Received: 2 August 2017

Revised: 2 October 2017

Accepted: 7 October 2017

DOI: 10.1002/jmor.20766

RESEARCH ARTICLE

JOURNA AL 0 F

WILEY morphology

Geometric morphometric analysis as a proxy to evaluate
age-related change in molar shape variation of low-crowned
Notoungulata (Mammalia)

Alejo C. Scarano?!:2:3 |

Divisién Paleontologia de Vertebrados,
Museo de La Plata, Paseo del Bosque s/n.
B1900FWA La, Plata, Argentina

2Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Godoy
Cruz 2290 (C1425FQB) CABA, Argentina

SUniversidad Nacional de Avellaneda
(UNDAV), Espana 350, Avellaneda, Buenos
Aires, Argentina

“Instituto Argentino de Nivologia,
Glaciologia y Ciencias Ambientales
(IANIGLA), CONICET, Avenida Ruiz Leal s/n,
Mendoza 5500, Argentina

Correspondence

Alejo C. Scarano, Division Paleontologia de
Vertebrados, Museo de La Plata, Paseo del
Bosque s/n. B1900OFWA La, Plata,
Argentina.

Email: scarano@fcnym.unlp.edu.ar

Funding information

Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET,
Argentina); Field Museum of Natural
History, USA (to B.V.), Grant/Award
Number: 2010-P305326; Williams Founda-
tion travel grant (2011); University of
Padova, Italy (via “Proposte di finanzia-
mento per azioni di cooperazione universi-
taria,” 2011 and 2014); PICTO-UNDAV
105, Préstamo BID

1 | INTRODUCTION

Barbara Vera?

Abstract

Shape and age variation in dentition of Paleogene extinct native South American ungulates
(Notoungulata) has been traditionally described using qualitative and quantitative approaches, and
has played a controversial role in the systematics of several groups. Such is the case of the Notopi-
thecidae, a group of notoungulates with low-crowned teeth, known from the middle Eocene of
Patagonia (Argentina). In this group, as well as in other contemporary families, extreme morpholog-
ical changes associated to increasing dental wear were originally assumed to represent taxonomic
differences; thus, dozens of species were erected, clearly reflecting the difficulty of defining dis-
crete characters. In this contribution, a total of 89 upper molars and 91 lower molars were
analyzed distributed in two factors, wear and species; three species of notopithecids were consid-
ered as study case, Notopithecus adapinus, Antepithecus brachystephanus, and Transpithecus
obtentus, based on the large and well-identified sample of upper and lower molars for each species.
We have coupled geometric morphometric analyses with traditional comparative methods to get a
better understanding and interpretation of both the changes in tooth shape contour and the link
between shape and ontogeny. In addition, we evaluate the utility of this approach to identify
which changes are strictly wear-related and also test the qualitative characteristics used for diag-
nosing and differentiating notopithecid species. Our study yielded consistent results when
applying independent geometric morphometric analyses on complex structures such as brachydont
molar teeth. The landmark data is highly congruent with alternative sources of evidence, such as
morphological studies using discrete characters. In notopithecid species, wear is the main factor
affecting molar shape, followed by species (in lower molars) and allometry; in addition, lower teeth
morphology is more definitive in separating species than upper molars, a fact that entails a key

point for systematic studies of Paleogene brachydont notoungulates.
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brachydont, cheek teeth, middle, Eocene, wear

that of herbivores (Damuth & Janis, 2011; Fox, Juan, & Albert, 1996;
Janis & Fortelius, 1988; Lucas et al., 2014); however, a general consen-

Wear is widely known to modify the shape, affect the function, and
compromise the structural integrity of the dentition of herbivorous
mammals throughout ontogeny (Butler, 1983; Fortelius & Solounias,
2000; Lucas, Constantino, Wood, & Lawn, 2008; M’kirera & Ungar,
2003; Rensberger, 1973; Ungar, 2015). Much of this debate has
focused on the study of what causes mammalian tooth wear, especially

sus regarding the mechanics of tooth wear and its causes (e.g., the his-
torical dichotomy of phytoliths versus exogenous grit) has not yet been
reached (Erickson, 2014; Fortelius, 1985; Fox et al., 1996; Janis, 1995;
Kubo & Yamada, 2014; MacFadden, 1997; Massey & Hartley, 2006;
Sanson, Kerr, & Gross, 2007; Simpson, 1953; Stromberg, 2006). While

the way that tooth shape changes with wear may have a genetic
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underpinning, tooth wear itself is not inherited; in this sense, the pat-

morphology

terns of wear of fossil teeth reflect real behaviors of specific individuals
during their lifetime (Ungar, 2009).

