observations.

In total, our dataset contained 1004 observations, be-

longing to 197 studies, reported in 194 publications

(Table 2, Appendix A). In order to standardize the

information, we used a proforma that included an

exhaustive list of ancillary and response variables

(Appendix B).

Variables used as covariates in the comparison of trait
response

Precipitation [as a proxy for aboveground net primary

productivity (ANPP)] and evolutionary history of

herbivory by ungulates have been considered variables

of paramount importance in previous work (Milchunas

et al., 1988; Milchunas & Lauenroth, 1993; Dı́az et al.,

2001). We used two categories of precipitation (dry/

humid, following Köppen, 1918), and two categories of

grazing history (long, short; Table 2). The different

biomes were classified as having long or short evolu-

tionary history of grazing by large mammals on the

basis of the duration of occupation by wild and domes-

tic ungulates and/or similar mammalian herbivores

according to van der Hammen (1983) (Africa), Atkinson

& Greenwood (1989) and Landsberg et al. (1999)

(Australasia), Zimov et al. (1995) (Central Asia),

Edelstein & Milevsky (1994) (Mediterranean region),

Milchunas & Lauenroth (1993) (North America), Agustı́

& Antón (2002) (Europe) and Franklin (1982) and

Borrero (1996) (South America).

Ideally, we would have used ANPP rather than pre-

cipitation as a covariate, but the latter is more readily

available. Precipitation is well correlated with herbac-

eous ANPP up to 900–1000 mm yr�1 (Lauenroth, 1979;

Milchunas & Lauenroth, 1993). This relationship is

weaker in more humid systems where low tempera-

tures cause very low evapotranspiration. Only about

3.2% of the observations in our dataset were from

systems that were, or were likely to be, both humid

and unproductive (ANPP o300 g m�2 yr�1). These

cases were well spread among regions (although there

was no case in Africa, Central Asia and the Mediterra-

nean region) and so were unlikely to bias the results.

Thus, we believe that using precipitation as a proxy for

ANPP is justified for the purposes of our analyses.

Obviously, we could not find examples of all possible

combinations of grazing history and precipitation

regime in every region. Because of the typically large

scale of operation of these processes, most regions had

only one level of grazing history, and many were

characterized by a single precipitation category (Table

2). Other ancillary variables (see Appendix B) were

reported in too few studies for statistical analysis.

Selection of plant traits and response variables

The selection of plant traits was based on the works of

Weiher et al. (1999), and Dı́az et al. (2001). The initial

search comprised 20 morphological, anatomical and

physiological traits, but only six of these produced

enough observations for statistical analysis. These were:

life history (annual, perennial), canopy height (short,

tall), habit (erect, prostrate), architecture (leafy stem,

rosette, stoloniferous, tussock), growth form (forb,

graminoid, herbaceous legume, woody) and palatabil-

ity (palatable, unpalatable). Palatability had sufficient

cases for analysis only when various forms of unpalat-

ability (tough vs. tender, nonpalatable vs. palatable,

good vs. poor forage, toxic, prickly, etc.) were pooled

Table 2 Summary of primary sources included in the dataset

Evolutionary history of herbivory
Long (113; 673) Short (45; 331)

Precipitation category Dry (58, 211) Humid (89, 462) Dry (27, 178) Humid (23, 153)

Africa (21, 67) 14, 41 7, 26 – –

Australasia (28, 292) – – 9, 147 19, 145

Central Asia (5, 28) 5, 28 – – –

Mediterranean region (30, 259) 10, 44 20, 215 – –

North America (45, 100) 12, 38 13, 28 18, 31 2, 3

Northern and Central Europe (37, 137) 4, 14 31, 118 – 2, 5

South America (31, 121) 13, 46 18, 75 – –

Figures indicate number of studies, observations in each category.

See ‘Methods’ and Appendix B for definitions of precipitation and grazing history categories.
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together in the same trait. Although not a physical plant

trait, geographic origin (native vs. exotic) was also

included because the spread of potentially invasive

exotic plants into new habitats and its relationship to

grazing is relevant for theoretical (Milchunas et al., 1988;

Stohlgren et al., 1999) and practical (Mooney & Hobbs,

2000) reasons. Abundance data were available for all

seven traits. Frequency, biomass, cover and density

were all accepted forms of abundance. Species richness

(the total number of species having a particular attri-

bute) data were available for three traits (life history,

growth form, origin).

