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In the present paper, we provide results and discussions concerning the processes that lead to
local and global chaotic diffusion in the phase space of multidimensional conservative systems.
We investigate and provide a measure of the extent of the domain over which diffusion may occur.
All these issues are thoroughly discussed by dealing with a multidimensional conservative map
that would be representative of the dynamics of a resonance interaction, which is an important
mechanism in many dynamical systems.
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1. Introduction

One of the lesser known processes in multidimen-
sional Hamiltonian systems is the so-called chaotic
diffusion, that is, those mechanisms under which
either global or local actions of an integrable Hamil-
tonian change over phase space (or action space)
under the effect of a nonintegrable perturbation.
This kind of phenomena arises in Solar System
dynamics, stellar dynamics such as star clusters
and galaxies as well as in many other dynamical
problems.

Up to the present day, there does not exist
any theory that could describe global diffusion in
phase space of multidimensional systems. One could
acquire accurate values of several indicators of the
stability of the motion, but they would only provide
local information in a neighborhood of a given point
of phase space. A given orbit in a chaotic component
in a 3D potential could have, for instance, positive

and large values of two of its Lyapunov exponents,
which does not necessarily mean that the unper-
turbed integrals will vary over vast domains.

Even though near-integrable Hamiltonian sys-
tems have been largely investigated — perhaps
starting with the study conducted by Poincaré in
the late nineteenth century [Poincaré, 1893] — the
problem has not been completely elucidated yet. In
fact, questions such as the stability of the motion
of high-dimensional systems are far from being
thoroughly understood. Some progress on trans-
port phenomena has been made during the last
two decades (see e.g. [Meiss, 1992; Venegeroles,
2008]), but almost all the attained results concern
only low-dimensional symplectic maps or in other
cases, nonconservative one-dimensional maps (see
e.g. [Korabel & Klages, 2004]), and it appears
rather difficult to extend these approaches to apply
to many-dimensional Hamiltonians or conservative
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maps. Moreover, it is unclear how these approaches
provide information about the role played by the
torus structure and their invariant manifolds in
spreading or preventing diffusion in phase space.

Developing further in this direction, Chirikov
[1979] pioneered a complete survey of this matter
in a somewhat heuristic way by using a standard
mathematical language. Following this improve-
ment, Cincotta [2002], revisited Chirikov’s argu-
ments, particularly that related to the so-called
Arnol’d diffusion.

Regarded as a global instability, Arnol’d dif-
fusion appears to be closer to a theoretical con-
jecture rather than to a real physical process (see
[Arnol’d, 1964; Chirikov & Vecheslavov, 1989, 1993;
Chirikov et al., 1984; Cincotta, 2002]). In fact, there
remain so many unsolved mathematical details that
Arnol’d diffusion, as a global instability, results in
a rather controversial question (see [Lochak, 1999]).
Further, the more recent numerical evidence reveals
that Arnol’d diffusion might operate in certain
(somewhat artificial) dynamical systems.

Nonetheless, it has been shown that Arnol’d
diffusion-like processes may play a significant role in
global chaotic diffusion in phase space [Giordano &
Cincotta, 2004; Cachucho et al., 2010], though the
mechanisms that drive the diffusion remain still
unknown.

In [Cachucho et al., 2010] Chirikov’s diffusion
approach is applied to the (5,−2,−2) three-body
mean motion resonance for the (490) Verita’s fam-
ily. It is shown that the theoretical arguments used
by Chirikov to describe Arnol’d diffusion could
also apply in this realistic problem in which the
so-called guiding resonance domain is completely
chaotic. However, the scenario of modulational dif-
fusion [Chirikov et al., 1984] could perhaps be more
suitable to describe the large diffusion observed in
the eccentricity of asteroids.

On the other hand, in [Giordano & Cincotta,
2004] the authors presented a preliminary study
of diffusion on phase space for a rather simple
dynamical system in order to elucidate its effi-
ciency to connect different chaotic components.
Despite the simplicity of the adopted model, sev-
eral results concerning its dynamics can be applied
to any 3D Hamiltonian system exhibiting a divided
phase space, such as galactic or planetary sys-
tems. Two values for the perturbation parameter
have been selected so that the dynamics of the toy
model resembles that of a galactic system (for a

moderate perturbation, in which case both compo-
nents are comparable) and asteroidal dynamics (for
a large perturbation for which the chaotic compo-
nent prevails).

In this direction, Giordano and Cincotta [2004]
showed that diffusion might actually take place
over the full chaotic component only for strong
chaotic dynamics, where resonances are almost all
destroyed by overlap, and for very large time-
scales. Notice that while time-scales of the order of
∼6 × 108 characteristic periods are physically sig-
nificant in, for instance, asteroidal dynamics, they
are completely irrelevant for galactic systems, for
which ∼103 periods is an upper bound for realis-
tic time-scales. Anyway, despite the motion time
elapsed in the case of moderate perturbations, dif-
fusion seems unable to connect different stochastic
domains.

