
PHYSICAL REVIEW E 92, 042122 (2015)

First-passage times for pattern formation in nonlocal partial differential equations
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We describe the lifetimes associated with the stochastic evolution from an unstable uniform state to a patterned
one when the time evolution of the field is controlled by a nonlocal Fisher equation. A small noise is added to
the evolution equation to define the lifetimes and to calculate the mean first-passage time of the stochastic field
through a given threshold value, before the patterned steady state is reached. In order to obtain analytical results
we introduce a stochastic multiscale perturbation expansion. This multiscale expansion can also be used to tackle
multiplicative stochastic partial differential equations. A critical slowing down is predicted for the marginal case
when the Fourier phase of the unstable initial condition is null. We carry out Monte Carlo simulations to show the
agreement with our theoretical predictions. Analytic results for the bifurcation point and asymptotic analysis of
traveling wave-front solutions are included to get insight into the noise-induced transition phenomena mediated
by invading fronts.
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I. INTRODUCTION

Nonlinear systems out of equilibrium exhibit a variety
of instabilities when the appropriate control parameters are
changed. By such changes of control parameters the system
can be placed in a stationary state that is not globally stable.
One phenomenon in which statistical fluctuations play a
crucial role in nonequilibrium descriptions is the transient
dynamics associated with the relaxation from states that have
lost their global stability due to changes of the appropriate
control parameters. A quantity in the characterization of
the relaxation dynamics is the lifetime of such states, i.e.,
the random time that the system takes to leave the vicinity
of the initial state. The statistics of these times is described
by the first-passage-time distribution (FPTD) and the mean
first-passage time (MFPT) is identified by the lifetime of the
initial state. There are standard techniques [1] to calculate
the MFPT for Markov processes; a useful alternative route
to these techniques focuses on the individual stochastic path
of the process and extract the FPTD from approximations of
these paths [2,3]. This stochastic path perturbation approach
can also be generalized to tackle non-Markov processes [4],
non-Gaussian noises [5], and stochastic differential equations
with distributed time delay [6]. From a practical point of
view, the stochastic path perturbation approach is useful in
the calculation of the MFPT in situations in which standard
techniques do not hold straightforwardly, such as in extended
dynamically systems [7] and in the analysis of the MFPT
in stochastic partial integro-differential equations (nonlocal
models) [8,9].

In the past 20 years there has been much interest in
the study of nonlocal models in ecology and biology. Most
of them have been formulated in terms of continuous-field
evolution equations for densities describing long-distance
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interactions [10,11]. These interactions can be mediated
through vision, hearing, smelling or other kinds of sensing.
Therefore, nonlocal effects in nonlinear terms in reaction-
diffusion equations may account for the resource’s competition
within a certain range. It is worth mentioning studies of
bacteria cultures in Petri dishes in which the diffusion of
nutrients and/or the release of toxic substances can cause
nonlocality in the interactions [12–15]. Moreover, we can
mention related works such as the study of traveling-wave
solutions of nonlocal reaction-diffusion equations arising also
in population dynamics [16]. Other studies refer to the pattern
formation phenomena in a model of competing populations
with nonlocal interactions [17]. Very recently, plant clonal
morphologies and spatial patterns were modeled with nonlocal
linear and nonlinear terms in extended systems [18]. Nonlocal
dynamics have also been used in nonlinear optics where the
space-time evolution of the intracavity field was described
by the Lugiano-Lefever model with nonlocal interactions
[19]. There are also several works related to neural fields,
where nonlocal interactions and noise-induced jumps play
an important role in the description of real systems [20,21].
In this paper we focus on the study of the MFPT for a
stochastic nonlocal version of the so-called Lotka-Volterra, or
Fisher, equation [11,22,23] (due to environmental or thermic
fluctuation acting on these types of systems, we include an
additive noise in the evolution equation of the field). We are
especially concerned with the description of the lifetime of the
system (due to the change of stability) from a uniform state to
a patterned stationary state near criticality.

Depending on the physical parameters of the system, new
scenarios may appear; for example, if the value of the diffusion
coefficient changes, the stability of the homogeneous state may
change because a Fourier vector ke may become unstable. In
particular, the situation when the phase of the Fourier mode
vanishes ϕ(ke) = 0, for a given value of Fourier wave vector
ke, may happen, leading therefore to a critical slowing down
of the escape process (lifetime of the unstable state). The
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supercritical case ϕ(ke) > 0 was analyzed very recently [8,9],
but the critical case is much more complex to work out because
the instability turns out to be nonlinear. On the other hand, the
essential difficulty describing the relaxation from a state of
marginal stability [i.e., when ϕ(ke) = 0] is that there is no
regime in which a linear approximation is meaningful. These
issues will be resolved in the present work by introducing a
stochastic multiple-scale expansion, with the application of
the stochastic path perturbation approach.

A related work describing a stochastic supercritical bifur-
cation for local partial differential equations was presented
recently [24]. In that paper a multiscale perturbation was
proposed to build a stochastic ordinary differential equation.
After solving the stationary Fokker-Planck equation for the
amplitude of the most unstable mode, the influence of the
noise on the shape of the imperfect supercritical bifurcation
was characterized by the most probable amplitude. It could
be very interesting to generalize that approach to the case of
nonlocal partial differential equations like the one we propose
to work out in the present paper.

In Sec. II we show the mathematical model that we use. In
Sec. III we study the bifurcation point and present a determin-
istic asymptotic wave-front analysis. In Sec. IV we perform
the discrete Fourier analysis to study the stochastic model in a
finite domain, In Sec. V we introduce a minimum coupling ap-
proximation to tackle the nonlocality of the model with an ap-
proximation. In Sec. VI we introduce the stochastic multiscale
perturbation expansion, derive the MFPT using the stochastic
path perturbation approach, and then compare our results with
numerical simulations. In Sec. VII we present a summary
and possible extensions of the program. Extended calculations
related to the present work are given in the Appendixes.

II. STOCHASTIC NONLOCAL FISHER EQUATION

The dynamical model, shown in Eq. (1), takes into account
the exponential growth of the population, characterized by the
parameter a, a diffusion constant D, a nonlocal competition
term proportional to a parameter b, and the interaction kernel
G(x). We also model environmental or thermic fluctuations
acting on these types of systems. To take this into account
we introduce an additive fluctuating Gaussian field ξ (x,t) in
the dynamics. This is a plausible ansatz when the unspecified
random contributions are more important at low density (see
Appendix 3 in [6]). We characterize the strength of the noise
with a small parameter ε.

The one-dimensional model takes the form

∂u(x,t)

∂t
= D

∂2u(x,t)

∂x2
+ au(x,t) − bu(x,t)

×
∫ L

−L

u(x − x ′,t)G(x ′)dx ′ + √
εξ (x,t). (1)

We are interested in the stochastic pattern formation descrip-
tion of the (positive) density field u(x,t) of Eq. (1), subject
to periodic boundary conditions in [−L,L]. The random
characteristics of this stochastic integro-differential equation
are completely characterized by the statistics of the field ξ (x,t).
Nevertheless, the first-passage-time problem associated with
this model is nontrivial due to the characteristics introduced
by the nonlocal term contribution. In the present study we use

Gaussian white-noise moments [1,25,26]

〈ξ (x,t)〉 = 0, 〈ξ (x,t)ξ (x ′,t ′)〉 = δ(x − x ′)δ(t − t ′).

The nonlocal interaction, i.e., the kernel G(x), is adopted to be
symmetric and normalized in the domain of interest [−L,L].
We use a square kernel defined as

G(x) = 1

2w
[�(w − x)�(w + x)], (2)

where the step function �(x) = 0 if x < 0 and �(x) = 1 if
x > 0. Thus the limit w → 0 reproduces a local interaction
and the limit w → L represents a nonlocal interaction in the
complete domain [−L,L]. In [13] several types of kernels and
their analytical properties were presented.