Only ca. 35% of the observations contained quantita-

tive measurements or significance tests, and they were

very unevenly distributed among regions and combina-

tions of precipitation and history of grazing. Therefore,

in order to take full advantage of the literature, we

included reports of responses with and without statis-

tical testing, including qualitative reports of the direc-

tion of change. Once this dataset was compiled, we

searched for changes in response to grazing in the

abundance and species richness of plants bearing cer-

tain attributes. We made no attempt to separate direct

(e.g. defoliation) and indirect effects (e.g. competitive

release and other community-mediated mechanisms) of

grazing on plants. Plant responses can vary consider-

ably depending on grazing intensity (e.g. Naveh &

Whittaker, 1979; Milchunas et al., 1988; Westoby, 1989),

but many authors simply describe differences between

‘grazed’ and ‘ungrazed’ situations, without defining

whether grazing intensity was heavy or light. Therefore,

in this study, we simply compared grazed vs. ungrazed

situations. Where more than one grazing treatment was

studied we used the most extreme ones (lightest vs.

heaviest) for our analysis. When absolute values of

abundance were recorded for a single attribute within

a trait, then no information could be derived for the

alternative attribute(s). When, on the other hand, the

records were relative values more than one record could

be derived and included in the dataset (e.g. annual

increase and perennial decrease).

Statistical analysis

We carried out a meta-analysis in the sense of applying

formal statistical methods to the post-hoc analysis of

a large collection of results from individual studies

(Gurevitch & Hedges, 1999). We used a vote-counting

technique because few of the compiled studies were

suitable for the calculation of effect size. We constructed

multiple contingency tables considering, for each trait

and response variable (abundance or species richness),

the different attributes (rows) and directions of re-

sponse (columns). Within the cells, we considered the

frequency of positive, neutral or negative responses to

grazing of plants bearing each attribute. Precipitation

category and history of grazing were used as covariates

to control for their effects on the association of interest

(between trait and direction of response). We also used

regions as a covariate to control for their effects on the

association of interest (between trait and direction of

response). The results were not strongly driven by any

particular region, as region effects were mainly

explained by precipitation and history categories.

We analysed the multiple contingency tables using

the Cochran–Mantel–Haenszel General Association

(CMH) test and the Maximum Likelihood w2 (G2)-sta-

tistic (Agresti, 2002) for the partial tables (for each

herbivory history and precipitation category combina-

tion). The CMH test was run controlling for the effects

of grazing history and precipitation category to deter-

mine whether different combinations of these factors

influenced the association between attributes and direc-

tion of response to grazing.

Changes in species richness were reported less

frequently than changes in abundance. Only in the cases

of life history and origin did we found sufficient species

richness data to run meaningful tests for at least one of

the combinations of precipitation and history of graz-

ing. Frequently, the total number of cases was accepta-

ble, but their distribution into precipitation�history

categories was markedly uneven creating empty

categories and preventing us from performing tests

(Appendix C).

Results

All associations between the direction of response to

grazing and plant traits were considered at the global

scale and under the different combinations of precipita-

tion and evolutionary history of grazing. These are

presented as contingency tables in Appendix C. The

most ecologically significant patterns are highlighted

below.

Life history

For plant abundance, there was a significant global

association between the direction of response to grazing

and life history. Positive responses by annual plants to

grazing, and negative responses by perennial plants,

were reported more frequently than other responses

under all combinations of precipitation and herbivory

history (Fig. 1a). The exception to this was dry systems

with a long evolutionary history of herbivory (e.g.

Mediterranean semiarid grasslands, American short-

grass steppe, some African systems), in which no sig-

nificant pattern was detected (Fig. 1b).

318 S . D Í A Z et al.
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The species richness of annuals and perennials was

responsive to grazing across all sites, with observations

of annuals increasing and perennials decreasing with

grazing being the most frequent (Fig. 2a). Positive

responses of annuals to grazing were more marked in

humid systems but, within this precipitation category,

the response seemed to depend on evolutionary history

of herbivory. In humid systems with a short history of

grazing, positive responses of annual plants to grazing

and negative responses of perennial plants, were re-

ported most frequently (Fig. 2b). In contrast, in humid

systems with a long history, the pattern of responses of

species richness to grazing did not differ significantly

between annual and perennial plants (Fig. 2c). In the

case of dry sites, there were insufficient data in either

category of grazing history to calculate the G2-statistic

(Appendix C).

Canopy height

Globally there was a significant association between the

direction of response to grazing and plant height. Posi-

tive responses of short plants and negative responses of

tall plants were reported most frequently in all systems

(Fig. 3a), except in dry systems with a short evolutionary

history (e.g. some Australian sites), where response to

grazing did not differ significantly between short and

tall plants (Fig. 3b). The general trend of positive re-

sponse of short plants and negative response of tall

plants was more marked in systems with a long history

of grazing than in those with a short history (Fig. 3c and d).

The trends observed in dry and humid systems were

similar in direction and magnitude.

Habit

Globally, there was a significant association between the

direction of response to grazing and habit. In all sys-

tems erect plants tended to respond negatively to graz-

ing, and prostrate plants tended to respond positively

(Fig. 4). Trends observed in dry and humid systems

were similar in direction, but those in dry systems were

weaker and only marginally significant. Trends in short-

and long-history systems were similar in direction and

magnitude. There were insufficient observations to

reject the null hypothesis in dry sites with a short

history of herbivory or to analyse dry sites with a long

history of herbivory.