Observational evidence, theoretical arguments
and N-body simulations suggest that a model
resembling an isolated elliptical galaxy should
exhibit a divided phase space and therefore the
perturbation should be moderate (see, e.g. [Mer-
ritt & Friedman, 1996; Merritt & Valluri, 1996;
Papaphilippou & Laskar, 1998; Gerhard & Binney,
1985; Poon & Merritt, 2002; Muzzio et al., 2005]).

In that case, we have observed that the unper-
turbed integrals remain confined to rather small
chaotic domains and diffusion is completely unable
to connect different chaotic domains, at least over
time-scales of the order of ∼108 characteristic peri-
ods, several orders of magnitude larger than the
typical time-scales for galactic systems.

In the present effort we show, discuss and mea-
sure chaotic diffusion in action space by means of
a conservative multidimensional map, the Coupled
Rational Shifted Standard Map (CRSSM), whose
global dynamical properties have been previously
studied in [Cincotta & Giordano, 2008; Cincotta
et al., 2003], CGS03 hereafter, for different sets
of parameters, by recourse of the Mean Exponen-
tial Growth Factor of Nearby Orbits (MEGNO).
First introduced by Cincotta and Simó [2000] and
later generalized in CGS03, the MEGNO is a
rather efficient indicator of the dynamics belong-
ing to the class of the so-called fast indicators,
which is already of widespread use. Many appli-
cations of this tool to Solar System dynamics,
exoplanets models and as well as to many other
dynamical systems could be found throughout the
literature.
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Having attained the global dynamical picture
of the system under consideration, we investi-
gate chaotic diffusion in locally strongly unstable
regions. We show that what is called Arnol’d
diffusion-like processes only take place when the
relics of resonances are strongly unstable (hyper-
bolic). We also yield numerical evidence that even
in the case of a largely chaotic phase space, diffu-
sion becomes almost irrelevant, which is referred to
as stable chaos. Several papers due to Milani and
co-workers [Milani & Nobili, 1992; Milani, 1993;
Milani & Farinella, 1994; Milani et al., 1997] also
address this topic. Moreover, further studies deal
with the same phenomena of stable chaos [Mor-
bidelli & Froeschlé, 1996], which arises, for instance,
in Solar System dynamics.

Furthermore, we provide a simple tool which
appears to be suitable for measuring the variation
of the unperturbed integrals.

Herein we face the difficulty to compute a
meaningful diffusion coefficient, due to the fact that,
as far as we know, it still remains unclear which
would be the appropriate approach to be consid-
ered, in particular, how the variance of the vari-
ables scales with time. In fact, in the case of normal
diffusion the variance scales linearly with time, but
for what is called abnormal diffusion, the scaling
runs like tb where the parameter b is, in general,
unknown and further, it strongly depends on the
local dynamical structure of the deemed region of
phase space. Some other more recent developments
like the one called super-diffusion should also be
mentioned.

An exhaustive numerical exploration is per-
formed and the results of their application are
discussed.

The paper is organized as follows. In Sec. 2
we provide a brief summary on the MEGNO when
adapted to investigate the global dynamics in mul-
tidimensional discrete dynamical systems. Section 3
is devoted to describe the 4D map used in this
research, namely, the Coupled Rational Shifted
Standard Map (CRSSM), that models the inter-
action of two resonances. Its dynamical properties
as well as a picture of the structure of its phase
space unveiled by recourse to the MEGNO are
described in Sec. 6, while with the aim of measuring
the change of the unperturbed integrals a diffusion
measure is introduced, the finite time Shannon or
Arnol’d Entropy. Conclusions and final remarks are
given in Sec. 7.

2. The Mean Exponential Growth
Factor of Nearby Orbits
(MEGNO) for Maps

For exploring phase space in the present effort, we
wield the MEGNO, one of the so-called fast indica-
tors of dynamics.

The main features of the MEGNO, its perfor-
mance when applied to the study of global dynam-
ics in 2D Hamiltonians as well as the advantages
of deriving the largest Lyapunov Characteristic
Number (LCN) from a least squares fit on the
time evolution of the MEGNO can be found in
CGS03 [Cincotta & Simó, 2000; Cincotta & Gior-
dano, 2002].

The generalized version of the MEGNO, along
with its implementation to discrete dynamical sys-
tems, which is in order for the current applications,
are also given in CGS03. Though, just for the sake of
completeness, permit us to provide a brief descrip-
tion of how this tool should be applied in the latter
case.