The deterministic version of the model, Eq. (1) with ε = 0,
has two homogeneous steady states uSS: {0,a/b}. In the local
case those values constitute the unstable and stable fixed
points, respectively; note that the nonlocal Fisher model is
nonvariational. For the nonlocal case we are interested mainly
in the instability that occurs with the fully populated state, i.e.,
uSS = a/b. This instability can be understood by doing a linear
analysis around uSS [see Eq. (22)] and its appearance depends
on the growth parameter a, the diffusion constant D, and the
Fourier transformation of the nonlocal interaction kernel G(x);
these characteristics are analyzed in detail in the following
sections. Then, for a given set of parameters [see Eq. (23)],
the uniform initial condition uSS becomes unstable, so, due to
fluctuations, the dynamics end in a patterned stable solution.

We show in Fig. 1 a realization of the stochastic dynamics
[Eq. (1)] in the course of time. In addition, in Fig. 2 we
also show the evolution of a pure deterministic solution. This
figure shows the attractor of the system and the evolution to
reach it from the patterned initial condition u(x,0) = 1.0 +
0.85 cos(2πx). This graph shows four times t = 0,20,50,150
for the deterministic evolution of u(x,t) [Eq. (1) with ε = 0].
As can be seen, the attractor is almost reached (from this

FIG. 1. Typical stochastic evolution of the field u(x,t). The initial
condition is u(x,0) ≡ uSS = 1 and the evolution follows Eq. (1) with
ε = 10−2. The physical parameters a,b,D,w,L are chosen in such
a way that the initial condition is marginally unstable (see Tables I
and II). The arrow shows the amplitude of the stochastic evolution
of Fisher’s field at three different times t = 50,75,150, i.e., evolving
from the uniform toward the patterned state.
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FIG. 2. Typical deterministic evolution of the field u(x,t). The
initial condition u(x,0) = 1.0 + 0.85 cos(2πx) follows the time
evolution of Eq. (1) with ε = 0. The physical parameters a,b,D,w,L

are the same as in Fig. 1 (see Tables I and II). The arrow shows the
evolution of the amplitude at three different times t = 20,50,150,
showing the approach to the patterned final steady state.

deterministic evolution) at a time around t = 150. Therefore,
an important point in the description of the pattern formation
is to investigate its transient stochastic dynamics from the
stationary uniform initial condition to the final inhomogeneous
solution. Figure 3 shows the typical histogram of the escape
times when considering the full dynamics with the addition of
noise (1). Not only is the MFPT an important quantity to be
known; also the possible existence of a long-time tail in the
FPTD will be investigated in the present paper. In the following
sections we will be interested in the analytical description of
the MFPT. To do this we introduce a multiscale perturbation
expansion and use the stochastic path perturbation approach to
tackle the escape times from a marginal unstable state evolved
from Eq. (1).

FIG. 3. Histogram of the escape times from Eq. (1) for 5×104

realizations, using the parameters a,b,D,w,L from Tables I and
II and noise intensity ε = 10−2. The random escape time te is
considered here when the evolution of the stochastic field u(x,t)
reaches, for the first time, a given threshold value, i.e., 	u ≡
[u(x,te)max − u(x,te)min]/2 = 0.275 (see Appendix B).

III. DETERMINISTIC ANALYSIS

Before going into the stochastic problem, let us introduce
a deterministic analysis associated with the nonlocal Fisher
model (1), but for an infinite domain L → ∞. This analysis
will help in the understanding of the bifurcation condition
and to get insight into the noise-induced transition phenomena
mediated by invading fronts.

A. Bifurcation diagram

The dynamics close to homogeneous stationary states uSS

show that spatial instability can set in when the system
parameters are changed. For example, in the next section we
show the dispersion relation associated with the stationary state
uSS = a/b (see Fig. 4). This result is obtained by invoking
a discrete Fourier analysis and using periodic boundary
conditions in a finite domain L < ∞.

In this section we present a continuous Fourier analysis
in order to find the bifurcation condition in the space of the
parameters of our problem. From Eq. (1) the linear dynamics
close to uSS = 0, the unpopulated state, is

∂tδu = ∂2
x δu + aδu, (3)

while close to uSS = a/b, the fully populated state, it is

∂t δu = ∂2
x δu − a

∫ +∞

−∞
δu(x − x ′,t)G(x ′)dx ′. (4)

To obtain the spectrum (dispersion relation) we take δu(x,t) ∝
eϕt+ikx and substitute it in the time evolution equations above
to get the relation between the wave number k and ϕ. We find
that the spectrum near the unpopulated state is

ϕ(k) = −Dk2 + a (5)

and near the fully populated state is

ϕ(k) = −Dk2 − aG(k), G(k) = sin kw

kw
. (6)

In the present work we will be interested in the instability
near the fully populated state uSS = a/b (which sets in by
the nonlocal interaction). This instability is characterized
by the Fourier transform of the nonlocal kernel (2), i.e.,
G(k) = ∫ +∞

−∞ e−ikxG(x)dx = sin kw
kw

. In order to find when
the fully populated state is stable or unstable, we solve the
bifurcation conditions

ϕ(kc) = 0, dϕ(kc)/dk = 0. (7)

From these conditions we can obtain the bifurcation portrait.
From Eqs. (6) and (7) we have the explicit expression for
the point of bifurcation when changing the range of the
interaction w (see Appendix A),

w2
min = −3Dκ2

a cos κ
, κ = 3 tan κ. (8)

Therefore, by increasing the value of the nonlocal interaction
range w, the fully populated state turns out to be spatially
unstable. The fully populated state is spatially stable when
w < wmin and at the critical value w = wmin the function ϕ(k)
has a maximum at kc [i.e., ϕ(kc) = 0]; when w > wmin the
fully populated state is spatially unstable for a finite domain
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of k (ϕ > 0) (see also Sec. IV and Fig. 4). Note that in Eq. (8)
the value of the constant is κ = 4.078 . . . (in the domain of
interest) and so cos κ < 0.

B. Wave-front solutions in the nonlocal model

Traveling-wave-front and monotonic solutions U (z) for
local Fisher equation exist, with U (−∞) = 1 and U (∞) = 0,
for all wave speeds c � 2 (in nondimensional units). Unfortu-
nately, no analytical solutions for the phase-plane trajectories
have been found for general c � 2, although there is an exact
solution for a particular value of c (see [11]). For the nonlocal
Fisher model the situation is even more complex. Nevertheless,
we can do an asymptotic analysis for a small nonlocal range
w → 0. This analysis helps in the understanding of the
complexity of the stochastic problem that we want to solve
in the present paper.

Let us consider the deterministic part of Eq. (1) in an infinite
domain L → ∞. It is convenient at the outset to rescale Eq. (1)
by writing [note that

∫ ∞
−∞ G(x)dx = 1]

u→ u

/(
a

b

)
, t → at, x → x

√
a

D
, G→

√
D

a
. (9)

Then our nonlocal Fisher model becomes

∂u(x,t)

∂t
= ∂2u(x,t)

∂x2

+u(x,t)

(
1 −

∫ ∞

−∞
u(x − x ′,t)G(x ′)dx ′

)
. (10)

In the spatially homogeneous situation the steady states are
now uSS = 0 and uSS = 1. This suggests that we can look for
traveling-wave-front solutions of Eq. (10) for which 0 � u� 1.
If a traveling-wave solution exists it can be written in the form
u(x,t) = U (z) and z = x − ct , where c is the wave speed to
be specified; we assume c � 0. Upon substituting this wave
front into Eq. (10), U (z) satisfies

cU ′ + U ′′ + U

(
1 −

∫ ∞

−∞
U (z − z′)G(z′)dz′

)
= 0, (11)

where primes denote differentiation with respect to z. A typical
front is where U at one end, say, as z → −∞, is at one steady
state and as z → ∞ it is at the other. So we should solve the
integro-differential eigenvalue problem (11) to find the values
of c such that a non-negative solution U (z) exists that satisfies

U (z → ∞) = 0, U (z → −∞) = 1.