Traits associated with tooth shape, such as upper molars with rec-
tangular, squared, or trapezoidal outlines, have been traditionally used
as discrete and qualitative characters in systematic and phylogenetic
analyses to separate species and genera of notoungulate groups; how-
ever, tooth shape is a continuum rather than a discrete character
because it is controlled by wear. Geometric morphometrics (GM) is an
approach used to quantify differences in morphological shape, includ-
ing statistical differences between individuals, sexes, or species, as well
as transformational modifications between ontogenetic stages,
between stratigraphic units, or along branches of a phylogenetic tree
(Polly et al., 2016 and references therein). Moreover, geometric mor-
phometrics is favored over traditional morphometric methods (e.g.,
Claude, 2013) because it allows capturing the geometry of morphologi-
cal structures, preserving this information throughout the analyses
(Adams, Rohlf, & Slice, 2004). Bernal (2007) compared traditional ver-
sus GM techniques on a study of size and shape of human molars,
demonstrating that a considerable amount of information about molar
contour and some morphological features can accurately be captured
by means of GM methods and, in addition, that differences among
samples were only found by means of GM analyses. Catalano, Ercoli,
and Prevosti (2014) established that landmark configurations can be an
important source of evidence for phylogenetic analysis in mustelids,
with their results being congruent with the relationships defined for
the group based on molecular and discrete morphological characters.

Traditionally, shape and age variation in the dentition of extinct
native South America ungulates (Notoungulata) has been described in
terms of both qualitative (morphological) and quantitative (linear
dimensions or other measurements) changes, taking a controversial
role in the systematics of several groups (e.g., Billet, De Muizon, &
Quispe, 2008; Billet et al., 2009; Cerdeno, Montalvo, & Sostillo, 2017;
Cerdeno, Reguero, & Vera, 2010; Cerdeno et al., 2008; Croft, Reguero,
Bond, Wyss, & Flynn, 2003; Francis, 2013; Madden, 1997; Vera,
2012a,2017). For instance, using geometric morphometrics to analyze
high-crowned upper and lower teeth, Ercoli, Candela, Rasia, and Ram-
irez (2017) revalidated a species of Paedotherium (Hegetotheriidae)
from the Late Miocene; however, no previous GM analysis has been
done on the low-crowned dentition of Eocene notoungulates.

In particular for notoungulates with low-crowned teeth, ontoge-
netic sequences based on extreme morphological changes associated
to increasing wear on dentition were originally assumed to represent
taxonomic differences and dozens of species were erected, a fact that
clearly highlighted the difficulty of defining discrete characters. Such is
the case for notopithecids (Ameghino, 1897, 1901, 1903, 1904).

Notopithecids are a group of small-sized notoungulates, character-
ized by having cheek teeth with low crowns and closed roots (= bra-
chydont, Mones, 1982). The group was particularly diverse during the
Casamayoran SALMA (South America Land Mammal Age; middle-late
Eocene) of Patagonia (Argentina). As is common for other small and
poorly known groups of Eocene mammals from South America with
similar dental morphology (e.g., archaeopithecids, oldfieldthomasiids),

notopithecids are primarily recorded by fragmentary dental remains or
isolated cheek teeth, which have been the basis for the characteriza-
tion of most of these groups. In fact, notopithecid diversity has been
overestimated based on morphological and metrical differences (Ame-
ghino, 1897, 1901, 1903, 1906; Simpson, 1945, 1967). Indeed, Ame-
ghino (1906) recognized eight genera and 20 species within the
Notopithecidae, considering only upper dentition, whereas Simpson
(1967) proposed a total of four genera and seven species for this
group.