For a given map P , the initial point Q0 is iter-
ated to yield the points Qk = P k(Q0), while the
differential map DP transports an initial “random”
tangent vector, v0, ‖v0‖ = 1, providing vectors
vk = DPk(Q0)v0. Then, after N iterates, the gener-
alized MEGNO is computed by means of

Ym,n(N) = (m + 1)Nn
N∑

k=1

ln
( ‖vk‖
‖vk−1‖

)
km, (1)

and

Y m,n(N) =
1

Nm+n+1

N∑
k=1

Ym,n(k). (2)

As already discussed in CGS03, the larger m,
the faster Y m,n converges to a constant value for
regular, quasiperiodic motion, but, for m rather
large, small oscillations show up, which may be
attenuated by stopping the iteration when the dis-
tance between the initial and final points is mini-
mum (“right-stop” condition).

Further, a slight additional modification
becomes beneficial for the choice (2, 0) of the expo-
nents (m,n), which leads us to the quantity

Ŷ2,0(N) =
[4Y 2,0(N) − 2]

N
, (3)

which tends to 0− in the regular case and to σi,
which is the LCN of the orbit, in the case of
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an irregular trajectory. Negative values of Ŷ2,0(N)
appear for regular orbits, provided N is taken not
too small, while small positive values identify mild
chaos.

Even when a linear fit of [4Y 2,0(N) − 2] could
eventually improve resolution, the plain use of (3)
with the “right-stop” condition, Ŷ2,0,rs, suffices for
our goals.

3. On a Multidimensional Map:
The Coupled Rational Shifted
Standard Map (CRSSM)

Let us introduce the 4D conservative map that
we undertake as subject of our experimentation,
namely, the Coupled Rational Shifted Standard
Map (CRSSM) which provides a fairly good rep-
resentation of the interaction of two perturbed res-
onances. Therefore, its dynamics would well serve
to model many dynamical scenarios.

The CRSSM is described by the equations

y′1 = y1 + ε1f1(x1) + γ+f3(x1 + x2)

+ γ−f3(x1 − x2),

y′2 = y2 + ε2f2(x2) + γ+f3(x1 + x2)

− γ−f3(x1 − x2),

x′
1 = x1 + ε1y

′
1,

x′
2 = x2 + ε2y

′
2,

(4)

with xi ∈ [0, 2π), yi ∈ [0, 2π/εi), i = 1, 2, and

fi(x) =
sin(x + ϕi)
1 − µi cos x

− ∆i,

∆i =
µi sinϕi√

1 − µ2
i + 1 − µ2

i

, i = 1, 2, 3,
(5)

where µi ∈ [0, 1), and the quantities ∆i are fixed so
that fi functions have zero average.

Let us note that (4) consists of two coupled
standard maps so modified that symmetry is lost
through the introduction of the phase ϕi, and the
entire character of fi is broken due to the intro-
duction of the parameters µi ∈ [0, 1). The coupling
terms in (x1 + x2) and (x1 − x2) encompass the
parameters γ+ and γ−, respectively. Thus defined,
the map is a four-dimensional torus.

It could be claimed that the deemed map has
too many free parameters. Note however that most
of them are kept fixed in all our study, ε2 being the
only one to be varied.

It is fair to state clearly that in this sec-
tion we summarize those particular results which
are pertinent to the purpose of the present work.
The dynamical picture of this map for different
sets of coupling parameters and εi is addressed in
CGS03.

The parameters for the model assumed as fixed
are µ1 = 0.5, ϕ1 = 1, µ2 = 0.4, ϕ2 = 2, µ3 = 0.6,
ϕ3 = 3, ε1 = 0.1, γ+ = 0.1 and γ− = 0.05. Two dis-
tinct values of ε2, one positive and the other neg-
ative, 0.2 and −0.2, were taken in order to spot
the diverse effect of such a choice on the resulting
dynamics.

3.1. Results provided by the
MEGNO

For constructing Fig. 1, the MEGNO was com-
puted for an equi-spaced grid of 1000 × 1000 pixels
in the domain (y1ε1/2π, y2ε2/2π) ∈ [0, 1) × [0, 1),
the initial values for the remaining variables being
x1 = 0, x2 = 0. Recall that this is a problem of
higher dimension, so that the iterates under DP
of two “random” initial vectors v10, v20, satisfying
‖vi0‖ = 1, had to be computed, plus orthogonalized
and renormalized at each step, and the maximum
of the two resulting values of Ŷ2,0,rs, one associated
to each direction, was taken to determine the char-
acter of each trajectory. The picture on the right
corresponds to ε2 = 0.2 and the one on the left to
ε2 = −0.2.

The contour-like plots exhibit the obtained val-
ues for log(Ŷ2,0,rs) after N = 104 iterations, so that
the details in each figure be highlighted. The initial
conditions depicted in white correspond to regular
orbits, while those in red are considered strongly
chaotic. The intermediate range is regarded as cor-
responding to, possibly, mildly chaotic motion. It is
interesting to remark that in the coupling we face
to an indefinite form rather than a positive definite
one, which produces a pretty dramatic effect on the
resonances. In fact, observe that in the case of pos-
itive ε2 most of the resonances have an elliptical
chain of tori at their center while for the negative
value of such a parameter several resonances show
up as totally hyperbolic. Note that we are dealing
with a priori unstable system (see for instance [Lega
et al., 2010]).