This is a highly difficult task, which can be worked out
asymptotically, as we show next.

As we commented before, in the limit w → 0 our model
turns out to be local; therefore, we can use w as a small
parameter to study asymptotically the front analysis. When
w 
 1 the integral in Eq. (10) can be approximated by∫ ∞

−∞
u(x − x ′,t)G(x ′)dx ′ →

∞∑
n=0

1

(2n)!

w2n

2n + 1
∂2n
x u(x). (12)

If the sum converges, we use the symmetry G(x) = G(−x)
and normalization of the density G(x). Therefore, Eq. (11)

can be written as

cU ′ + U ′′ + U

[
1 −

(
U + w2

6
U ′′ + O(w4)

)]
= 0. (13)

Introducing the variable V = U ′ in Eq. (13), we can study, up
to O(w2), this equation in the (V,U ) phase plane, where

V ′ = −[cV + U (1 − U )]

(
1 − w2

6
U

)−1

,

U ′ = V. (14)

This system of equations is valid if |V ′w2/6| 
 U . If this
condition is fulfilled the phase-plane trajectories are solutions
of

dV

dU
= −[cV + U (1 − U )]

V [1 − (w2/6)U ]
. (15)

This system has two singular points for (V,U ), namely, (0,0)
and (0,1). A linear stability analysis shows that the eigenvalues
λ for the singular points are, for points (0,0) and (0,1),
respectively,

λ± = 1
2 [−c ± (c2 − 4)1/2] ⇒

⎧⎨
⎩

stable node if c2 > 4
degenerate node if c2 = 4
stable spiral if c2 < 4,

(16)

λ± = 1

2

{
−

(
c + w2c

6

)
±

[(
c + w2c

6

)2

+4

(
1 + w2

6

)]1/2}
⇒ saddle point. (17)

Thus up to O(w2), these results show that there can be
trajectories from (0,1) to (0,0) lying entirely in the quadrant
U � 0, therefore precluding traveling-wave solutions if c �
2
√

aD (in the original dimensional variables). So up to this
perturbation O(w2), the slowest transition wave propagation
cmin is independent of the nonlocal range w. However, as
it is well known, the solution of the front depends critically
on the behavior of the support of u(x,t = 0) (see [27]). If
we wish to consider larger values of the nonlocal range w we
should include the next correction O(w4) in Eq. (13); however,
the difficulty in working with the next correction is that a
larger phase-space dimension would be required to study the
dynamical system.

The expression (17) is an acceptable solution for w 
√
6
√

D/a (in dimensional variables). For the parameters that
we have used to run the stochastic realizations this would mean
w 
 0.181 (see Table I). On the other hand, we know from

TABLE I. Parameters used in the present work.

Physical parameters Description

a = 1 linear growth rate
b = 1 nonlinear coupling parameter
D = 5.477 33×10−3 diffusion coefficient
L = 1 macroscopic size system
w = 0.7 cutoff in the nonlocal interaction range
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the bifurcation point for uSS = a/b [see Eq. (8)] that in order
to reach the bifurcation, a minimum value for the range of
interaction wmin would be required, which makes the previous
asymptotic analysis more difficult to implement.

Another alternative to tackling the analysis of front prop-
agation in nonlocal Fisher models is to use a different kernel
G(x) in Eq. (10). In particular, if we use the Laplace probability
density function (PDF) (with mean value w) we can reduce the
integro-differential Fisher model to a pure differential system
of higher dimension. This is possible because the Laplace PDF
is the Green’s function of the operator ∂xx − w−2 [6,15,28];
however, this approach is beyond the scope of the present
paper.

In the present paper we use a square nonlocal kernel G(x)
and the problem that we want to solve is the stochastic emer-
gence of a patterned solution from the unstable homogeneous
state uSS = a/b, which would correspond to the invading wave
front from a nonmonotonic solution. This is a key question,
but a mathematically difficult issue. Thus we propose to
tackle this problem from the triggered-noise analysis of the
random times to leave the unstable stationary state uSS = a/b

to reach a patterned final state [in Fig. 1 we have plotted the
system at the bifurcation point and used the initial condition
u(x,t = 0) = a/b]. This approach corresponds to the study
of the first-passage-time distribution for an extended system,
which is also a very difficult task. Nevertheless, by introducing
a discrete Fourier analysis we can select the dominant unstable
Fourier mode ke (with amplitude Ae) and so we can study the
first-passage time associated with the noise-induced transition
from the homogeneous mode to the unstable mode ke. This
is the program of the present work. In order to carry out all
these calculations, in the next section we introduce a discrete
Fourier transform in Eq. (1), which is associated with the
analysis of a finite domain L < ∞ with a suitable boundary
condition.

IV. FOURIER ANALYSIS

As mentioned, in the present analysis we assume periodic
boundary conditions in the interval [−1,1], i.e., we use a
domain size L = 1. In order to study the transition from a
uniform stationary state to a patterned one, we decompose
Eq. (1) using a discrete Fourier transformation as follows:

u(x,t) =
∞∑

n=−∞
An(t) exp(iknx),

ξ (x,t) =
∞∑

n=−∞
ξn(t) exp(iknx),

G(x) =
∞∑

n=−∞
Gn exp(iknx),

where kn = nπ , n = 0,±1,±2,±3, . . . , and Gn = ∫ 1
−1 G(x)

exp(−iknx) dx
2 = 1

2
sin knw

knw
, etc. Noting that

∫ 1
−1 G(x)dx = 1,

we get G0 = 1
2 and |Gn| � 1. Introducing these series into

Eq. (1) and using that∫ 1

−1
ei(m+n)πxdx = 2δm+n,0, (18)

we arrive at

∂t

∞∑
n=−∞

An(t)eiknx

=
∞∑

n=−∞
[D(ikn)2 + a]An(t)eiknx

− 2b

( ∞∑
m=−∞

Am(t)eikmx

)( ∞∑
n=−∞

GnAn(t)eiknx

)

+√
ε

∞∑
n=−∞

ξn(t)eiknx .

Then, using the orthogonality of the Fourier series, we can
write the infinite set of coupled Fourier modes

dAn

dt
= (−Dk2

n + a)An − 2b

l=∞∑
l=−∞

An−lAlGl+
√

εξn(t),

〈ξm(t ′)ξn(t)〉 = δm+n,0 δ(t − t ′). (19)

Introducing the usual linear stability analysis u = uSS +
u1 with uSS = a/b and u1 = eϕt (

∑∞
n=−∞ Ane

iknx) into the
deterministic part of Eq. (1), we get

∂tu1 = D∂2
xu1 + au1 − bu1uSS − buSS

∫ 1

−1
u1(x−x ′,t)G(x ′)dx ′

(20)

= D∂2
xu1 + au1 − bu1uSS − 2buSS

( ∞∑
n=−∞

GnAne
ϕteiknx

)
.

(21)

Therefore, the homogeneous state uSS = a/b is unstable under
small perturbations of the form

u(x,t) = a/b + eϕt+iknx (22)

if

ϕ = −Dk2
n − 2aGn � 0. (23)

For the particular kernel we use in the present work (2),
the dispersion relation ϕ ≡ ϕ(kn) is shown in Fig. 4. Note that
any typical length scale characterizing an abrupt condition for
the kernel G(x) (cut off in the range of nonlocal interaction)
appears in the final expression of the Fourier transformation
Gn. As discussed in detail in [13], an interesting characteristic
of this nonlocal dynamics is the appearance of a nontrivial
unstable mode, as illustrated in Fig. 1. In Tables I and II we
show the corresponding numerical values of the parameters
that we use in the present work.

