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Abstract

The Propositional Logic of Proofs (LP) is a modal logic in which the modality 2A is revisited as
[[t]]A, t being an expression that bears witness to the validity of A. It enjoys arithmetical soundness
and completeness, can realize all S4 theorems and is capable of reflecting its own proofs (` A implies
` [[t]]A, for some t). A presentation of first-order LP has recently been proposed, FOLP, which enjoys
arithmetical soundness and has an exact provability semantics. A key notion in this presentation is
how free variables are dealt with in a formula of the form [[t]]A(i). We revisit this notion in the setting
of a Natural Deduction presentation and propose a Curry-Howard correspondence for FOLP. A term
assignment is provided and a proof of strong normalisation is given.

1 Introduction

Justification Logic [Art08a] is a family of modal logics in which the modality 2A is revisited as [[t]]A, t being
an expression that bears witness to the validity of A. The Propositional Logic of Proofs (LP) is the first
member of this family. A recent addition is the First-Order Logic of Proofs (FOLP) [AY11], which extends
LP to first-order logic, enjoys a natural provability semantics (just like its propositional counterpart) and
is able to realize all first-order modal logic theorems. We build on proof theoretical investigations of
modal logic based on judgemental reconstruction of intuitionistic S4 [ML84, DP96, DP01b, DP01a] later
applied to LP [AB07, BB10, BB15, BS14], to construct a Natural Deduction presentation for FOLP. The
overall aim is to explore possible computational metaphors of (first-order) LP in terms of the Curry-
Howard isomorphism. A term assignment (a lambda calculus) is proposed for which some fundamental
properties are studied. We next provide a brief overview of LP and FOLP, and spell out the main ideas
behind our proposal.

1.1 The Logic of Proofs

Early work of Orlov [Orl25] and Gödel [Göd33] propose an explanation of intuitionistic truth in terms
of classical provability by prefixing every subformula in Int (Intuitionistic Propositional Logic) with “2”,
where “2” is subject to the laws of S4. Gödel established that the translation of formulas which are
provable in Int are provable in S4 (this embedding is also faithful [MT48]). In order to complete the
explanation, it is necessary to relate the “2” modality with provability in PA:

Int ↪→ S4 ↪→ ? ↪→ PA (1)

Reading “2A” as “∃x.Proof (x, pAq)”, where pAq denotes an appropriate numeric encoding of A, is
problematic since the S4 theorem 2(¬2 ⊥), which expresses Con(PA), is provable in PA. This situation
was observed by Gödel [Göd33], who posed two problems:

1. Uncover the modal logic of the formal provability predicate ∃x.Proof (x, pAq).
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2. Devise the intended provability semantics for S4.

Both of these problems have been solved. The first is answered by Solovay’s completeness theorem [Sol76]
of Löb’s logic; the second by LP [Art95, Art01]1:

Int ↪→ S4

a︷︸︸︷
↪→ LP

b︷︸︸︷
↪→ PA (2)

LP arises essentially from skolemizing the existential quantifier which is implicit in the provability
interpretation of 2. It replaces statements of the form 2A (read as: “there is some proof of A”) by [[t]]A
(read as: “t is a proof of A”). Here t is called a proof term, and belongs to the set of expressions
specified by the following grammar:

s, t ::= x | c | s · t | !s | s+ t

Proof terms are constructed from proof variables, proof constants, application, bang and sum. The axiom
and inference schemes of LP are as follows:

A0. Axioms of classical propositional logic in the language of LP
A1. [[s]]A⊃A
A2. [[s]](A⊃B) ⊃ ([[t]]A ⊃ [[s · t]]B)
A3. [[s]]A ⊃ [[!s]][[s]]A
A4. [[s]]A ⊃ [[s+ t]]A
A5. [[t]]A ⊃ [[s+ t]]A
MP. ` A⊃B ∧ ` A⇒ ` B
Nec. A axiom A0−A5⇒ ` [[c]]A

Note that if one discards the proof terms decorating these axioms, one obtains the axioms of S4 (A4
and A5 collapse to a trivial theorem). Returning to (2), the arrow marked with an (a) is Artemov’s
realization theorem [Art01, Thm.9.4] which states that S4 ` A implies LP ` Ar, for some normal
realization •r. A realization is a function that decorates each occurrence of 2 with a proof term; it
is said to be normal if each negative such occurrence is decorated with a different proof variable. This
entails that each S4 theorem has an underlying statement about proofs. For instance: 2A ⊃ 2B can be
realized as [[x]]A ⊃ [[t(x)]]B, for an appropriate proof term t(x). The arrow marked (b) in (2) is Artemov’s
arithmetical soundness and completeness theorem. The correspondence (2) was later extended
to a fragment of LP capturing provability in HA [AI07, Das11]. A further salient property of LP is that
it is endowed with a reflection (or internalization) mechanism, meaning that ` A implies there exists
a ground t s.t. ` [[t]]A [Art01, Corollary 5.5]. The proof of this result consists in analyzing the given
derivation of A in LP, and encoding it using proof terms.