Again, for a thorough discussion we refer to
CGS03, but a brief description of the outstanding
features are included herein for the sake of clarity
and adroitness.
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(a) (b)

Fig. 1. Ŷ2,0,rs levels for the CRSSM on the (y1, y2)-plane taking values of ε2 with opposite signs (0.2 on the left and −0.2
on the right). Initial conditions of regular behavior are plotted in white, those of mild local instability in green while those
exhibiting strong local instability in red.

A resonance can be identified as a white or
green channel surrounded by red boundaries: the
elliptic center and the hyperbolic border. Alterna-
tively, only the hyperbolic structure is observed, as
a consequence of the phase shift that takes place
when the sign of ε2 is reversed.

The resonances in the vertical and horizontal
directions are present even if γ± = 0 and their
amplitudes depend, essentially, on εj, j = 1, 2.
These resonances appear as white or green channels,
despite the sign of ε2 and are the same in the uncou-
pled Standard Map. Indeed, the sign of εi does not
modify the uncoupled map, but it certainly affects
the coupled one, since rescaling the y-variables, the
CRSSM can be recast as

y′1 = y1 + ε2
1f1(x1) + ε1γ+f3(x1 + x2)

+ ε1γ−f3(x1 − x2),

y′2 = y2 + ε2
2f2(x2) + ε2γ+f3(x1 + x2)

− ε2γ−f3(x1 − x2),

x′
1 = x1 + y′1,

x′
2 = x2 + y′2,

(6)

where (xi, yi) ∈ [0, 2π) × [0, 2π).

As long as the coupling parameters are
increased, resonances become wider and several
new resonances arise, namely, those of the form
αy1 + βy2 = const, with α and β nonvanishing con-
stants. In fact, the map (6) can be derived from the
2.5 degrees of freedom Hamiltonian

H(p1, p2, x1, x2, t; ε1, ε2)

= H0(p1, p2, x1, x2, t; ε1, ε2)

+ γ+Vp(x1, x2, t; ε1, ε2)

+ γ−Vn(x1, x2, t; ε1, ε2), (7)

where

H0(p1, p2, x1, x2, t; ε1, ε2)

=
(p2

1 + p2
2)

2
+ (ε2

1U1(x1) + ε2
2U2(x2))δ2π(t),

pi =
yi

2π
, fi(xi) = − 1

2π
dU i

dx i
, i = 1, 2,

(8)

δ2π(t) being the 2π-periodic delta defined through
its Fourier expansion so that t mod(2π), and the
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Fig. 2. Fraction of chaotic motion in the maps correspond-
ing to ε2 = 0.2 and ε2 = −0.2 against different threshold
values of log(Ŷ2,0,rs).

coupling terms can be written as

Vp(x1, x2, t; ε1, ε2) = (ε1 + ε2)U3(x1 + x2)δ2π(t),

Vn(x1, x2, t; ε1, ε2) = (ε1 − ε2)U3(x1 − x2)δ2π(t).

(9)

The relationship between f3 and U3 is similar to
that defined above involving fi and Ui for i =
1, 2. Since all functions of t, x1, x2 are periodic,
their Fourier expansion generates all kind of res-
onances that, in action space, appear as straight
lines. Indeed, the unperturbed frequencies, that is
when εi = γi = 0, are (ω1, ω2) = (y1, y2).

Let us now refer to Fig. 2 which displays the
fraction of chaotic motion for the maps correspond-
ing to the two opposite values of ε2, for different
thresholds of log(Ŷ2,0,rs) below which the global
motion is regarded as regular. From this figure it
could be deduced that log(Ŷ2,0,rs) ≈ −6.5 is a fairly
adequate value to be adopted as a threshold in order
to separate regular from chaotic dynamics. Notice
that, for both values of ε2, action space is almost
completely chaotic, only about 10% corresponding
to regular motion, so it can be claimed that global
chaos was set up in the system.

These results could be misleading since one
might erroneously expect the behavior of the mul-
tidimensional map (4) to have similar dynamical
properties for both values of ε2, which is certainly
not the case as we show in the forthcoming section.

4. Diffusion on Action Space

With the aim of gaining some insight on the way
diffusion operates, and to illustrate it, several orbits

with initial conditions embedded in different chaotic
domains were traced onto action space for both
values of ε2.

The wandering of the unperturbed integrals on
the (y1, y2)-plane was pursued during 107 iterations
for the initial conditions listed in Table 1, which
are not only located near the crossing of resonances,
but in the most, have high values of the MEGNO
(exceptions are the initial conditions (iv) for ε2 =
0.2 and (i) for ε2 = −0.2, since they correspond to
stable motion).