TABLE II. Critical parameters used in the present work.

Physical parameters Description

G2 = 1
2

sin 2πw

2πw
Fourier mode of the
square nonlocal kernel

ϕ = −D(2π )2 − 2aG2 = 0 phase at the critical case
using data from Table I
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FIG. 4. Dispersion relation ϕ as a function of n. Equation (23)
is plotted for the parameter values shown in Tables I (solid line).
Note that the supercritical unstable mode in this case corresponds to
n = 2. The dashed line is the result using the same set of parameters
but with the diffusion parameter D = 0.01. For the dashed line, the
uniform state uSS = a/b is stable. The dotted line is the result of
using the same set of parameters but with a lower diffusion parameter
D = 0.0015.

Therefore, depending on the physical parameters of the
system, new scenarios may appear; for example, if the value
of the diffusion coefficient changes (due to external agents)
the stability of the homogeneous state uSS = a/b may change

[see Eq. (23) and Fig. 4]. In particular, the situation when
ϕ(ke) = 0 for a given value of ke may happen, leading therefore
to a critical slowing down of the escape process. This critical
case is much more complex to analyze because the instability
turns out to be nonlinear; then there is no regime in which a
linear approximation is meaningful. (See also the next section
where we discuss the multiple-scale dynamics of the nonlocal
Fisher model in terms of a minimum coupling approximation.)

V. MINIMUM COUPLING APPROXIMATION

The relations shown in Eq. (19) are the complete set of
equations for the evolution of the amplitudes of all modes
in the nonlocal problem given by Eq. (1). Solving this set
of equations would be a difficult numerical undertaking. To
make further progress analytically, we consider the situation
near criticality (the onset of the pattern from a homogeneous
background). Then we follow standard procedures to derive the
expression for the evolution of a single amplitude, say, Ae(t),
for which ϕ � 0 (i.e., for the most unstable Fourier mode ke).
In this context the approximation consists in assuming that
the rest of the amplitudes remain smaller than the unstable
amplitude during all the time previous to the explosion of
Ae(t). Therefore, we only write a couple of equations for the
unstable and the homogeneous modes.

When there is only one unstable Fourier wave number
ke the deterministic part of the set of equations (19) can be
written in a less complex way by separating the dynamics of
the homogeneous and the unstable modes

dA0

dt
= (a − bA0)A0 − 2b

⎛
⎝AeA−eGe + AeA−eG−e +

∑
j �=0,±e

AjA−jGj

⎞
⎠, (24)

dAe

dt
= [a(e) − bA0(1 + 2Ge)]Ae − 2b

∑
j �=0,e

Ae−jAjGj , (25)

dA−e

dt
= [a(−e) − bA0(1 + 2G−e)]A−e − 2b

∑
j �=0,−e

A−e−jAjGj . (26)

In the symmetrical case, i.e., when Ge = G−e and noting
that a(e) = a(−e) = (−Dk2

e + a) from Eqs. (24)–(26), we
can prove that Ae(t) = A−e(t); therefore we could restrict
the Fourier analysis to the case n � 0, which is equivalent
to considering the dynamics of the modes in the form

dA0

dt
= (a − bA0)A0 − 2b

[
Ã2

eGe + Xe

]
, A0(t = 0) ∼ O(1),

(27)

dÃe

dt
= [a(e) − bA0(1 + 2Ge)]Ãe − 2b Ye, Ãe(t = 0) ∼ 0,

(28)

where [with Ãe(t) = √
2Ae(t)]

Xe ≡
∑

j>0, j �=e

2A2
l Gj � 0, (29)

Ye ≡
√

2
∑

j �={0,e}
Ae−jAjGj . (30)

In accord with our previous assumptions [|Aj (t)|
 |Ae(t)|,
j �= 0,e], neglecting in Eqs. (27) and (28) contributions from
Xe and Ye gives the minimum coupling approximation (MCA)
[13]. Thus considering that O(Xe) and O(Ye) are small
perturbations to the dynamics of A0(t) and Ãe(t), the stationary
states of Eqs. (27) and (28) are characterized by the equations

0 = (a − bA0)A0 − 2bÃ2
eGe, (31)

0 = a(e) − bA0(1 + 2Ge); (32)

then their solutions are

A0(∞) = −Dk2
e + a

b(1 + 2Ge)
, (33)

Ã2
e(∞) = (a − bA0)A0

2bGe

=
∣∣1 − Dk2

e

/
a
∣∣ϕ

2(b2/a)|Ge|(1 + 2Ge)2
. (34)

Therefore, from the MCA it is simple to see that for the
critical case, when ϕ = (−Dk2

e + 2a|Ge|) = 0, the stationary
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solutions are given by

lim
ϕ→0

A0(∞) → a/b, (35)

lim
ϕ→0

Ãe(∞) → 0. (36)

This means that the MCA cannot be used to predict a value
for the stationary state Ãe(∞) when ϕ → 0; only by going
beyond the MCA is it possible to find a value Ãe(∞) �= 0 for
the critical case (see Appendix B). The growth of the explosive
mode is independent of the asymptotic value Ãe(∞), therefore
we can calculate the MFPT using this approach. This means
that the MCA can still be used to study the stochastic growth
of the explosive amplitude Ãe(t) for the critical case.

In Appendix C we present a generalization of the MCA in
the case when there are two unstable amplitudes Au(t),Ae(t).
In this case the MCA gives a higher dimension set of coupled
equations for the dominant modes.

VI. STOCHASTIC MULTISCALE
PERTURBATION APPROACH

By neglecting O(Xe) and O(Ye) in Eqs. (27) and (28),
simplifying the notation Ãe → Ae, and defining the aux-
iliary functions F (A0,Ae) ≡ (a − bA0)A0 − 2bA2

eGe and
Q(A0,Ae) ≡ [a(e) − bA0(1 + 2Ge)]Ae, we can rewrite the
stochastic versions of Eqs. (27) and (28) in a compact form

dA0

dt
= F (A0,Ae) + √

εξ0(t), (37)

dAe

dt
= Q(A0,Ae) + √

εξe(t). (38)

Here, as commented before, ξ0(t) is statistically independent
from ξe(t). If the noise intensity ε is a small parameter we
can introduce a multiscale perturbation expansion for the
homogeneous mode A0(t) and the unstable mode Ae(t) in
the form

A0(t) = A
(0)
0 + √

εx(t) + εy(t) + ε3/2h(t) + · · · , (39)

Ae(t) = √
εW (t) + εV (t) + ε3/2J (t) + · · · . (40)

Introducing Eqs. (39) and (40) into Eqs. (37) and (38) and
collecting different orders in ε, we obtain the multiple-scale
dynamics. For example, for the homogeneous mode A0(t), up
to O(ε3/2), we get

O(ε0) ⇒ A
(0)
0 = a/b, (41)

O(ε1/2) ⇒ dx

dt
= −ax(t) + ξ0(t), (42)

O(ε1) ⇒ dy

dt
= −ay(t) − bx(t)2 − 2bGeW (t)2, (43)

O(ε3/2) ⇒ dh

dt
= −ah(t) − 2bx(t)y(t) − 4bGeW (t)V (t).