More recently, an exhaustive study of this group concluded that
the main morphological variations among the different species origi-
nally erected within Notopithecidae are due to degrees of wear and
intraspecific variation, instead of interspecific variation (Vera, 2012a,
2013, 2016; Vera & Cerdeno, 2014). In addition, a new phylogenetic
hypothesis was proposed for this group, considering it as a clade com-
prising four monospecific genera, Notopithecus adapinus Ameghino
1897, Antepithecus brachystephanus Ameghino 1901, Transpithecus
obtentus Ameghino 1901, and Guilielmoscottia plicifera Ameghino 1901
(Vera, 2016).

In this context, and considering the unusually large sample avail-
able for this group, notopithecids represent as a good case-study to
assess age-related molar shape variation, using for the first time a GM-
based approach for low-crowned notoungulates.

In this contribution, we combine GM with traditional compara-
tive methods to achieve a better understanding and interpretation
of both the changes in tooth shape contour and the link between
shape and ontogeny (degree of wear). In addition, we evaluate the
utility of this approach to distinguish changes that are strictly wear-
related from those qualitative characteristics used for diagnosing and
differentiating notopithecid species. The goal of this study is to pro-
vide a useful proxy for the better understanding of other still little
known South American Paleogene brachydont groups with similar

characteristics.

1.1 | Repositories and institutional abbreviations

American Museum of Natural History, Fossil Mammals (AMNH FM),
New York, USA; Field Museum of Natural History, Chicago (FMNH),
Chicago, USA; Museo Argentino de Ciencias Naturales “Bernardino
Rivadavia,” Ameghino and Paleovertebrata collections (MACN-A/Pv),
Buenos Aires, Argentina; Museo di Geologia e Paleontologia (MGP),
Universita degli Studi di Padova, Italy; Museo de La Plata (MLP), La
Plata, Argentina; Muséum national d’'Histoire naturelle, Casamayoran
collection (MNHN-CAS), Paris, France; Museo Paleontoldgico “Egidio
Feruglio,” Vertebrate Paleontology collection (MPEF-PV), Trelew,

Argentina.

1.2 | Other abbreviations

M1, M2, M3: first, second, and third upper molars; m1-m2, first and
second lower molars; WS, wear stage.
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2 | MATERIAL AND METHODS

2.1 | Data sources

The specimens included in the present study were taken from Vera's
database (2013) which represents the largest and most complete sam-
ple recognized for Notopithecidae species. The examined specimens
are deposited in the collections of several institutions: AMNH, FMNH,
MACN, MGP, MLP, MNHN, and MPEF.

On the basis of the number of preserved teeth for each taxon,
three species of Notopithecidae were selected, namely Notopithecus
adapinus, Antepithecus brachystephanus, and Transpithecus obtentus
(Supporting Information Appendix 1); conversely, Guilielmoscottia plici-
fera was not included in this study due to its small number of known
specimens.

Tooth shape morphology of notopithecids was explored through
the analysis of photographs of upper (M1, M2, and M3) and lower
molars (m1 and m2) because these teeth are numerically better repre-
sented in collections with respect to the less abundant premolars. It
should be noted that m3 were excluded from the analysis due to their
dissimilar morphology (e.g., extra lophids and cusps) with respect to m1
and m2. This morphological disparity between m3 and m1-2 may
obscure other possible patterns in the shape data; it does not happen
in upper molars, in which the morphology is more homogeneous, and
therefore M3 was included in these analyses.

To standardize the photographs, each tooth was positioned as
shown in Figure 1, including a ruler to account for size in the analyses.
In addition, to maximize sample size, the left molar was photographed
when the corresponding right molar was not preserved; left-side molars
were flipped (reflected) before performing the analyses. Teeth with
extreme attritional wear, broken parts and/or with uncertain location
for one or more landmarks were not included in the study.

A total of 89 upper molars and 91 lower molars were analyzed and
categorized in two factors, species and wear (Supporting Information
Appendix 1). Although the sample sizes are not equal across the two
factors levels, all are well represented. Upper and lower molars were
treated separately.