As shown in Fig. 3(a) (corresponding to ε2 =
0.2), the unperturbed integrals remain confined to
rather small domains, so that diffusion turns out to
be inefficient for a rather large number of iterates.

On the other hand, the plot in Fig. 3(b), corre-
sponding to ε2 = −0.2, exhibits the significant effi-
cacy of the diffusive process (except for the initial
condition (i) defining a stable orbit), and evinces
that the relics of the unperturbed resonances serve
as paths for diffusion, mechanism termed Arnol’d
diffusion-like process and should not be confused
with Arnol’d diffusion. A detailed discussion about
this issue and its departure from actual Arnol’d
diffusion could be found in [Giordano & Cincotta,
2004; Cachucho et al., 2010] as well as in CGS03.
Nonetheless, let us stress that the observed diffu-
sion presents a geometrical resemblance with the
Arnol’d theoretical conjecture according to which
diffusion proceeds on phase space through the
chaotic layers of the resonance web.

Moreover, Figs. 4(a) and 4(b) illustrate that the
orbits with initial conditions (ii) and (iv) for the
case of ε2 = −0.2 sweep a rather large fraction of
action space after 2×108 iterations. Notice must be
taken however that the chaotic component of phase
space is not fully connected for this time-scale, since
some chaotic domains remain unreached.

Table 1. Initial conditions on action space in units of
2π/εj , j = 1, 2 (the same as in Fig. 1) for five different orbits

and its concomitant value of log(Ŷ2,0,rs) for ε2 = 0.2 (fourth

column) and ε2 = −0.2 (last column) after 104 iterations.

log(Ŷ2,0,rs) log(Ŷ2,0,rs)

i.c. y1 y2 ε2 = 0.2 ε2 = −0.2

(i) 0.000 0.110 −2.435 −10.000
(ii) 0.000 0.500 −1.584 −1.436
(iii) 0.331 0.353 −1.712 −1.486
(iv) 0.500 0.500 −10.000 −1.449
(v) 0.074 0.336 −1.824 −1.794
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(a) (b)

Fig. 3. Diffusion on action space after 107 iterations of the map for the initial conditions listed in Table 1.

Figure 5 depicts the time evolution of the initial
condition (iv) after 109 (in red) and 2 × 109 (in
green) iterations of the map for ε = −0.2. Even
during the last 109 iterates when the orbit explores

some additional resonance remnants, it is still far
from visiting the entire chaotic component [compare
with Fig. 1(b)]. Furthermore, since the trajectory
seems to remain trapped in the horizontal resonance

(a) (b)

Fig. 4. Diffusion on action space after 2×108 iterations of the map corresponding to ε2 = −0.2 for (a) i.c. (ii) and (b) i.c. (iv).
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Fig. 5. Diffusion on action space corresponding to ε = −0.2
for i.c. (iv) after 109 iterates (red), and after 2× 109 (green).

at y2 = 0.5 (which has an elliptic structure), no
significant difference between the domains swept in
the two lapses of time is observed.

Indeed, these plots could be considered as
a time-contour diagram, since the more crowded
regions should be associated to those domains of
action space where the orbit spends more time.
Maybe in the limit, when N → ∞, a single orbit
embedded in a chaotic domain would contrive to
cover the whole chaotic component, but in a finite
lapse of time this seems not to be the case.

5. A Measure of Diffusion

The usual approach for studying diffusive processes
associated with the variation of a certain quantity
involves the analysis of the evolution of its mean
square displacement. Certainly, the type of diffusion
most studied is the normal diffusion, mainly char-
acterized by the linear scaling of the mean square
displacement with time. Though, deviations from
normal diffusion are frequently observed in many
dynamical systems (see for instance [Zhou et al.,
2002; Cordeiro & Mendes de Souza, 2005; Cordeiro,
2006]). This phenomena, termed anomalous diffu-
sion in [Metzler & Klafter, 2000], affords also a char-
acterization through the scaling of the variance with
time but of a more general form.

Herein, we undergo the computation of a diffu-
sion coefficient under the framework of normal diffu-
sion in a rather simple fashion, following [Chirikov,
1979].

Instead of tracing the evolution of a single orbit
of the map, a diffusion coefficient for an ensemble
of nearby orbits could be computed. To this end,
and following the standard procedure in the case of
random walk processes, let us define the finite time
diffusion coefficient as the mean-square spread in yi

as (see [Meiss, 1992])

D̂i =
Var[yi]

N
, (10)

where Var[yi] stands for the variance of the action
and N for the entire time or number of iterates,
so that the mean square span in each unperturbed
action is given by

σi[yi] =
√

ND̂i. (11)

Finally, we introduce the quantity

D =
D̂1 + D̂2

2
(12)

as a measure of the normal diffusion on the unper-
turbed action-plane.