(44)

For the dynamics of the unstable mode Ae(t) we get

O(ε1/2) ⇒ dW

dt
= (−Dk2

e + 2a|Ge|
)
W (t) + ξe(t), (45)

O(ε1) ⇒ dV

dt
= (−Dk2

e + 2a|Ge|
)
V (t)

− b(1 + 2Ge)W (t)x(t), (46)

O(ε3/2) ⇒ dJ

dt
= (−Dk2

e + 2a|Ge|
)
J (t)

− b(1 + 2Ge)[W (t)y(t) + V (t)x(t)]. (47)

The multiscale expansion allow us to study by perturbations the
stochastic escape process from any unstable state characterized
by a set of equations like in (37) and (38).

A. Stochastic escape in the supercritical case ϕ > 0

In the small noise approximation the stochastic path per-
turbation approach consists of obtaining information about the
first-passage-time statistics without solving the Fokker-Planck
equation. This is done by analyzing the stochastic realizations
of the process under study when they are written in terms of
Wiener paths.

The supercritical case occurs when the phase factor
ϕ = (−Dk2

e + 2a|Ge|) > 0. Therefore, the escape process
of the unstable mode Ae(t) is dominated by O(ε1/2), i.e.,
the linear stochastic differential equation (45). Consistently,
the homogeneous mode is well described by Eqs. (41)
and (42). Due to the linearity of the unstable evolution, the
stochastic path perturbation approach can easily be introduced
by working out the Wiener realization up to O(ε1/2) [5], for this
linear unstable case and in the small noise approximation the
first-passage-time statistics are independent of the saturation
of the unstable mode [29], i.e., the steady states (33) and (34).

In the supercritical case we can interpret the multiscale
dynamics in the following form: To O(ε0) the homogeneous
modes is the expected state A

(0)
0 = a/b and to O(ε1/2) stochas-

tic realizations x(t) correspond to an Ornstein-Uhlenbeck
process that will lead to the saturation of the dispersion of
the homogeneous mode A0(t � a) = a/b + √

εx(∞) + · · · ,
where x(∞) is a Gaussian random variable. Concerning
the unstable mode, up to O(ε1/2), the realizations W (t)
correspond to an exponentially increasing stochastic process
(SP), therefore these realizations will lead the dominant escape
processes toward the final attractor of the nonlocal Fisher
equation (see Figs. 1 and 2). The distribution for the escape
times, i.e., the FPTD P (te) to reach a given threshold value
Ae ≡ 	u, can be written, using a nondimensional unit of time
τe = ϕte, as (see Appendix D and [8,9])

P (τe) = 2K

erf(K)
√

π
exp[−τe − K2 exp(−2τe)],

K = Ae

√
ϕ

ε
, τe = ϕte. (48)

The MFPT is

〈τe〉 =
∫ ∞

0
P (τe)dτe � ln(K) + E + ln 4

2erf(K)
, K � 1, (49)
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where E is the Euler constant. Note that the general solution
of the escape problem (for the supercritical case) has been
written in terms of the nondimensional parameter (group) K =
Ae

√
ϕ/ε; the group K explicitly depends on the diffusion con-

stant D through the phase parameter ϕ = −Dk2
e − 2aGe > 0.

B. Stochastic escape at the critical point ϕ = 0

Before going into any mathematical detail we point out
that the MCA does not allow us to get, for the critical case,
the value of Ae(t = ∞); however the MCA indeed describes
very well the growth of the explosive mode Ae(t < ∞) when
the perturbation is taken to O(ε1). The critical case happens
when ϕ = −Dk2

e + 2a|Ge| = 0, therefore from (41)–(44) and
(45)–(47) we realize that a drastic change in the short-time
evolution of the unstable mode will occur. The important
point is therefore to solve properly the unstable escape, which
is now controlled by both realizations W (t) and V (t). The
solution of W (t) is now a Wiener path. Therefore, if we
only take into account corrections to O(ε1/2) the MFPT is
scaled down as a random-walk process. This perturbation is
not enough to characterize the dynamics of the unstable mode
Ae(t), therefore we need to go one step further and solve the
realizations of the SP V (t). We can also see that to O(ε1)
the stochastic perturbation is nontrivial and with a multiplica-
tive character, therefore we choose from now on, if necessary,
the Stratonovich calculus.

For the critical case (ϕ = 0) the dynamics up to O(ε1) are
reduced to

A0(t) ⇒ dx

dt
= −ax(t) + ξ0(t)

⇒ dy

dt
= −ay(t) − bx(t)2 − 2bGeW (t)2 (50)

and

Ae(t) ⇒ dW

dt
= ξe(t)

⇒ dV

dt
= −b(1 + 2Ge)W (t)x(t), (51)

showing that A0(t) is dominated by an additive noise, but Ae(t)
by a nontrivial multiplicative SP. Note that up to O(ε1/2) the
escape time is controlled by the Wiener SP W (t), which will
not give a good description because the MFPT would be as in
a random walk.

Perturbations up to O(ε1)

The homogeneous mode is simple to solve in the spirit of
the stochastic path perturbation approach. First we note that for
t → ∞ the SP x(t) saturates to its stationary state; therefore
we can introduce the notation 
 to characterize the random
variable x(∞) = 
, which, in addition, is characterized by
the normal PDF

P (
) = exp
(−
2

/
2σ 2




)
√

2πσ 2



, σ 2

 = 1

2a
, 
∈ (−∞,∞). (52)

Using that x(t) is the Ornstein-Uhlenbeck SP and W (t) is the
Wiener SP [uncorrelated because they come from stochastic
integrals of ξ0(t) and ξe(t), respectively] we could approximate

(43), for at � 1, by

{x(t) � 
} ⇒ dy

dt
� −ay(t) − b
2 − 2bGeW (t)2. (53)

In this approximation the realization of y(t) can be written in
the form

y(t) � −b
2

a
(1 − e−at ) + 2b|Ge|�(t). (54)

Nevertheless, we do not need to use realizations y(t) to study
the escape problem. Note that here �(t) is a non-Gaussian SP
characterized by

�(t) =
∫ t

0
e−a(t−t ′)W (t ′)2dt ′. (55)

Then all the moments and correlations of the SP �(t) can be
calculated using Wiener paths (see Appendix E).

Now we proceed to solve up to O(ε1) the dynamics of the
unstable mode Ae(t). In this case we can approximate (51), for
at � 1, by

{ϕ = 0,x(t) � 
} ⇒ dV

dt
� −b(1 + 2Ge)W (t)
. (56)

Thus defining β ≡ b(1 + 2Ge) > 0 we can approximate the
realization of SP V (t) by

V (t) � −β
�(t), (57)

where �(t) is a Gaussian SP defined in terms of a Wiener
integral

�(t) =
∫ t

0
W (t ′)dt ′. (58)

Thus any realization V (t) is characterized by the Gaussian
SP �(t). In particular, the first and second moments can be
calculated straightforwardly (similar calculations are shown
in Appendix E)

〈V (t)〉 = 0,

〈V (t)2〉 = β2〈
2〉
∫ t

0
dt1

∫ t

0
dt2 min(t1,t2) = β2

2a

t3

3
. (59)

Therefore, up to O(ε1) the realizations of A0(t) and Ae(t) can
be analyzed. First we note that V (t) grows faster than y(t),
which shows the explosive character of the unstable mode
Ae(t) when it is compared with the growth of the homogeneous
mode A0(t). In fact, for the homogeneous mode we get that

A0(t) � b/a + √
εx(t) + εy(t) + · · · , (60)

where

〈x(t)〉 = 0, 〈x(t)x(s)〉 = 1

2a
(e−a|t−s| − e−a(t+s)). (61)

In (60) the SP y(t) can be approximated by Eq. (54), thus we
can calculate its mean value, etc. (see Appendix E).