Architecture

There was a significant association between the direction

of response to grazing and shoot architecture. Positive

responses of rosettes and stoloniferous plants, and ne-

gative responses of tussock graminoids were reported

most frequently (Fig. 5a). There was no consistent trend
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in the response of plants with leafy stems. These global

relationships were influenced mostly by sites from

humid systems (crf. Fig. 5b and c) and systems with a

long history of grazing (crf. Fig. 5d and e). There were

insufficient data to run the analysis in the dry sites with

a long history and humid sites with a short history.

When only graminoids were considered, the tenden-

cies described above were maintained. Positive

response of stoloniferous graminoids, and negative

response of tussock graminoids to grazing were

reported most frequently (Fig. 5f). Again, these results

were driven mostly by humid systems and systems

with a long history of grazing. There was no significant

trend in dry systems and there were insufficient short-

history cases for analysis. When only forbs were con-

sidered, no significant trend of response of rosettes vs.

plants with leafy stem was detected.

Growth form

Globally, there was a significant association between

the direction of response to grazing and growth form

(Fig. 6). Forbs and woody species most frequently

showed neutral responses to grazing, whereas grami-

noids had predominantly neutral or negative responses.

There was insufficient information to draw conclusions

on the response of herbaceous legumes. The association

between response to grazing and growth form re-

mained significant among different combinations of

precipitation and grazing history, except for humid

systems with short herbivory history that displayed

no significant trend. The direction of the response of

the woody growth form was the least consistent across

climate and history combinations. However, the most

common response of woody plants to grazing was a

neutral response, both at the level of the entire dataset

(Fig. 6) or under different combinations of precipitation

and evolutionary herbivory history.

Palatability

We detected a significant association between the direc-

tion of response to grazing and palatability, with an

increase in unpalatable plants being most frequently

reported (P 5 0.005, Appendix C). However, most

observations came from systems with a long grazing

history and so we cannot say whether this relationship

holds under other conditions. In addition, when exam-

ining individual combinations of precipitation and

grazing history, this result appeared to be accounted

for by the bias of the data towards dry systems with a

long herbivory history (mainly African). In regions with

a long history and humid climate the relationship was

not significant.
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Origin

The association between origin and the direction of

grazing response was not significant. The most common

response to grazing was no change in the richness of

both native and exotic species. In the case of abundance,

however, there was a weak trend for a positive response

of exotic plants and a negative response of native

plants to grazing. The lack of clear trends may result

from the low number of observations (23). These ob-

servations were strongly biased towards humid sys-

tems with short history of grazing (mostly Australasian

systems), and even in this subset of observations the

trend was not significant. No test could be run for

the other combinations of precipitation and grazing

history.

Discussion

Data and publication biases

Our knowledge of the effect of grazing at a global scale

is restricted to a surprisingly small number of plant

traits. Even for these basic traits, there were insufficient

data to adequately test all combinations of precipitation

and history of herbivory. Data availability varied mark-

edly across regions for several reasons. Regional studies
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naturally focus on locally important traits and attributes

and so do not record less important traits in a systema-

tic way. Traits or attributes that are absent, or do not

vary much, are ignored. For example, 74% of our data

on exotics came from humid regions with a short

evolutionary history of herbivory where exotic inva-

sions are a conservation issue. Similarly, data on un-

palatable plants are collected where they are a problem,

for example in Africa and Australia. Such failures to

report on specific traits represent a serious obstacle for

literature-based syntheses in general (Dı́az et al., 2002).

In addition, because of biogeographical reasons, some

combinations of grazing history and climate are more

frequent than others in the planet. This is an unavoid-

able constraint in most global-scale studies, and avail-

able statistical techniques can overcome it only to a

certain degree. However, the consistency among inde-

pendent studies is encouraging. For example, for dry

areas with short herbivory history the findings of

Milchunas & Lauenroth (1993) and those of this study

are in agreement, despite the fact that the former is

biased towards North American sites, and the latter

towards Australian sites. We conclude that more inves-

tigations of plant trait responses to grazing are needed

that follow a common framework and are conducted in

a variety of locations (Dı́az et al., 2002). Using common

lists of traits across research groups would ensure

standardization of trait measurement in different sys-

tems of the world. This would alleviate the problem of

unreported responses, or lack of response because

species with the relevant attribute are simply absent.

Publications describing consensus trait lists (e.g. Weiher

et al., 1999), and standard methods of measurement are

available (Cornelissen et al., 2003; Knevel et al., 2005).

Shortlists of traits that should be favoured or disfa-

voured by grazing under different environmental con-

texts, with implications for ecosystem functioning, have

also been proposed (Coley et al., 1985; Grime et al.,

1996), and validated in a small number of studies

(Pérez-Harguindeguy et al., 2003; Duru et al., 2004).

Chief among these traits are leaf nitrogen content,

toughness and specific area. These traits are also

implicated in primary productivity, nutrient cycling

and trophic transfer (e.g. Lavorel & Garnier, 2002; Dı́az

et al., 2004; Garnier et al., 2004), and are applicable from

the local to the transcontinental scale (Dı́az et al., 2004;

Wright et al., 2004). Substantial progress can also be

made by reanalysing existing species-based studies. For

example, the abundant phytosociological data on re-

sponses of plant communities to grazing available from

Europe could be reanalysed incorporating information

from the trait datasets available (e.g. Fitter & Peat, 1994;

Hodgson et al., 1995; Knevel et al., 2003).