Mesial

(a) moderate worn upper molar and (b) moderate worn lower molar showing landmarks (red) and semilandmarks (green)

Selected upper and lower molars were classified into three catego-
ries according to the degree of wear and each tooth was treated as an
independent unit. These wear stages (WS) were defined based on gen-
eral and particular morphological characteristics observed on molars
throughout ontogeny for each species, with a classification of WS= 1
for a little worn tooth, WS= 2 for a moderately worn tooth, and WS=
3 for a very worn tooth (Table 1). Methodology and tooth terminology
follow Vera (20123, 2013, 2016, and references herein).

2.2 | Geometric morphometric analyses

Geometric morphometric methods were used to analyze the shape and
size of the occlusal morphology of cheek teeth for the three notopithe-
cid species, following several authors (Adams et al., 2004; Klingenberg
2016; McGuire 2010; Rohlf & Marcus, 1993; Zelditch, Swiderski, &
Sheets, 2012). These methods quantify the shape of anatomical objects
from the coordinates of homologous locations, after the effects of non-
shape variation (i.e., orientation, position, and scale) are mathematically
held constant (Adams, Rohlf, & Slice, 2013; Kelly, Folinsbee, Adams, &
Jennions, 2013; Klingenberg, 2016).

For the upper molars, the two-dimensional coordinates of eight
landmarks were digitized over the occlusal surface, and 16 equidistant
semilandmarks (Gunz & Mitteroecker, 2013) along the enamel outline
of each tooth were included to capture its curvature (Figure 1a and
Supporting Information Appendix 2). For the lower molars, a total of
eight two-dimensional coordinate landmarks were digitized and 45
equidistant semilandmarks along the enamel outline of the teeth were
included (Figure 1b and Supporting Information Appendix 2). The semi-
landmarks were slid using the minimal bending energy criterion (Book-
stein, 1996, 1997; Bookstein, Streissguth, Sampson, Connor, & Barr,
2002).

The landmark configurations were subjected to a Generalized Pro-
crustes Analysis (Rohlf & Slice, 1990), in which the configurations are
scaled to a centroid size of one, transposed and rotated, so that the
sum of squared distances between corresponding landmarks is minimal.

After superimposition, the aligned shape coordinates were projected
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FIGURE 2 Plots of the first and second principal components (PC1 and PC2). (a) upper molars. (b) lower molars. Wear stages are showed
in different colors with 80% ellipses for each stage. Big dots represent group centroids. WS 1, slightly worn tooth (black); WS 2, moderate
worn tooth (red); WS 3, highly worn tooth (green). Marginal boxplots represent the principal components scores distribution for each
species in each component. The boxes represent the interquartile range and the lines (whiskers) extend to the extreme values (minimum
and maximum). T.o., Transpithecus obtentus; N.a., Notopithecus adapinus; A.b. Antepithecus brachystephanus

orthogonally into a linear tangent space yielding Kendall's tangent
space coordinates (Berns & Adams, 2013; Claude, 2008; Dryden &
Mardia, 1998; Rohlf, 1999), which were treated as a set of shape varia-
bles to be used in the exploration of shape variation. In addition, cent-
roid size (CS) was also retained for further analyses. The digitizing
process was performed using TpsDig2 (Rohlf, 2008) and morphometric
analyses were performed in R 3.0.2 (R Development Core Team, 2013),
using routines in the package “geomorph” (Adams & Otarola-Castillo,
2013).

2.3 | Analysis of the tangent space coordinates

First, a principal components analysis (PCA) of the tangent space coor-
dinates was performed to visualize the major trends of shape variation
and possible patterns of distribution of specimens along each factor
(wear and species). The plots of the first and second principal compo-
nents (PC1 and PC2) show the two main axes of variation of the data,
where the different wear stages are represented in different colors and
80% ellipses were plotted for each stage. The distribution of the species
factor in the PCA plot is depicted by a series of marginal boxplots that
represent the distribution of principal component scores for each spe-
cies in each component. The boxes represent the interquartile range
and the lines (whiskers) extend to the extreme values (minimum and
maximum).