Recall that the map (4) is defined on a torus
so, in order to avoid border effects that would arti-
ficially enlarge the value of the yi-variance, the new
variables

zi = cos(2πyi), i = 1, 2 (13)

are introduced, and the diffusion measure D is com-
puted on the (z1, z2)-space instead of on the actual
action space (y1, y2).

The range of the unperturbed integrals onto the
(y1, y2)-plane for five bundles around the initial con-
ditions listed in Table 1 is depicted in Fig. 6, but,
as already stated, it wanders onto the (z1, z2)-plane,
shown in Fig. 7, the one to be used to compute the
coefficient D defined by (12). For each one of these
figures, an ensemble of 100 initial conditions chosen
at random in a neighborhood of size 10−7 of condi-
tions (i) to (v) were followed during 107 iterations
of the map for both values of ε2.

Furthermore, the averaged value of the diffu-
sion for each ensemble was computed after 107 iter-
ations. The concomitant out-coming values of D are
displayed in Table 2.

Let us note that the averaged values obtained
for D fairly succeed in yielding a measure of the
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(a) (b)

Fig. 6. Diffusion on action space after 107 iterations of the map for the bundles of 100 initial conditions chosen at random
around initial conditions listed in Table 1. Initial condition (i) in red, (ii) in green, (iii) in blue, (iv) in purple and (v) in
light-blue.

(a) (b)

Fig. 7. Diffusion on (z1, z2)-space after 107 iterations of the map for the bundles of 100 initial conditions chosen at random
around initial conditions listed in Table 1, using the same color scheme.
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Table 2. Initial conditions on action space in units of
2π/εj , j = 1, 2 (the same as in Fig. 1) for five different
bundles of orbits and its concomitant value of log(D) for
ε2 = 0.2 (fourth column) and ε2 = −0.2 (last column).

log(D) log(D)

i.c. y1 y2 ε2 = 0.2 ε2 = −0.2

(i) 0.000 0.110 −8.666 −10.145
(ii) 0.000 0.500 −11.093 −7.438
(iii) 0.331 0.353 −9.027 −7.050
(iv) 0.500 0.500 −13.033 −7.993
(v) 0.074 0.336 −9.512 −8.034

domain covered by the wandering of each bundle of
initial conditions, displayed in Fig. 7.

In fact, for ε = 0.2 the lowest value of D

corresponds to regular orbits at (iv), whose range
is practically restrained to a point where the
motion is essentially stable. For the remaining ini-
tial conditions, the out-coming value of D is of the
same order of magnitude, the unperturbed inte-
grals remaining confined to rather small domains
of comparable extent for the number of iterates
considered.

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

0  10  20  30  40  50  60  70  80  90  100

ε1= 0.1, ε2=0.2, γ+=0.1, γ−=0.05

Fig. 8. Diffusion measure on action space after 107 iterations of the map for ε2 = 0.2 for a random selection of 100 initial
conditions around (i) in red, (ii) in green, (iii) in blue, (iv) in purple, and (v) in light-blue.

 1e-10

 1e-09

 1e-08

 1e-07

0  10  20  30  40  50  60  70  80  90  100

ε1= 0.1, ε2=−0.2, γ+=0.1, γ−=0.05

Fig. 9. Diffusion measure on action space after 107 iterations of the map for ε2 = −0.2 for a random selection of 100 initial
conditions around (i) to (v).
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This fact can be confirmed when plotting the
values of D for every orbit in each bundle as in
Fig. 8, the last point in each curve corresponding
to the averaged value for the ensemble.

The same procedure leads to Fig. 9 correspond-
ing to ε2 = −0.2. In particular, this plot reveals the
large dispersion in the values of D for each bun-
dle, which gives account of the rather extended area
swept by every bundle onto the (z1, z2)-plane.

Actually, it is not an easy task to cope with
diffusion in multidimensional systems. Certainly, we
could not invoke normal diffusion when dealing with
systems of divided phase space. In fact, in such cases
we ignore how the variance of the actions scale with
time. Further, though theories on abnormal diffu-
sion and subdiffusion or superdiffusion have been
developed, they seem to apply only for low dimen-
sional systems.

Thus, the computation of a diffusion coefficient
reveals itself as a cumbersome task. For instance,
in Fig. 9 we observe fluctuations of three orders of
magnitude in the 100 values of D within a domain of
10−7 around some of the chosen initial conditions.

Hence, in the forthcoming section we go beyond
the search of an alternative tool to this end, bring-
ing into play the finite time Shannon or Arnol’d
Entropy and devote ourselves to determining its
effectiveness for such an application.

6. The Shannon Entropy

Let us consider the time evolution of both normal-
ized unperturbed actions (y1ε1/2π, y2ε2/2π) upon
the torus T , or the unit square with opposite sides
identified, as time goes on.