1.2 The First-Order Logic of Proofs

Given a first-order language L, the language of FOLP is obtained by extending L with proof variables
and functional symbols for operations on proofs (cf. Def. 2.1). Also, the set of formulas is extended with
a skolemized version of the modal operator 2 whose notation we shall introduce shortly. A crucial aspect
is how parameters are understood in this skolemized version. Consider the formula 2A(i), where A has
a parameter i. This parameter can play one of two roles in a proof of A(i). It can be interpreted as a
global parameter. Global parameters are placeholders and, as such, may be substituted by any first-order
expression (denoting an individual) at all. For example, in the following derivation π(j), where P is a
binary predicate letter and F is a first-order expression:

1LP later gave birth to the family of Justification Logics [Art08a, Art08b]
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∀i, j.P (i, j) ⊃ P (j, i)

P (F, j) ⊃ P (j, F ) P (F, j)

P (j, F )

the parameter j acts as a global parameter since it may be substituted for any first-order expression E in
order to obtain a derivation π(E) of P (E,F ). However, parameters can also play a different role, namely
that of eigenvariables: syntactic objects subject to generalization. For example, consider the derivation:

π(j)

∀j.∀i.P (i, j)

where π(j) is:

∀i.∀j.P (i, j)

∀j.P (i, j)

P (i, j)

∀i.P (i, j)

The parameter j here is not meant to be substituted for; rather it acts as a fresh scoped constant. These
two distinct roles have been identified in Computer Science in the context of proof assistants where
reasoning over open objects is explored (cf. [GJ02] and the citations therein; see also the discussion on
proving universally quantified expressions using the extensional versus intensional approach of Miller and
Tiu [MT05]).

The above considerations lead to the following skolemized modal operator, proposed in [AY11], which
allows both interpretations to be accounted for:

[[s]]ΞA

Here Ξ is a set of variables and determines the role that a variable plays in a proof of A. Variables in Ξ
play the role of global parameters in A and hence in s (which encodes a proof of A). Variables that occur
in A but that are not in Ξ are understood as eigenvariables. These are therefore taken to be implicitly
bound in A: FIV([[s]]ΞA), the set of free individual variables in [[s]]ΞA, is defined to be Ξ. Arithmetical
soundness, realization and reflection are generalized to FOLP [AY11].

1.3 The First-Order Hypothetical Logic of Proofs

Our Natural Deduction presentation for FOLP, dubbed FOHLP, arises from the task of giving meaning
to expressions of the following form called judgements:

Θ; Γ; ∆ ` A | s

Θ is a set of validity hypotheses, Γ is a set of truth hypotheses, and ∆ is a set of negated truth (false)
hypotheses. The intended reading is, “s is evidence of the truth of A under truth hypotheses Γ, validity
hypotheses Θ and false hypotheses ∆”. Hypotheses of truth and validity arise from the work on judgemen-
tal reconstruction of S4 [ML84, DP96, DP01b, DP01a]; the hypothesis of falsity is perhaps less frequently
used. It arises from the work of Parigot [Par92, Par97] on Classical Natural Deduction (CND), a variation
of Natural Deduction for classical logic. CND admits the λµ-calculus as term assignment, a variation of
the lambda calculus which supplies classical logic with an interesting computational interpretation built
around the notion of continuation (and, more recently, also related to streams [Sau10]).

Before proceeding any further, and for the sake of self-containedness, we briefly revisit Parigot’s CND2.

2There are nowadays a number of variations of Parigot’s CND and its associated λµ-calculus (cf. [Sau08]); we essentially
follow the simplified presentation of [SU06].
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Γ, A ` A; ∆

Γ, A ` B; ∆
⊃I

Γ ` A ⊃ B; ∆

Γ ` A ⊃ B; ∆ Γ ` A; ∆
⊃E

Γ ` B; ∆

Γ ` ⊥; ∆, A
NAbs

Γ ` A; ∆

Γ ` A; ∆, A
Name

Γ ` ⊥; ∆, A

Figure 1: Classical Natural Deduction schemes

CND. Parigot introduces sequents of the form Γ ` ∆, where Γ and ∆ are sets of formulas. The
axioms and inference schemes are given in Fig. 1. Note that all inferable sequents have a formula in ∆
that is singled out and called active (written to the left of the “;”). CND proves exactly the classical
tautologies. On an understanding that hypotheses in ∆ are negated, NAbs is interpreted as classical
absurdity and Name as an instance of implication elimination. CND admits the following term assignment
where hypotheses in Γ are labeled x, y, . . . and those in ∆ are labeled α, β, . . .:

Γ, x : A ` x : A; ∆

Γ, x : A `M : B; ∆
⊃I

Γ ` λxA.M : A ⊃ B; ∆

Γ `M : A ⊃ B; ∆ Γ ` N : A; ∆
⊃E

Γ `M N : B; ∆

Γ `M : ⊥; ∆, α : A

Γ ` [αA]M : A; ∆

Γ `M : A; ∆, α : A

Γ ` µαA.M : ⊥; ∆, α : A

Apart from β, three further rules describe reduction in λµ, where NL [αA⊃B ](•)← [βB ](•)U M below is a notion
of substitution called structural substitution and consists in replacing all occurrences of [αA⊃B ]M in N
with [βB ](M U).