Second, a nonparametric MANOVA (np-MANOVA) with permuta-
tion was conducted (Anderson, 2001; Collyer, Sekora, & Adams, 2015).
This analysis quantifies the relative amount of shape variation attribut-
able to the factors in a linear model, and estimates the probability of
this variation by distributions generated from resampling permutations.
A randomized residual permutation procedure (RRPP) was conducted

to generate statistical distributions and effect sizes. The RRPP is a

procedure that uses resampling to randomize the residual vectors of a
matrix of residuals from a reduced model to calculate pseudorandom
values for estimation of effects from a full model (Adams & Collyer,
2007, 2009; Collyer & Adams, 2007, 2013; Collyer, Stockwell, Adams,
& Reiser, 2007; Collyer et al., 2015). The advantage of this permutation
approach, compared with the traditional randomizing vectors of raw
values, is that it holds constant the effects of the reduced model and is
not constrained by the high-dimensionality of the data (Collyer et al,
2015). It also allows estimation of relative effect sizes as standard devi-
ations of sampling distributions (see Adams & Collyer, 2016; Collyer
et al., 2015 for a detailed description of effect sizes and its estimation).
Therefore, one of the most remarkable aspects of this methodology is
that one can compare the effects size both within and among different
studies (Collyer et al., 2015).

Finally, a regression of shape on size was conducted in order to
describe the multivariate relationship between size and shape. The allo-
metric pattern was visualized through a series of plots that describe
the multivariate relationship between size and shape derived from
landmark data. The abscissa of the plot represents size as log (CS),
while the ordinate represents shape, calculated as the common allo-
metric component of the shape data (CAC), which is in turn an estimate
of the average allometric trend within groups (Mitteroecker, Gunz,
Bernhard, Schaefer, & Bookstein, 2004).

3 | RESULTS

3.1 | Principal component analysis of the tangent
space coordinates

For the upper molars, the first two principal components explain 53%

of the total shape variation (Figure 2a; Supporting Information
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FIGURE 3 Comparison of the extreme shapes of the PC1, representing the major direction of shape change. (a) upper molar. (b) lower
molar. Gray outline represents the positive PC1 extreme shape. Black outline represents the negative PC1 extreme shape

Appendices 3 and 4). The different wear stages are clearly identified
mainly along the first principal component, with slightly (WS 1) and
highly (WS 3) worn teeth located at the positive and negative extremes
of PC1, respectively. The marginal boxplots show a high degree of
overlapping among species in the first two principal components,
mainly between Notopithecus and Antepithecus, while Transpithecus dif-
ferentiates from them and shows negative values on PC1 (Figure 2a).

For the lower molars, the first two principal components explain
55% of the total shape variation (Figure 2b; Supporting Information
Appendices 3 and 4). The different wear stages are clearly identified
mainly along the first principal component with some degree of over-
lapping, and the slightly (WS 1) and highly (WS 3) worn teeth are
located at the positive and negative values of PC1, respectively (Figure
2b), in concordance with the pattern described for upper molars (Figure
2a). However, the different species are better separated along both the
first and the second principal components (Figure 2b), in contrast with
the case of the upper dentition. Along PC1, Transpithecus and Notopi-
thecus overlap moderately, whereas Antepithecus is clearly differenti-
ated from them; in turn, the three species are also better separated
along the second principal component (Figure 2b).

The major direction of shape change represented by PC1 is shown
in Figures 3a,b. Regarding upper molars, two remarkable extremes can
be observed, from slightly worn molars (WS 1, Table 1) which are char-
acterized by being trapezoidal with narrow (labiolingually compressed)
and long crowns (gray line in Figure 3a), to highly worn molars (WS 3,
Table 1) which are characterized by having a square outline and wider
and shorter crowns (black line in Figure 3a).

In turn, for lower molars, the major direction of shape change rep-
resented by PC1 (Figure 2b) is displayed in Figure 3b. Slightly worn
lower molars (WS 1, Table 1) are characterized by having a long and
narrow (labiolingually compressed) crown, a deep lingual valley in the
trigonid, marked mesial and distal valleys in the talonid, a deep labial
sulcus between trigonid and talonid, and well-differentiated lophids
(gray line in Figure 3b). In the negative extreme of PC1, typical highly
worn lower molars (WS 3, Table 1) are characterized by having shorter

and wider crowns, a shallow lingual sulcus in the trigonid, less differen-
tiated lophids, and a rounded talonid due to erased lingual valleys (black
line in Figure 3b).