Global and context-specific patterns of trait response
to grazing

Despite the inherent limitations of the data our results

show that there are traits that exhibit consistent re-

sponse to grazing, provided that the general context

(e.g. climate and evolutionary history of herbivory) is

taken into account. We can, therefore, use these results

to assess whether predictions of the different conceptual

models of plant trait response to grazing (Table 1) are

supported at the global scale (Table 3).

Life history. In general, annuals are favoured by grazing

and perennials are disadvantaged. This is consistent

with the predictions of the range-succession,

generalized, and CSR models. Although dry regions

with a short evolutionary history of grazing conformed

to this pattern, dry regions with a long history showed

no consistent pattern in annuals and perennials. The

prediction of the CSR and generalized models that

the increased abundance of annuals should be more

marked in humid systems is confirmed by our results.

Canopy height. Grazing favours short plants irrespective

of climate and grazing history. This is consistent with

the predictions of all the models. There is no evidence

that short plants are more favoured by grazing in dry

systems, as suggested by the CSR model. Rather, the

response to grazing appeared more marked in humid

systems and in systems with a long herbivory history,

as predicted by the generalized model.
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Habit. Grazing promotes increases in prostrate plant

abundance and decreases in erect plants. This

supports the predictions of the range-succession,

generalized, CSR and physiological models. There is

no indication that responses are stronger in dry

systems, as predicted by the CSR model. Again, the

response seems marginally stronger in humid systems

and in systems with long herbivory history, as predicted

by the generalized model. The low significance values

obtained for dry and short-history systems may reflect

small sample sizes.

Architecture. Grazing increases the abundance of

stoloniferous and rosette plants. The increase in

stoloniferous plants is a prediction of all the models

that dealt with architecture (Table 1). The results also

support the prediction of the generalized model that

this effect is stronger in humid sites with long herbivory

history.

Growth form. According to our results, grazing does not

uniformly favour forbs, graminoids or woody species.

Only two models provide explicit predictions of

the impact of grazing on growth form. Neither

the prediction of the range-succession model that forb

and woody species abundance increases with grazing

nor the prediction of the generalized model (Milchunas

& Lauenroth, 1993) that graminoids increase with

grazing is supported by this study. Instead, our results

suggest that neutral responses of both groups are

widespread. It is evident from the conflicting

predictions that this is a complex issue, and while we

have detected different responses in different systems,

it appears that ‘graminoids’ as a functional group is too

general. The analysis of architecture within graminoids

shows negative responses of tussocks and positive

responses of stoloniferous grasses, suggesting a wide

range of grazing responses within this broad group.

The fact that grazing does not favour woody species,

with neutrality being the most common response in our

study, seems surprising considering the extensive

literature on woody encroachment (e.g. Milchunas &

Lauenroth, 1993; Scholes & Archer, 1997; Skarpe, 2000;

but see Vesk et al., 2004). Grazing did not increase shrub

abundance even in dry rangelands for which the

prediction is most commonly made (e.g. Milton et al.,

1994), perhaps because cases of grazing-induced shrub

encroachment are balanced by cases where grazing-

sensitive shrubs are reduced by grazing. Other

explanations may be irreversible shrub increases

(Westoby et al., 1989), or the alternation of positive

and negative interactions between herbaceous and

woody plants at different life cycle stages in a mosaic

landscape (Olff et al., 1999). Finally, changes in grazingT
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and woody vegetation are intimately linked with

changes in fire regimes, so that it may not be possible

to distinguish the separate rather than synergistic

effects of climate, fire and grazing (Bond et al., 2003).

Palatability. Grazing leads to increases in unpalatable

plants, and the effect is stronger in dry systems than in

humid systems. This is consistent with the predictions

of all four conceptual models that included palatability.

This trend however seems to be driven mostly by dry

systems with long herbivory history. Fewer studies in

dry regions with short herbivory history (e.g.

Landsberg et al., 2002; Vesk et al., 2004) have analysed

palatability. The evidence from studies in humid

regions with long herbivory history was inconclusive.

This seems to disagree with the theory and observations

that in productive areas with a long herbivory history,

grazing increases the abundance of palatable plants

(e.g. McNaughton, 1984). However, this discrepancy

may partly result from the pooling together of

palatability traits and so our results do not provide

clear-cut evidence of the effect of grazing history on

palatability.

Origin. There were too few studies available to obtain

solid conclusions on the impact of grazing on exotic

plant invasion. However, as predicted by the

generalized model exotics tended to increase under

grazing in regions with a short history of herbivory,

particularly in humid climates. The model predicts

relatively less invasion by exotics under grazing

where there has been a long herbivory history, but

there were insufficient data to test this.

Our results supported all five conceptual models of

plant trait response to grazing at the global scale.