For the unstable mode we get

Ae(t) � √
εW (t) + εV (t) + · · · , (62)

where, for example,

〈W (t)〉 = 0, 〈W (t)W (s)〉 = min{t,s}, (63)

〈V (t)〉 = 0,
√

〈V (t)2〉 =
√

β2

6a
t3. (64)

Here the SP V (t) is approximated for at � 1 by Eq. (57).
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From (50) it is possible to see that at short times the SP y(t)
decreases, but because Ge < 0 the process may grow due to the
contribution of the square of the Wiener SP. On the other hand,
the evolution of the unstable mode can also be interpreted:
At the origin of time t = 0 the mode is null and then at
short time Ae(t ≈ 0) it starts to growth as a Wiener process.
After this regime the nonlinear contribution [proportional to
x(t)W (t)] fluctuates with mean value zero, but grows faster
that the Wiener SP [

√
〈W (t)2〉 ∼ t1/2 and

√
〈V (t)2〉 ∼ t3/2].

We note here that the next order of perturbation O(ε3/2) can
be analyzed in a similar way, showing in addition much more
complex stochastic dynamics that could also be solved, in
some approximation, in the context of the stochastic path
perturbation approach.

C. Calculation of the MFPT (passage times for the critical case)

Equation (57) characterizes the random escape times te; to
see this we use the scaling of the Wiener process. First we
write a threshold value Ve ≡ V (te) in the form

Ve = −β
�(te), β ≡ b(1 + 2Ge). (65)

Then, using Wiener paths in (58), we can prove, in the
distribution, the following scaling for the SP �(t):

�(te) =
∫ te

0
W (t ′)dt ′ � t3/2

e

∫ 1

0
W (s)ds ≡ t3/2

e �, (66)

where � ≡ �(1) = ∫ 1
0 W (s)ds is a random variable charac-

terized by the normal PDF

P�(�) = exp(−�2/2〈�2〉)√
2π〈�2〉

,

〈�2〉 = 1

3
, � ∈ (−∞,∞). (67)

Now using the scaling (66), we can invert (65). This will give a
mapping for the random escape times te from the set of random
variables 
,�:

t3
e =

(
Ve

β
�

)2

=
(

Ae/ε

β
�

)2

. (68)

In the second line we have used Eq. (40), i.e., the multiple-
scaling expansion to O(ε1), so here Ae is a given threshold
value Ae ≡ 	u. Noting that {
,�} are statistically indepen-
dent random variables and using (67) and (52), we can now
calculate the MFPT taking the average of (68),

〈te〉 =
〈(

Ae/ε

β
�

)2/3〉
P�P


= ε−2/3

(
Ae

β

)2/3〈( 1




)2/3〉
P


〈(
1

�

)2/3〉
P�

= ε−2/3

(
Ae

b(1 + 2Ge)

)2/3(
�(1/6)√

π21/3

)2

(6a)1/3. (69)

In Table III we show a comparison of the theoretical prediction
for the MFPT (69) against numerical simulations using the
threshold value 	u = 0.275 (see Appendix B and Fig. 1). In

TABLE III. Mean first-passage time.

Noise intensity Theoretical MFPT Numerical MFPT

ε = 10−3 561 544.2
ε = 5×10−3 192 222.6
ε = 10−2 120 128.5
ε = 5×10−2 41 15.04
ε = 10−1 26 3.77

Fig. 5 we present a plot showing the predicted scaling with the
noise intensity ε.

We note that having worked the stochastic perturbation
up to O(ε1) has modified the scaling of the MFPT with the
noise intensity, i.e., now we get 〈te〉 ∼ ε−2/3, which is slower
than the scaling that we would have obtained working up
to O(ε1/2), i.e., a random-walk process predicting the scaling
〈te〉 ∼ (Ae/

√
ε)2 ∝ ε−1. Comparing the behavior (69) with the

one for the supercritical case (49), 〈te〉 ∼ ln( 1
ε
), we can see the

occurrence of a critical slowing down when the phase factor
reaches the null value ϕ = 0.

D. Calculation of the FPTD for the critical case

A crude approximation for the FPTD can be calculated from
(68) when this map is written in the form of a random variable
transformation law from the set of random variables {
,�} to
the random time te, i.e.,

P (te) = 2
∫∫ ∞

0
P
(
)P�(�)δ

(
te −

(
Ae/ε

β
�

)2/3
)

d
d�,

te � 0

= 2
∫∫ ∞

0
P
(
)P�(�)

δ(
 − 
′)
|J | d
d�,

where |J | is the Jacobian of the transformation and 
′ =
Ae/t

3/2
e εβ� is the root of the mapping (68). Performing the

FIG. 5. The MFPT for the critical case from Eq. (69) as a function
of the noise intensity ε. The values of the parameters that we have
used are shown in Tables I and II; Ae = 	u = 0.275. The line is the
predicted scaling law ε−2/3.
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FIG. 6. A log-log plot of the escape time probability distribution
(for the critical case) from Eq. (70) as a function of time te. The
values of the parameters that we have used are shown in Tables I and
II; Ae = 	u = 0.275 and ε = 10−2. The histogram from numerical
simulations is also included for comparison with the predicted
long-time tail.

algebra, we arrive at

P (te) = 2
∫ ∞

0
P
(
′)P�(�)

d�

|J |

= 6Ae

εβt
5/2
e

√
3a

2π2
K0

[
Ae

√
6a

εβt
3/2
e

]
,

β ≡ b(1 + 2Ge), (70)

where K0[z] is the K Bessel function of order 0. Using the
asymptotic result K0[z → 0] → ln(2/z) − E, where E is the
Euler constant [30], we get the long-time tail in the asymptotic
behavior of the FPTD

P (te → ∞) ∝ ln te

t
5/2
e

. (71)

The map (68) is an approximation for at � 1 and small
noise. In fact, this mapping gives a quite good result for
the calculation of the MFPT at the critical point, as shown
in Table III and Fig. 5 [the long tail (71) dominates this
calculation]. Nevertheless, we cannot expect that the FPTD
given by (70) would be a good description at short times (see
the histogram in Fig. 3). We also note that the escape time
at the critical point does not depend explicitly on the value
of the diffusion constant D (this is so because the phase ϕ

is null). Figure 6 shows a log-log plot of the FPTD (70) to
emphasize its long-time tail; the agreement with the numerical
simulations (using 5×104 realizations) can also be seen.

To end this section let us note that the FPTD P (te) can be
written using a nondimensional unit of time in the form

P (τe) = 3Q

πτ
5/2
e

K0

[
Q

τ
3/2
e

]
,

Q ≡ Ae

√
6aβ

ε
, τe = βte. (72)

Thus, up to a perturbation of O(ε1) the general solution for the
escape problem (at the critical point) can be written in terms
of a nondimensional group Q that depends on the nonlinear

parameter b. We note this result against the FPTD in the
supercritical case ϕ > 0; there the distribution does not depend
on the parameter b because the instability is linear. On the other
hand, as we pointed out before, in the supercritical case the
MCA does indeed allow the calculation of the stationary value
Ae(∞), a situation that cannot be achieved in the critical case
ϕ = 0 [see Eqs. (35) and (36)]. Therefore, our solution (72)
for the FPTD in the critical case must be handled using Ae as
a threshold value 	u. We show in Appendix B that only by
going beyond the MCA is it possible to find the stationary state
Ae(∞). We made numerical simulations (in real space-time)
for the histogram of the escape times of the field u(x,t) through
a given threshold value 	u = 0.275, using the time evolution
of the nonlocal Fisher equation (1). In Table III and Fig. 5
we show the agreement with the theoretical prediction of the
MFPT vs noise intensity and in Fig. 6 we show the agreement
with the predicted long-time tail of the FPTD.