3.2 | The np-MANOVA analyses

The MANOVA analysis indicates that both factors, wear and species,
were significant (p <.05) for both upper and lower molars (Table 2).
However, the interaction term wear X species was not significant for
upper molars, whereas it was significant (p < .05) for lower molars, indi-
cating an interaction of factors on shape. It is important to remark that
although both the main factors and the interaction term are statistically
significant for lower molars, their effect sizes are different (Table 2).
The R? and effect size (Z score) values obtained respectively for wear
(0.26; 11.6) and species (0.14; 9.1) show that wear is the major factor
that accounts for variation in the shape of lower molars (26% approxi-
mately), followed by the factor species (14% approximately). In contrast,
the interaction term wear X species accounts for only 5% of the shape
variation with an effect size of 2.2 sd (and a p value < .05), indicating
that small differences are statistically but not “biologically” significant.
Moreover, these values are in concordance with the distribution and
clustering observed in the principal component analysis (Figure 2b), in
which the wide scattering of Antepithecus could be the source of such

significant interaction.

3.3 | Effect of size on molar shape

The multivariate regression of shape on size (log CS) was significant (p
value < .05) for both upper and lower molars, indicating a considerable
amount of shape variation attributable to covariation with size (Table 2,
Figure 4a,b). Moreover, in upper molars, size (log CS) is the second
most important factor accounting for shape variation, after wear (Table
2). The homogeneity of slopes test between size (log CS) and wear by

species was not significant either in lower (p value 0.8851) or upper (p
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TABLE 2 Anova table (Type |, sequential, significance testing by RRPP 10,000 permutations) for upper and lower molars

Upper molars

Lower molars

SS MS Rsq F z
log(Csize) 0.15 0.15 0.10 13.44 7.69
Wear 0.33 0.17 0.23 15.22 10.42
Species .04 .02 .02 1.65 1.53
Wear * Species .05 .01 .03 1.13 1.11

p SS MS Rsq F z p

.0001 0.15 0.15 .08 13.96 6.32 .0001
.0001 0.49 0.25 0.26 2226 11.62 .0001
.04 0.27 0.14 0.14 12.22 9.15 .0001
0.25 0.10 .03 .05 2.28 2.23 .0001

SS, the sums of squares for each term; MS, the mean of squares for each term; Rsq, the coefficient of determination for each model term; F, the F val-
ues for each model term; Z, the standard deviates or z-scores; p, the p values for each term from resampling permutations.

value 0.705) molars, indicating a common shape-size allometry among

groups.

3.4 | Testing the importance of factors for species
shape differences

Because wear and covariation of size (CS) and shape are significant in
both upper and lower molars (Table 2), two linear models were com-
pared to assess shape differences between species after accounting for
wear and size (the two main factors affecting shape in upper molars).
One of them is a “reduced model” lacking the species factor (shape ~
CS + wear) and the other one is a “full model” including the species fac-
tor (shape ~ CS + wear * species). The pairwise comparisons between
species show that shape differences in upper molars are not significant
after accounting for size and wear (Table 3). This reinforces the notion
that upper molar crown shape is mainly determined by wear and allom-
etry. In the case of lower molars, the pairwise comparisons yielded sig-
nificant differences in molar shape among the three species (Table 3).

These results would indicate that after controlling for wear and size,

there are still significant differences between the mean shapes of the

three species involved.

4 | DISCUSSION

Recent contributions regarding notopithecids have greatly improved
the knowledge for three of their representatives, namely Notopithecus
adapinus, Antepithecus brachystephanus, and Transpithecus obtentus, by
integrating morphological characters of both upper and lower dentition,
and considering in some cases features of the skull and postcranial
bones as well (Vera, 2012a,b, 2013, 2016; Vera & Cerdeno, 2014).
Indeed, one of the most important systematic advancements, made
using a classic qualitative approach, was the idea that the number of
originally described species, especially for Notopithecus and Antepithe-
cus, had been overestimated. This overestimation was explained by
considering that the variation observed among specimens is due to
wear occurring during ontogeny instead of interspecific differences
(Vera, 2013, 2016).
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FIGURE 4 Scatterplot of shape data (CAC), as an estimate of the average allometric trend within groups versus size as log (CS). (a) upper

molars; (b) lower molars
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TABLE 3 Upper and lower molars p values of mean shape pairwise comparison between species after accounting for wear and size