However, the generalized model was the one which

best explained the patterns observed under different

combinations of climate and herbivory history. There

was no case where the direction of the response was

changed, but response strength varied depending on

climate and herbivory history. In total, our results

suggest that response to grazing is modulated by

these two interacting factors. Although the influence

of productivity on plant grazing response has been

widely recognized (e.g. Proulx & Mazumder, 1998;

Milchunas & Noy-Meir, 2002), that of herbivory

history has been largely ignored and very few

empirical studies have taken it into consideration (e.g.

Naveh & Whittaker, 1979; Milchunas & Lauenroth,

1993; Dı́az et al., 2001; Milchunas & Noy-Meir, 2002;

Adler et al., 2004; Cingolani et al., 2005). Our results

indicate that a conceptual framework for the

investigation of plant trait response to grazing, both

under specific regional situations and as part of

transregional comparisons, should incorporate both

climatic and historical contexts.

Implications for plant functional classifications for large-
scale vegetation models

Our study, the first meta-analysis to assess plant trait

responses to grazing at a worldwide scale, suggests that

(1) plant trait responses to grazing could improve the

ability of current large-scale vegetation models; and (2)

care should be taken when attempting to project vege-

tation response to climate in grazed ecosystems, as

these two factors interact in driving the functional

composition of vegetation.

What would be the minimum set of traits that would

allow us to incorporate plant responses to grazing in

predictions of climate change impacts? On the basis of

Table 3, we confirm that the distinction between woody

and herbaceous plants made by current large-scale

models is useful and that a minimum set of easily

accessible traits for herbaceous plants should include

life history and height or habit. The distinction between

woody and herbaceous plants is included in DGVMs,

but the models generally do not subdivide herbaceous

plants on the basis of life histories or height (see e.g.

Prentice et al., 2007). Leaf traits of shrubs, such as leaf

size, specific area and toughness are important to

capture climatic response (Barboni et al., 2004), and

possibly for grazing response and effects on biogeo-

chemistry. However no leaf trait could be analysed in

this study due to the paucity of data. Among herbac-

eous plants, grasses are often classified in global models

as C3 vs. C4 (e.g. Cramer et al., 2001). Subgroups should

distinguish within these two main climatically and

biogeochemically relevant groups to account for graz-

ing response. A minimal classification would divide the

C3 and C4 groups into annual vs. perennial, and then

within each of these subgroups, distinguish between

tussock vs. stoloniferous grasses.

Our study also indicates that to incorporate grazing

impacts in climate change predictions it seems neces-

sary to develop rules for specific climate regimes (e.g.

dry vs. humid climates). Given that differences in

response between dry and humid climates are thought

to reflect ANPP (Milchunas et al., 1988; Milchunas &

Lauenroth, 1993), it would also be possible to formulate

rules as functions of model-simulated ANPP in the

absence of grazing (potential vegetation). Our analyses

indicate that it will also be necessary to map grazing

histories globally in order to predict the correct re-

sponse to grazing. This seems feasible provided broad

categories are applied. However, more detailed infor-

mation on grazing regime (e.g. frequency, intensity)
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may be needed for finer-scale regional assessments

(Cingolani et al., 2005).

In practice, we propose a three-step approach to

refining plant functional type (PFT) classifications of

DGVMs in order to account for grazing response and

effects. First, ANPP needs to be simulated using classi-

cal life form and phenology/metabolism based classifi-

cations, yielding a global or regional map of ANPP. This

could then be reclassified into two productivity cate-

gories using an agreed threshold (e.g. Milchunas et al.,

1988; Milchunas & Lauenroth, 1993). Second, a four

category map of productivity�grazing history would

be obtained by combining this productivity map with a

map of grazing history (short and long). As a third and

final step, a different set of relevant PFTs could be

applied to each climate�grazing history combination,

on the basis of our results (Table 4). The relevant PFTs

listed in Table 4 were obtained by subdividing, for each

category of regional climate� grazing history, the PFTs

based on combinations of life form and phenology that

are commonly used by DGVMs. The traits used for

subdivision within each PFT were those shown as

significant by our analyses for each climate�grazing

history category. The additional traits for herbaceous

plants were: life form, life history, plant height, and

architecture. Under dry climates the number of relevant

traits, and therefore of PFTs, was reduced, especially

with a long grazing history. Region-specific PFTs have

already been implemented in some DGVMs (e.g. Bar-

boni et al., 2004), suggesting that the incorporation of

these refinements in future developments should not

pose serious technical challenges.
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Groupe de Recherches interdisciplinaire sur les ter-

rains sallés, Perpignan, France.
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Appendix B

Proforma utilized in data gathering, standardization

and codification.
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Region: Africa, Australasia, Central Asia, Mediterra-

nean, North America, Northern and Central Europe,

South America.

Latitude and longitude

Latitudinal category: tropical, temperate, austral, boreal.

Tropical-temperate boundary, 251; temperate-boreal,

601; temperate-austral, 451.

Annual precipitation (mm)

Precipitation category according to Köppen (1918): Dry,

humid.