In addition, from the nondimensional solution presented
in Eq. (72) it is simple to study the dispersion of the random
escape times. In fact, we can calculate σ 2 ≡ 〈τ 2

e 〉 − 〈τe〉2; then
it is possible to show that this dispersion grows as a function
of the universal parameter Q. A quantity that is more relevant
for this statistical analysis is the relative dispersion σ/〈τe〉; this
statistical indicator is bounded as a function of Q. This result
indicates that the MFPT gives a good description of the pattern
formation (for the critical case) as a function of the universal
parameter Q.

VII. CONCLUSION

In this work we have presented a general approach to tackle
the problem of the characterization of the mean first-passage
time from an initial homogeneous unstable state towards a final
patterned stable attractor. In particular, we applied this general
approach when the evolution is associated with stochastic
integro-differential spatial dynamics as in the Fisher-like
equation. The theory is based on the technique of scaling
down Wiener integrals (i.e., the stochastic path perturbation
approach) with the additional implementation of the minimum
coupling approximation in the context of the Fourier analysis.
This approximation allowed us to study analytically the
random escape times from an initial unstable state.

We have introduced a stochastic multiple-scale analysis that
is a fundamental tool that allow us to undertake the random
escape problem by introducing perturbations to any nonlinear
instability. The critical case (ϕ = 0), when the phase of the
Fourier perturbation is zero, has been solved analytically and
compared with numerical simulations of the field u(x,t) in
real space-time. Despite the many approximations that we
have introduced, the predictions for the MFPT are in good
agreement with the numerical simulations. In addition, we
have shown the existence of a universal (group) parameter Q

that characterizes the FPTD in a nondimensional unit of time
τe = βte. This universal parameter Q ≡ Ae

ε

√
6aβ is different

from the universal (group) parameter K ≡ Ae

√
ϕ/ε for the

supercritical case [compare Eqs. (72) and (48)].
In addition to the stochastic analysis that we have presented

to describe the pattern formation in the nonlocal Fisher
equation (when the fully populated state turns out to be
unstable due to the nonlocal interaction) we have presented
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an exact deterministic analysis to study the bifurcation point
for the stationary state uSS = a/b (i.e., we found a minimum
value for the range wmin =

√
−3κ2/ cos κ

√
D
a

). Also, the
occurrence of wave fronts between the unpopulated and the
fully populated states has been studied. In particular, we carried
out an asymptotic perturbation analysis to study the critical
velocity of the front cmin = 2

√
aD + O(w4), when the range

of the nonlocal kernel is small (using a square kernel function).
Another model of kernels would allow a simpler analysis of
the front propagation.

To end this section we comment that if the noise would
appear in some physical parameter, for example, if the growth
rate changes in the form a → a + ξ (x,t), the stochastic
problem turns out to be of multiplicative character, which is
different from the equation (1) that we have worked out in the
present paper. These types of problems can also be properly
tackled using the present stochastic multiscale expansion. We
are confident that our theoretical approach to solve the mean
first-passage time may help in the general understanding of
the pattern formation in complex systems where the nonlocal
interaction (considering a range of interaction) plays an
important role in the description of real systems. In addition,
the present stochastic multiple-scale approach may also help
to solve a quite different but related problem: the study of
zero-dimensional dynamical systems with distributed time
delay. These types of situations can be of interest in the study
of pattern formation in biological models [28,31].
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APPENDIX A: BIFURCATION POINT
FOR THE STEADY STATE uSS = a/b

The bifurcation point wmin associated with the steady state
uSS = a/b can be calculated from Eqs. (6) and (7) to obtain

ϕ(kc) = −Dk2
c − a

sin kcw

kcw
= 0, (A1)

ϕ′(kc) = −2Dkc − a

(
cos kcw

kc

− sin kcw

k2
cw

)
= 0. (A2)

Solving sin kcw/k2
cw from Eq. (A1) and introducing this

expression in Eq. (A2) we get

Dk2
c

a
= −1

3
cos kcw; (A3)

however, from Eq. (A1) we can write

Dk2
c

a
= − sin kcw

kcw
. (A4)

By defining kcw ≡ κ and comparing Eqs. (A3) and (A4) the
following condition should be fulfilled:

3 tan κ = κ, κ ∈ (0,2π ).

Thus, from Eq. (A3) we can write

Dκ2

aw2
= −1

3
cos κ,

from which the bifurcation point is characterized by

wmin =
√

−3κ2/ cos κ

√
D

a
. (A5)

In nondimensional units (see Sec. III B) there is only one
free parameter w, so the bifurcation is characterized by a
point: the minimum value of the interaction range wmin =√

−3κ2/ cos κ = 9.1760 . . . . For values in the range w >

wmin the dynamics of the system are of the supercritical case.

APPENDIX B: UPPER BOUND OF Ae(∞)
AT THE CRITICAL POINT

We have already commented that at the critical point ϕ = 0,
the MCA does not allow us to calculate the stationary state
of the amplitude Ae(∞). Here we show that only by going
beyond the MCA could we get a value for this amplitude. This
can be done by analyzing the full Fourier set of deterministic
equations (19) under an effective approach and invoking a
small-amplitude approximation.

In analogy with the deterministic structure of the set of
equations (24)–(26), we assume here that there is only one
unstable mode ke. Then we can characterize the stationary
amplitudes by the set of equations (in the symmetric case
Ae = A−e)

0 = (a − bA0)A0 − 2b
[
2A2

eGe + Xe

]
, (B1)

0 = [a(e) − bA0(1 + 2Ge)]Ae − 2bYe, (B2)

0 = [a(m) − bA0(1 + 2Gm)]Am − 2bYm, m �= {0,e}, (B3)

where Xe, Ye, and Ym are given by

Xe ≡
∑

l>0,l �=e

2A2
l Gl > 0, (B4)

Ye ≡
∑

l �={0,e}
Ae−lAlGl, (B5)

Ym ≡
∑

l �={0,m}
Am−lAlGl. (B6)

Noting that Ge < 0 and Gl > 0 ∀l �= {0,±e}, we can find
the dominant solutions of Eqs. (B1)–(B3) in the following
way. Apart from any possible (but small) solution Am(∞)
from (B3), at the critical point [a(e) − b( a

b
)(1 + 2Ge)] = 0

the system of equations (B1)–(B3) has a solution if

A0 = a/b,

2A2
e = −Xe/Ge,

Am ∼ 0,

Ym ∼ 0,

Ye = 0.

The last two conditions can be accepted by invoking a sort
of null compensation in the sum of small-amplitude modes.
Then, from (B1), noting that Ge < 0, we arrive at the important
conclusion

A0|ϕ=0 = a/b, (B7)

Ae|ϕ=0 =
√∑

l>0,l �=e A2
l Gl

|Ge| . (B8)
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From this result we can see that the value of Ae(∞) is beyond
the MCA because it is of O(Xe), as we had pointed out before.

An upper bound for Ae can be obtained by using
Parseval’s identity. Let uSS(x) be a inhomogeneous determin-
istic stationary state of the Fisher nonlocal equation (1),

uSS(x) = u(x,t = ∞) = A0 +
∞∑

n=−∞
An exp(iknx)

= A0 +
∞∑

j=1

2Aj cos(kjx). (B9)

Note that the cosine expansion is not really true for u(x,t)
during the transition when there is noise. In the stationary
state we can write

C ≡ 1

2

∫ 1

−1
uSS(x)2dx =

∞∑
j=−∞

A2
j =A2

0 + 2A2
e +

∑
j>0,j �=e

2A2
j .

(B10)

From Eq. (B8) and because in the symmetric case 0 < Gj < 1
for j �= e, we get

A2
e |Ge| =

∑
l>0,l �=e

A2
l Gl �

∑
l>0,l �=e

A2
l = (

C − A2
0 − 2A2

e

)/
2.