(allometry)
Upper molars Lower molars
Antepithecus Notopithecus Transpithecus Antepithecus Notopithecus Transpithecus
Antepithecus 1 0.72 0.14 1 .0001 .0001
Notopithecus 0.72 1 0.37 .0001 1 .0002
Transpithecus 0.14 0.37 1 .0001 .0002 1

However, the fragmentary remains and/or the low number of
specimens with precise taxonomic determination, usual for Eocene
notoungulate fossils, have prevented in most cases the application of
other methodologies to quantify these morphological changes, such as
traditional or GM analyses. Fortunately, the particularly large sample of
notopithecid specimens has provided an ideal model to test the “over-
estimation hypothesis” by means of quantitative approaches (e.g., GM)
to analyze whether morphological changes in teeth (molars) are more
related to ontogeny (intraspecific variation) than to interspecific differ-
ences. In this context, our present work is the first attempt using a
geometry morphometric approach to study the brachydont molars of a
group of Notoungulata.

The plots of mean shapes of different levels of the wear and spe-
cies factor (Figures 5 and 6), allowed the observation of the morpholog-
ical changes shared by molars of the notopithecids throughout their
ontogeny: (1) in both upper and lower molars, width increases, relative
to a decrease in length; (2) in upper molars (Figure 5a), the mesial and
distal cingula fuse to the metaloph, the occlusal fossettes are erased,
the parastyle and metastyle folds became less undulated, and the out-
line changes from trapezoidal to squared; (3) in lower molars (Figure
5b), the lingual trigonid sulcus becomes shallow, as well as the mesial
talonid valley, and the distal talonid valley is erased, so that the talonid
presents a circular outline. In other words, characters associated to
tooth shape (e.g., molar outline and size) represent a continuum along
ontogeny that is strongly controlled by wearing, rather than being dis-
crete and qualitative attributes, as traditionally considered.

In turn, when structural patterns are compared considering the

mean shapes of species factor, the most noticeable morphological

differences are observed in Transpithecus compared to Notopithecus
and Antepithecus (Figure 6). These results agree with systematic studies
that consider Transpithecus as a taxon clearly differentiable from Ante-
pithecus and Notopithecus; in fact, only one species, T. obtentus, was
originally included in this genus (Ameghino, 1901). Compared to Noto-
pithecus and Antepithecus, Transpithecus is larger and presents upper
molars with the hypocone more lingually projected than the protocone
and lacking a mesial cingulum (Vera, 2012a, 2016); other less evident
differences correspond to the less pointed parastyle and metastyle and
more convex paracone and metacone (Figure 6a); in turn, the differen-
ces in the lower molars are more subtle and include a shorter trigonid
and longer talonid (Figure 6b).

In contrast, the morphological differences between Notopithecus
and Antepithecus are very subtle and a common structural pattern for
both taxa is easily recognizable (Figure 6a); in fact, it is difficult to dis-
tinguish between these genera using only isolated teeth, especially
upper molars. In this sense, it is worth mentioning that Antepithecus
was ambiguously defined (Ameghino, 1901) and was subsequently
often confused with Notopithecus in the bibliography, indeed, Simpson
(1967, p. 81) included Antepithecus in his description of Notopithecus
and mentioned the difficulty of distinguishing both taxa based on upper
tooth morphology. Moreover, when differences in upper molar shape
are analyzed taking into account the species factor only, there are no
significant differences between Antepithecus and Notopithecus (Table
4). In any case, other features (not expressed in Figure 6a) beyond size
distinguish Antepithecus from Notopithecus, such as upper molars with
a deep lingual valley that reaches the base of the crown, and having an

entoloph formed with advanced wear (Vera & Cerdeno, 2014).