The evolution of the unperturbed integrals onto
T is expected to be constrained to a small domain
whenever a low diffusion takes place, while a large
range should be in order in case of fast diffusion.

An adequate tool to measure diffusion is the
finite time Shannon Entropy. (A theoretical back-
ground on Shannon Entropy can be found in e.g.
[Shannon & Weaver, 1949; Katz, 1967; Arnol’d &
Avez, 1989; Wehrl, 1978].)

Though in our opinion the Arnol’d formulation
is more appropriate to formalize the mathematical
framework, the Shannon approach is, perhaps, par-
ticularly suitable in order to provide a more intu-
itive understanding of the results. Thus, the main
idea of the present approach is to make use of the
Shannon Entropy, SE hereafter, in order to measure

the wandering of the unperturbed action variables
when viewed on the unit square.

Following [Arnol’d & Avez, 1989], let us recall
the definition of the function Z over [0, 1]:

Z(x) = −x ln x, x ∈ (0, 1]

Z(0) = 0,

which is continuous, non-negative and strictly con-
cave (Z ′′ < 0) and Z(x) = 0 is equivalent to either
x = 0 or x = 1.

Further, let α = {ai; i = 1, . . . , q} be a partition
of T , that is to say, a collection of q bidimensional
boxes that cover the whole unit square. The boxes
are assumed to be both measurable and disjoint,
that is to say

µ

(
T −

⋃
i

ai

)
= 0, µ(ai ∩ aj) = 0, i �= j,

where µ stands for a measure and
⋃

i ai means the
union of all the elements of the partition.

We can define a probability density on T by

ρ(x) =
1
N

N∑
i=1

δ(x − xi), (14)

where xi denotes the result of a given iterate on T ,
and δ is the delta function. It can be verified at once
that ∫

T
ρ(x)dx = 1, (15)

and the probability of the element ai of the partition
turns out to be

µ(ai) =
∫

ai

ρ(x)dx. (16)

Finally, the entropy of the partition α is defined as

S(α) =
q∑

i=1

Z(µ(ai)) = −
q∑

i=1

µ(ai) ln(µ(ai)). (17)

Hence S(α) is just the weighted logarithm of the
number of elements in α.

Let us note that for a given partition α, the
entropy is a bounded quantity. In fact, it is 0 ≤
S(α) ≤ ln q. The minimum value is reached when
all points fall in the very same element of the parti-
tion, say the kth element, which would correspond
to the case of almost full stability (for instance,
when all the iterates lie onto a single torus). Indeed,
in such a case, we have a unique nonzero value
µ(ak) = 1, yielding S = 0. On the other hand,
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the maximum value, S(α) = ln q, will be reached
whenever the q elements of the partition have equal
measure µ(ai) = 1/q, that corresponds to the situ-
ation in which the unperturbed actions wander all
over the unit square in a uniform fashion, i.e. in case
of ergodicity.

Onwards, S will denote the normalized value of
the entropy (i.e. the entropy divided by ln q) for a
given partition α.

Let us now accomplish the computation of the
finite time SE for a given set of initial conditions
for the CRSSM (4) with the same values of the set
of parameters as those used in Sec. 3.

To this end, we take a partition of q =
m × m bidimensional boxes that cover the whole
unit square, for an equi-spaced grid of 400 × 400
and 1000 × 1000 initial conditions in the domain
(y1ε1/2π, y2ε2/2π) ∈ [0, 1) × [0, 1). The initial
values for the remaining variables are x1 = 0,
x2 = 0.

The results after N = 105 and 107 iterates of
the map have been computed, with m = 100 and
m = 1000, respectively. Let us say that we have
defined a partition in regards to the total number of

iterates such that in case of uniform distribution the
same number of points would lie in each individual
cell.

Let us mention that if we assume all the
nonempty elements of the partition, say q0, hav-
ing the same measure, then S ≈ ln q0/ ln q. There-
fore, q0 ≈ qS so that (1 − S) will yield a measure
of q0/q.

The orbits with very small values of S lead to
extremely slow diffusion, while those with large S
correspond to very fast diffusion. Let us remark
that in all the experiments performed, the results
attained from the SE are also in quite good
agreement with those obtained by recourse to the
MEGNO, except in those regions of slow or fast
diffusion. Thus, for making the comparison feasi-
ble, we have plot the values of the SE for a grid
of 1000 × 1000 initial conditions in the domain
(y1ε1/2π, y2ε2/2π) ∈ [0, 1) × [0, 1), and after N =
107 iterates of the map for the very same parame-
ters used for the computation of the MEGNO. The
results are given in Fig. 10, the plot on the left
corresponding to ε = 0.2 and that on the right to
ε = −0.2.