Then we finally arrive at the upper bound

Ae �

√
C − A2

0

2(1 + |Ge|) �
√

C − (a/b)2

2(1 + |Ge|) . (B11)

Thus, if we calculate C numerically from Eq. (1) with ε = 0,
the inequality (B11) provides the upper bound we were
seeking for the amplitude Ae(∞) at the critical point. We
have measured numerically C from the stationary state of
the deterministic Fisher nonlocal equation (see Fig. 2). For
the critical parameters that we have used (see Table I and II)
we get C � 1.05, therefore from (B11) we get 2Ae � 0.300
[the factor 2 can be considered a threshold value from a
cosinelike expansion (B9)]. Then, in our simulations the MFPT
was calculated using the threshold value 	u ≡ [u(x,te)max −
u(x,te)min]/2 = 0.275.

APPENDIX C: THE MCA FOR THE CASE
OF TWO UNSTABLE FOURIER MODES

In the symmetric case Gn = G−n, considering a situation
when there are only two unstable modes Ae(t) = A−e(t) and
Au(t) = A−u(t) in (19) and the rest of the modes An ∀n �=
{e,u,0} are of small amplitude, we can write a Fourier coupled
system of equations in the form

dA0

dt
= (a − bA0)A0 − 2b

[
2A2

eGe + 2A2
uGu + Be

]
, (C1)

dAe

dt
= [a(e) − bA0(1 + 2Ge)]Ae−2b[Ae−uAuGu+Ee],

(C2)

dAu

dt
= [a(u) − bA0(1 + 2Gu)]Au−2b[Au−eAeGe+Eu],

(C3)

where [a(e) − bA0(1 + 2Ge)]A0=a/b ≡ ϕe � 0 and [a(u) −
bA0(1 + 2Gu)]A0=a/b ≡ ϕu � 0 are the Fourier phase factors
of the unstable modes. On the other hand,

Be =
∑

j>0,{j �=e,u}
2A2

jGj > 0,

Ee =
∑

j �={0,e,u}
Ae−jAjGj ,

Eu =
∑

j �={0,e,u}
Au−jAjGj .

Therefore, because only Ge and Gu are negative we can neglect
all terms proportional to Gj with j �= {e,u} in (C1)–(C3). Thus
we can conclude that this set of equations represents the MCA
for the case when there are two unstable modes. This MCA
predicts a nontrivial interaction between the modes Ae and Au

that must be worked out with some effective approximation
for the small amplitude A|e−u|.

APPENDIX D: CALCULATION OF THE MFPT
IN THE SUPERCRITICAL CASE

Using that ϕ > 0, from Eqs. (42) and (45) we can write
both stochastic realizations in the form

x(t) =
∫ t

0
exp[−a(t − t ′)]ξ0(t ′)dt ′, x(0) = 0, t � 0

(D1)

W (t) =
∫ t

0
exp[ϕ(t − t ′)]ξe(t ′)dt ′, W (0) = 0, t � 0.

(D2)

From expression (D1) we note that for t → ∞ the SP x(t)
saturates to its stationary state. Therefore, we can introduce
the notation 
 to characterize the random variable x(∞) = 
,
which in addition can be seen to be characterized by the normal
PDF

P (
) = exp
(−
2

/
2σ 2




)
√

2πσ 2



, σ 2

 = 1

2a
, 
 ∈ (−∞,∞).

(D3)

On the other hand, from (D2), the SP W (t) can be written in
the form

W (t) = eϕtη(t), (D4)

where the SP η(t) fulfills the stochastic differential equation

dη

dt
= e−ϕt ξe(t), η(0) = 0, t � 0.

In addition, it is possible to see that the SP η(t) also saturates
for times t � ϕ−1. Then the random variable η(∞) ≡ η is
characterized by the normal PDF

P (η) = exp
(−η2

/
2σ 2

η

)
√

2πσ 2
η

, σ 2
η = 1

2ϕ
, η ∈ (−∞,∞) ≡ Dη.

(D5)
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Approximating η(t) ∼ η(∞) in Eq. (D4), we can extract
the escape times te by inverting a random mapping, i.e.,
we can study the random escape times te from a random
transformation law η → te (into a suitable support to ensure
te � 0). To see this we first define te as the time it takes for the
stochastic process W (t) to reach a threshold value We. Then
we approximate Eq. (D4) by

W 2
e = W (te)2 � e2ϕteη(∞)2 = η2 exp(2ϕte). (D6)

Now we can solve from (D6) the random escape time as a
function of the threshold We, η, and ϕ,

te = 1

2ϕ
ln

(
We

η

)2

,
We

η
� 1,

where η is a normal distributed random variable [see Eq. (D5)].
Now using the scaling (40) we write We = Ae/

√
ε. Then the

random mapping we were looking for is

te = 1

2ϕ
ln

(
A2

e

η2ε

)
. (D7)

Here Ae is a threshold value used to characterize the pattern
formation, i.e., the transition from Ae(t = 0) ∼ 0 to the
patterned state Ae(te) ∼ O(1). Finally, the PDF for the escape
times, i.e., the FPTD P (te), can be obtained from the theorem
of the transformation of random variables

P (te) =
∫

δ

(
te − 1

2ϕ
ln

A2
e

η2ε

)
P (η)dη, te � 0. (D8)

After some algebra we get (48). We can calculate the MFPT
by taking the average of Eq. (D7) (or from the first moment of
the FPTD) to obtain

〈te〉 = 1

2ϕ

〈
ln

A2
e

η2ε

〉
.

Thus using a nondimensional time τe = ϕte we get Eq. (49).

APPENDIX E: CALCULATION OF MOMENTS
OF THE PROCESS �(t)

To calculate the first moment of the non-Gaussian SP
�(t) = ∫ t

0 e−a(t−t ′)W (t ′)2dt ′ we use that for the Wiener SP
we know that 〈W (t)2〉 = t , Then

〈�(t)〉 =
∫ t

0
e−a(t−t ′)〈W (t ′)2〉dt ′ =

∫ t

0
e−a(t−t ′)t ′dt ′

= 1

a

(
t − 1

a

)
− e−at

a2
.

Therefore, in the long-time limit we get (at � 1)

〈�(t)〉 → t/a.

To calculate the second moment of the SP �(t) we use
Novikov’s theorem [1,25,26] for the Wiener SP

〈W (t1)W (t2)W (t3)W (t4)〉 = min(t1,t2) min(t3,t4)

+ min(t1,t3) min(t2,t4)

+ min(t1,t4) min(t2,t3).

Then we can write 〈W (t ′1)2W (t ′2)2〉 = (t ′1t
′
2 + 2[min{t ′1,t ′1}])

and so we get

〈�(t)2〉 =
∫ t

0
e−a(t−t ′1)dt ′1

∫ t

0
e−a(t−t ′2)〈W (t ′1)2W (t ′2)2〉dt ′2

=
∫ t

0
e−a(t−t ′1)dt ′1

∫ t

0
e−a(t−t ′2)(t ′1t

′
2 + 2[min{t ′1,t ′1}])dt ′2

= 1

a4
{7 + e−2at − 8e−at + 2at(−3 + at).

+e−2at [1 + eat (−1 + at)]2}.
Therefore, in the long-time limit we get (for at � 1)

〈�(t)2〉 → 3(t/a)2.
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[6] M. O. Cáceres, J. Stat. Phys. 156, 94 (2014).
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Barcelona, 2003).

[26] J. Garcia-Ojalvo and J. M. Sancho, Noise in Spatially Extended
Systems (Springer, Berlin, 2010).

[27] A. Kolmogorov, I. Petrovsky, and N. Piscounov, Moscow Univ.
Bull. Math. 1, 1 (1933).
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