Ws1 o o]
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FIGURE 5 Comparison of (a) upper molar and (b) lower molar mean shapes for each wear stage. WS 1, little worn mean shape; WS 2,

moderate worn mean shape; WS 3, highly worn mean shape
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Conversely, differences in the lower molars are more conspicuous,
including a deeper lingual sulcus in the trigonid and talonid, the more
inclined protolophid and longer paralophid that distinguish Antepithecus
from Notopithecus (Figure 6b).

Summarizing, shape changes in the upper molars involve mainly
the labial surfaces (Figures 5a and 6a), whereas those that take place in
lower molars are more evident and concentrated in the lingual region
(Figures 5b and 6b); moreover, when only the species factor is consid-
ered in the analysis of shape differences, all three species are signifi-
cantly different only with respect to their lower molars (Table 4). These
contrasting results between upper and lower molars suggest that the
latter are better diagnostic structures than the former at interspecific
level, because their shape differences are more relevant to separate
species even when wear and size effects are ignored. However, we
have to put a word of caution concerning the occlusal fossettes on
upper molars (a variable number of fossettes are commonly present in
the little worn teeth of Paleogene notoungulates), which cannot be
quantified by means of landmarks and semilandmarks in highly worn
molars (with erased fossettes). This could partially explain why the spe-
cies factor had a small size effect in the upper molars compared with
the lower ones.

Considering the present results, the unexpected strong similarity in
the upper molar pattern (Figure 6a) between Notopithecus and Antepi-
thecus (not considering size and wear) could be supposed to have sys-
tematic relevance at first appearance. In other words, evidence based
on the upper molars strongly supports the view of two different spe-
cies in the same genus instead of two monospecific genera. However,
our study emphasizes that such classic systematics based on upper
molars only (as is typical for most Paleogene families of South Ameri-

can notoungulates) can yield misleading results. Surprisingly, lower

Transpithecus @ - - @

WILEY-"

S

morphology

o

Antepithecus e—e

Comparison of (a) upper molar and (b) lower molar mean shapes for each species

tooth morphology proved to be more reliable than the upper molars
for separating species within the notopithecids, as supported by a mor-

phometric geometric approach.

5 | CONCLUSIONS

In this contribution, we applied independent geometric morphometric
analyses to complex structures, namely the brachydont teeth of native
South American ungulates, with consistent results.

Using notopithecids as a study-case, we demonstrated that wear is
the main factor affecting molar shape, followed by the species factor (in
lower molars) and allometry. This means that the main differences
within each species, Notopithecus adapinus, Antepithecus brachystepha-
nus, and Transpithecus obtentus, are mainly due to wear-related varia-
tion throughout ontogeny, supporting the hypothesis of overestimation
in the number of species proposed by previous traditional systematic
studies.

Moreover, the shape differences detected between the three spe-
cies are more evident in lower than in upper molars, and are still distin-
guishable after controlling for wear and allometric size. This suggests
that lower molars are better than the upper molars as diagnostic struc-
tures for interspecific differences, even when wear and size are
ignored. This should be taken into account in systematic studies that
are based only on the upper molars, as is frequently the case in most
Paleogene families of low-crowned notoungulates.

Furthermore, this methodological approach had distinct benefits.
On the one hand, the use of landmark data clearly improved the results
in terms of congruence with alternative sources of evidence, such as

morphological studies based on discrete characters; in addition, our

TABLE 4 Upper and lower molars p values of mean shape pairwise comparison between species factor only

Upper molars

Lower molars

Antepithecus Notopithecus Transpithecus Antepithecus Notopithecus Transpithecus
Antepithecus 1 0.6512 0116 1 .0001 .0002
Notopithecus 0.6512 1 .003 .0001 1 .0001
Transpithecus 0116 .003 1 .0002 .0001 1
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results are congruent with the accepted phylogeny for notopithecids

morphology

and may be an important source of evidence for systematic analyses.
On the other hand, landmark configurations can provide better descrip-
tions of the morphological variability of teeth and improve the useful-
ness of these elements as sources of data for further phylogenetic
analyses.

This study presents a new approach with potential application to
other Eocene low-crowned groups, whose still unresolved systematic
status is based on dental morphology, such as oldfieldthomasiids, henri-

cosborniids, and archaeopithecids.
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