Seasonality of rainfall: summer, winter, rainfall evenly

distributed throughout the year.

Evolutionary history of herbivory

Long history: continuous occupation by ungulates and/

or similar large (425 kg) mammalian herbivores since at

least the Pleistocene (ca. 10 000 years ago), including the

presence of domestic or semidomestic ungulates since

at least ca. 4000 years ago (e.g. Africa, Mediterranean,

Andean South America), and the presence of wild

herbivores (e.g. North America east of the Rocky Moun-

tains, non-Andean South America).

Short history: wild ungulates absent since before the

Pleistocene; or their presence discontinued in the Pleis-

tocene; occupation by large (wild or domestic) mam-

malian herbivores occurred for the first time less than

4000 years ago (e.g. Australasia, North America west of

the Rockies).

Soil type: sandy, clayey, gravelly, loamy, organic.

Soil nutrient content: nitrogen and phosphorus con-

tent.

Productivitity: aboveground net primary productivity

or standing biomass.

Stocking rate: number of animals per ha.

% consumption: what proportion of the ANPP is

consumed by the herbivores.

Grazing frequency: frequency and duration of grazing

at the site.

Grazing pressure: no grazing; light/moderate (selec-

tive); heavy (mostly nonselective).

Type of grazer: cattle, goats, Camelidae, etc.

Response variable: variable on which the effects of

grazing are measured (e.g. cover of annual vs. perennial

plants, richness of prostrate vs. erect species).

Response direction: increase (1) or a decrease (�) in the

response variable in the face of grazing.

Response mean: % change of the mean as a response of

grazing (e.g. grazing is associated with 20% reduction

of plant height).

Response variance: variance (or other estimator of dis-

persion, such as standard deviation or standard error)

for the response variable.

P-value: corresponding to test performed to assess

differences in response value as a result of grazing.

Degrees of freedom: Corresponding to test performed

to assess differences in response value as a result of

grazing.

Appendix C

Contingency tables. The values in the response columns

correspond to relative frequency of observations doc-

umenting a negative (�), neutral (0) or positive (1)

response to grazing of the abundance or richness of

plants bearing the attribute listed in each row (with

100% being N, or the total number of observations in

each contingency table). P corresponds to the Cochran–

Mantel–Haenszel Association test (CMH) in the case of

comparisons involving all sites (and controlling for

precipitation and grazing history), and to the Likeli-

hood Ratio w2 test (G2) in the case of comparisons, which

involve particular categories of precipitation and/or

evolutionary history of grazing. In both CMH and G2

tests, the null hypothesis was that the direction of

response to grazing was not associated with a specific

trait. Rejection of the null hypothesis meant that plant

species with some attributes were more abundant or

more common than plants with other attributes within

the trait. Being unable to reject the null hypothesis

meant that directions of response to grazing were not

significantly different between the trait attributes. In all

cases df, (number of possible grazing responses �1)

� (number of attributes in a trait �1); the degrees of

freedom are the same for the comparisons involving all

sites or individual combinations corresponding to each

trait, NC, not computable, either because there were too

few observations or the sum of one or more rows or

columns in the table was zero. Table A1
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Table A1

Response

N (–) (0) (1) P df

Life History – abundance

All Sites 130 o.0.0001 2

Annual 5.38 20.77 33.85

Perennial 19.23 14.62 6.15

Dry 78 0.005

Annual 5.13 26.92 24.36

Perennial 15.38 20.51 7.69

Humid 52 o.0.0001

Annual 5.77 11.54 48.08

Perennial 25 5.77 3.85

Short history 63 o.0.0001

Annual 1.59 19.05 36.51

Perennial 22.22 14.29 6.35

Long History 67 0.004

Annual 8.96 22.39 31.34

Perennial 16.42 14.93 5.97

Dry 1 short History 44 0.006

Annual 2.27 22.73 27.27

Perennial 18.18 20.45 9.09

Dry 1 long history 34 0.353

Annual 8.82 32.35 20.59

Perennial 11.76 20.59 5.88

Humid 1 short history 19 o.0.0001

Annual 0 10.53 57.89

Perennial 31.58 0 0

Humid 1 long history 33 0.009

Annual 9.09 12.12 42.42

Perennial 21.21 9.09 6.06

Life History – spp. Richness

All sites 65 0.019 2

Annual 11.94 8.96 34.33

Perennial 22.39 10.45 11.94

Dry 12 0.002

Annual 0 8.33 41.67

Perennial 33.33 16.67 0

Humid 53 0.169

Annual 13.21 9.43 33.96

Perennial 18.87 9.43 15.09

Short history 26 0.009

Annual 3.85 11.54 42.31

Perennial 19.23 15.38 7.69

Long history 41 0.309

Annual 17.07 7.32 29.27

Perennial 24.39 7.32 14.63

Dry 1 short history 5 NC

Dry 1 long history 7 NC

Humid 1 short history 21 0.038

Annual 4.76 9.52 47.62

Perennial 19.05 9.52 9.52

Humid 1 long history 32 0.922

Annual 18.75 9.38 25

Perennial 18.75 9.38 18.75
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Table A1. (Contd.)