(a) (b)

Fig. 10. S-levels for the CRSSM on the (y1, y2)-plane after N = 107 iterates of the map for a grid of 1000 × 1000 initial
conditions of the unperturbed actions for ε2 with opposite signs. Values of S < 0.38 are depicted in white, 0.38 ≤ S < 0.45 in
purple, 0.45 ≤ S < 0.5 in blue, 0.5 ≤ S < 0.66 in green and 0.66 ≤ S in red. In terms of the number of visited elements of the
partition, q0, the intervals correspond to q0 < 2 × 102 in white, 2× 102 ≤ q0 < 5 × 102 in purple, 5 × 102 ≤ q0 < 103 in blue,
103 ≤ q0 < 104 in green and 104 ≤ q0 in red.
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Let us note that the resonance structure arising
in the contour-plots obtained with the SE resem-
bles the one revealed by the MEGNO. Moreover,
the dramatic effect on the resonances due to the
change of sign of ε2 remains noticeable. Indeed, as
already pointed out, in the case of positive ε2 most
of the resonances display an elliptical chain of tori at
their center while for negative ε2 several resonances
show up as totally hyperbolic. However, while the
MEGNO just measures the local hyperbolicity of a
certain point in phase space, the SE provides infor-
mation about chaotic diffusion at such a point. This
can be clearly seen, for instance in the case for
ε2 = −0.2, by the small values adopted by the SE
along the resonance at y2 = 0.5, whose structure
seems to act as a barrier to diffusion as we have
already shown.

Although the SE depends on the partition, in
our experiments we have found no significant differ-
ences using different α’s. Nonetheless, we observe a
strong dependence of the SE values on the number
of iterates as well as on the set of adopted initial
conditions.

While for N → ∞ the SE (in phase space)
should become the metric entropy, which is related
to the sum of the positive Lyapunov’s exponents,
this seems not to be the case for any finite, though
very large, number of iterates N .

7. Conclusions

The application of the generalized MEGNO to a
multidimensional conservative map, the Coupled
Rational Shifted Standard Map, succeeds in unveil-
ing its global dynamical structure. The map turns
out to be globally chaotic for the values of the
parameters adopted in the numerical experiments
herein, the chaotic component encompassing ∼ 90%
of action space. In spite of this, hundreds of reso-
nances can be clearly distinguished, presenting a
chain of tori close to their centers that are elliptic
for ε2 > 0 and hyperbolic for ε2 < 0.

This solely fact seems to play a significant role
in the efficiency of chaotic diffusion on action space.
Indeed, as we have shown, though in both cases
the action space is globally chaotic, the presence
of resonances having either an elliptic or hyperbolic
structure is determinant to allow fast diffusion.

The numerical evidence here presented reveals
that only when the phase space has a dominant
hyperbolic structure, diffusion may proceed through
the relics of the unstable domain of resonances.

On the other hand, the elliptic structures of reso-
nances, though chaotic, do not serve as routes to
spread the stochastic motion, moreover they act as
barriers to fast diffusion.

In any case, as we have already mentioned, the
observed diffusion is not Arnol’d diffusion for which
a globally chaotic phase space is certainly not a
due scenario. Nevertheless, the results shown herein
allows of being referred to as Arnol’d diffusion-like
processes, at least accounting for their geometric
resemblance.

On the other hand, even for extremely large
motion times, the whole chaotic component seems
not to be connected. Though this is still an open
matter, the dynamical structure of multidimen-
sional systems being so intricate make us assert that
the chaotic component is not likely to be fully con-
nected, at least in realistic physical systems like, for
instance, the phase space corresponding to galaxies
or asteroidal dynamical models.

Herein we have addressed the difficulties to
compute a somewhat meaningful diffusion coeffi-
cient, due to the fact that, as far as we know,
it still remains unclear which would be the due
approach; in particular, how the variance of the
variables scales with time other than in a random
walk approximation in the case of multidimensional
systems.

Moreover, a new tool has been proposed to
attain a measure of change of the unperturbed
actions, namely the finite time Shannon or Arnol’d
Entropy. It contrives to provide a fairly accurate
picture of the dynamics when compared with that
yielded by the MEGNO, but with considerable
some less computational effort. Indeed, it provides
the global dynamical structure of the system and
also measure diffusion with no need of computing
the differential map, though larger time-scales are
required. This fact becomes more important when
dealing with Hamiltonian flows.

In a forthcoming paper we will discuss exhaus-
tively the computation of the diffusion coefficient,
considering normal (random walk) and anomalous
diffusion, typical behavior near resonances (see e.g.
[Zhou et al., 2002; Cordeiro & Mendes de Souza,
2005; Cordeiro, 2006; Metzler & Klafter, 2000], as
well as several particular aspects concerning the def-
inition and computation of this coefficient).

Finally, we believe that much progress has to be
done to understand the global instability properties
of multidimensional systems.
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