Response

N (–) (0) (1) P df

Canopy Height – abundance

All Sites 180 o0.0001 2

Short 5.56 19.44 32.78

Tall 24.44 13.33 4.44

Dry 62 0.008

Short 11.29 16.13 27.42

Tall 25.81 9.68 9.68

Humid 118 o.0.0001

Short 2.54 21.19 35.59

Tall 23.73 15.25 1.69

Short history 31 0.05

Short 9.68 16.13 32.26

Tall 19.35 16.13 6.45

Long history 149 o.0.0001

Short 4.7 20.13 32.89

Tall 25.5 12.75 4.03

Dry 1 short history 12 0.785

Short 25 16.67 8.33

Tall 33.33 8.33 8.33

Dry 1 long history 50 0.006

Short 8 16 32

Tall 24 10 10

Humid 1 short history 19 0.011

Short 0 15.79 47.37

Tall 10.53 21.05 5.26

Humid 1 long history 99 o.0.0001

Short 3.03 22.22 33.33

Tall 26.26 14.14 1.01

HABIT – abundance

All Sites 37 o.0.0001 2

Erect 29.73 2.7 5.41

Prostrate 0 8.11 54.05

Dry 6 0.088

Erect 16.67 16.67 0

Prostrate 0 16.67 50

Humid 31 o.0.0001

Erect 32.26 0 6.45

Prostrate 0 6.45 54.84

Short history 10 0.005

Erect 30 10 0

Prostrate 0 10 50

Long History 27 o.0.0001

Erect 29.63 0 7.41

Prostrate 0 7.41 55.56

Dry 1 Short History 5 0.138

Erect 20 20 0

Prostrate 0 20 40

Dry 1 Long History 1 NC

Humid 1 Short History 5 o.0.0001

Erect 40 0 0

Prostrate 0 0 60

Humid 1 long history 26 o.0.0001

Erect 30.77 0 7.69
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Table A1. (Contd.)

Response

N (–) (0) (1) P df

Prostrate 0 7.69 53.85

Architecture – abundance

All sites 71 0.002 6

Leafy stem 5.63 2.82 8.45

Rosette 4.23 2.82 26.76

Stoloniferous 4.23 2.82 15.49

Tussock 19.72 2.82 4.23

Dry 27 0.032

Leafy stem 0 7.41 14.81

Rosette 0 7.41 3.7

Stoloniferous 11.11 7.41 11.11

Tussock 25.93 3.7 7.41

Humid 44 o0.001

Leafy stem 9.09 0 4.55

Rosette 6.82 0 40.91

Stoloniferous 0 0 18.18

Tussock 15.91 2.27 2.27

Short history 22 0.040

Leafy stem 9.09 9.09 18.18

Rosette 0 9.09 9.09

Stoloniferous 0 0 22.73

Tussock 13.64 0 9.09

Long history 49 o0.001

Leafy stem 4.08 0 4.08

Rosette 6.12 0 34.70

Stoloniferous 6.12 4.08 12.24

Tussock 22.45 4.08 2.04

Dry 1 short history 15 0.006

Leafy stem 0 13.33 26.67

Rosette 0 13.33 0

Stoloniferous 0 0 20

Tussock 20 0 6.67

Dry 1 long history 12 NC

Humid 1 short history 7 NC

Humid 1 long history 37 o0.001

Leafy stem 5.41 0 5.41

Rosette 8.11 0 43.24

Stoloniferous 0 0 16.22

Tussock 18.92 2.7 0

Architecture – graminoids only, abundance

All sites 35 0.002

Stoloniferous 8.57 5.71 31.43

Tussock 40.00 5.71 8.57

Dry 18 0.374

Stoloniferous 16.67 11.11 16.67

Tussock 38.89 5.56 11.11

Humid 17 o0.001

Stoloniferous 0 0 47.06

Tussock 41.18 5.88 5.88

Short history 10 NC

Long history 25 0.014

Stoloniferous 12.00 8.00 24.00

Tussock 44.00 8.00 4
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Table A1. (Contd.)

Response

N (–) (0) (1) P df

Dry 1 short history 7 NC

Dry 1 long history 11 0.411

Stoloniferous 27.27 18.18 0

Tussock 36.36 9.09 9.09

Humid 1 short history 3 NC

Humid 1 long history 14 o0.0001

Stoloniferous 0 0 42.86

Tussock 50.00 7.14 0

Architecture – forbs only, abundance

All sites 36 0.204

Rosette 8.33 5.56 52.78

leafy stem 11.11 5.56 16.67

Dry 9 NC

Humid 27 NC

Short history 12 0.351

Rosette 0 16.67 16.67

Leafy stem 16.67 16.67 33.33

Long history 24 NC

Dry 1 short history 8 NC

Dry 1 long history 1 NC

Humid 1 short history 4 NC

Humid 1 long history 23 NC

Growth form – abundance

All Sites 341 o0.0001 6

Forb 4.4 18.48 9.09

Graminoid 14.66 16.13 6.74

Herbaceous legume 1.76 0.59 2.93

Woody 6.16 12.32 6.74

Dry 200 o0.0001

Forb 3.5 19 7

Graminoid 15.5 21 4

Herbaceous legume 1.5 0 2

Woody 4 15.5 7

Humid 141 0.048

Forb 5.67 17.73 12.06

Graminoid 13.48 9.22 10.64

Herbaceous legume 2.13 1.42 4.26

Woody 9.22 7.8 6.38

Short history 120 0.180

Forb 3.33 21.67 5.83

Graminoid 6.67 28.33 4.17

Herbaceous legume 1.67 0.83 1.67

Woody 4.17 20 1.67

Long history 221 o0.0001

Forb 4.98 16.74 10.86

Graminoid 19 9.5 8.14

Herbaceous legume 1.81 0.45 3.62

Woody 7.24 8.14 9.5

Dry 1 short history 81 0.016

Forb 1.23 27.16 2.47

Graminoid 6.17 37.04 0

Herbaceous legume 0 0 1.23

Woody 0 22.22 2.47
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Table A1. (Contd.)

Response

N (–) (0) (1) P df

Dry 1 long history 119 0.002

Forb 5.04 13.45 10.08

Graminoid 21.85 10.08 6.72

Herbaceous legume 2.52 0 2.52

Woody 6.72 10.92 10.09

Humid 1 short history 39 0.130

Forb 7.69 10.26 12.82

Graminoid 7.69 10.26 12.82

Herbaceous legume 5.13 2.56 2.56

Woody 12.82 15.38 0

Humid 1 long history 102 0.007

Forb 4.9 20.59 11.76

Graminoid 15.69 8.82 9.8

Herbaceous legume 0.98 0.98 4.9

Woody 7.84 4.9 8.82

Growth form – spp. richness

All sites 64 0.094 6

Forb 10.94 14.06 15.63

Graminoid 17.19 20.31 3.13

Herbaceous legume 0 0 1.56

Woody 6.25 6.25 4.69

Dry 19 NC

Humid 45 0.056

Forb 8.89 15.56 15.56

Graminoid 15.56 24.44 4.44

Herbaceous legume 0 0 2.22

Woody 8.89 4.44 0

Short history 22 NC

Long History 42 0.002

Forb 9.52 16.67 16.67

Graminoid 16.67 26.19 0

Herbaceous legume 0 0 2.38

Woody 4.76 0 7.14

Dry 1 short history 6 NC

Dry 1 long history 13 NC

Humid 1 short history 16 NC

Humid 1 long history 29 0.007

Forb 3.45 24.14 13.79

Graminoid 10.34 37.93 0

Herbaceous legume 0 0 3.45

Woody 6.9 0 0

Palatability – abundance

All sites 52 0.005 2

Palatable 28.85 13.46 5.78

Unpalatable 11.54 13.46 26.93

Dry 29 o.0.0001

Palatable 24.14 24.14 0

UnPalatable 0 20.69 31.03

Humid 23 0.344

Palatable 34.78 0 13.04

Unpalatable 26.09 4.35 21.74

Short history 8 0.062

Palatable 25 25 0
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Table A1. (Contd.)

Response

N (–) (0) (1) P df

Unpalatable 0 25 25

Long History 44 0.015

Palatable 29.55 11.36 6.82

Unpalatable 13.64 11.36 27.27

Dry 1 short history 8 0.062

Palatable 25 25 0

Unpalatable 0 25 25

Dry 1 long history 21 o0.001

Palatable 23.81 23.81 0

Unpalatable 0 19.05 33.33

Humid 1 short history 0 NC

Humid 1 long history 23 0.344

Palatable 34.78 0 13.04

Unpalatable 26.09 4.35 21.74

Origin – abundance

All sites 22 0.156 2

Exotic 8.7 21.74 47.83

Native 17.39 4.35 0

Dry 8 NC

Humid 14 0.016

Exotic 7.14 28.57 28.57

Native 28.57 7.14 0

Short history 14 0.013

Exotic 7.14 21.43 35.71

Native 28.57 7.14 0

Long history 8 NC

Dry 1 short history 3 NC

Dry 1 long history 5 NC

Humid 1 short history 10 0.080

Exotic 10 20 20

Native 40 10 0

Humid 1 long history 4 NC

Origin – spp. richness

All sites 48 0.524 2

Exotic 6.12 28.57 22.45

Native 8.16 22.45 12.24

Dry 2 NC

Humid 46 0.470

Exotic 4.35 28.26 21.74

Native 8.7 23.91 13.04

Short history 43 0.522

Exotic 4.65 30.23 18.6

Native 9.3 25.58 11.63

Long history 5 NC

Dry 1 short history 0 NC

Dry 1 long history 2 NC

Humid 1 short history 43 0.513

Exotic 4.65 30.23 18.6

Native 9.3 25.58 11.63

Humid 1 long history 3 NC
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