ς : (µαA⊃B .M)N → µβB .ML [αA⊃B ](•)← [βB ](•)N M
βµ : [βA]µαA.M → M{αA ← βA}
ηµ : µαA.[αA]M → M, if αA 6∈ FV(U)

These schemes spell out an interesting operational reading of the new term constructs. The term µαA.M
may be understood as naming its current evaluation context α and then continuing as M . Similarly,
[αA]M calls the continuation α, passing it the value of M . An encoding of the standard throw and
catch mechanism by means of naming and abstraction is possible [SU06, Ex.6.2.9.]. Computation with
continuations has been present in many influential programming languages such as Scheme and ML.

FOHLP. Returning to our discussion on FOHLP, the introduction scheme for the modality in Proposi-
tional Hypothetical LP [AB07, BS14] is:

Θ; ·; · ` A | s Θ; ·; · ` s≡ t : A
2ILP

Θ; Γ; ∆ ` [[t]]A | !t

Here “·” denotes the empty context. Moreover, the judgement Θ; ·; · ` s≡ t : A establishes that s and
t are equivalent in as much as proof witnesses of the validity of A (cf. Fig. 3, Fig. 4). Dropping this
judgement yields the following, simpler, scheme which however does not allow the set of derivations to
be closed under normalisation [AB07]:
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Θ; ·; · ` A | s
2I′LP

Θ; Γ; ∆ ` [[s]]A | !s

So consider 2ILP. The double role that variables play, as discussed above, must now be reflected in this
scheme (and also in the corresponding elimination scheme). Replacing [[t]]A by [[t]]ΞA in 2ILP would not
do since the resulting scheme allows to prove formulas which are not valid theorems of FOLP. An example
is [[t]]{i}P (i)⊃ [[t]]∅P (i), for any t. The standard rule for generalization (i.e. introduction for ∀) suggests
that the free individual variables in A that are additionally in Θ are not eligible for generalization and
hence must play the role of global parameters. Otherwise, they are eigenvariables. This suggests the
following inference scheme:

Θ; ·; · ` A | s Θ; ·; · ` s≡ t :A FIV(Θ) ∩ FIV(A) ⊆ Ξ
2I

Θ; Γ; ∆ ` [[t]]ΞA | !t

Note the condition FIV(Θ)∩FIV(A) ⊆ Ξ. It spells that the free individual letters in A that are in Θ must
be treated as global parameters. Let us consider now the elimination rule. In Propositional LP it is:

Θ; Γ; ∆ ` [[r]]A | s Θ, vA; Γ; ∆` C | t
2ELP

Θ; Γ; ∆ ` C{vA ← r} | t〈vA:=r, s〉

The proof witness t〈vA:=r, s〉, may be ignored for now; it simply records the application of 2ELP. The
upper left hand judgement becomes Θ; Γ; ∆ ` [[r]]ΞA | s in our first-order setting. We are now faced with
the following problem: when a proof of unconditional truth (validity) of A is to be substituted for vA,
the validity variable vA supplies no information on the role that the free individual variables in A play.
Indeed, the rule as it stands allows proving theorems that are not valid in FOLP (the same example
as above applies). This missing information may be regained by writing vAΞ′ rather than vA. A validity
variable vAΞ′ stands for a proof of unconditional truth whose global parameters must be among Ξ′s. These
considerations lead to the following proposal for elimination of the modality:

Θ; Γ; ∆ ` [[r]]ΞA | s Θ, vAΞ′ ; Γ; ∆ ` C | t Ξ ∩ FIV(A) ⊆ Ξ′

2E
Θ; Γ; ∆ ` C{vAΞ′← r} | t〈vAΞ′ :=r, s〉

The formula [[t]]{i}P (i)⊃ [[t]]∅P (i) is no longer provable with these rules (as will be made clear in Sec. 3
where the correspondence between FOLP and FOHLP is studied).

The remainder of this work consists in verifying whether the above intuitions – and the schemes they
suggest – yield a Natural Deduction presentation for FOLP which admits a strongly normalising notion
of proof normalisation producing valid derivations. A term assignment will also be proposed as a step
forward towards a computational reading of FOLP in terms of the Curry-Howard isomorphism.

Structure of the paper. Sec. 2 introduces FOLP and some of its salient properties. Sec. 3 is devoted
to the Natural Deduction presentation for FOLP. Sec. 4 studies the relation between FOLP and FOHLP.
Sec. 5 proposes a term assignment and addresses strong normalisation. Sec. 6 presents related work.
Finally, we conclude. An appendix includes detailed proofs of all results.

2 First-Order Logic of Proofs

The language of FOLP [AY11] has a countable number of individual variables i0, i1, . . ., predicate letters
of any arity P0, P1, . . . and functional letters3 of any arity f0, f1, . . ., but no equality. FOLP expressions,

3In [AY11], no functional letters are assumed.
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denoted E0, E1, . . . thus are either of the form i or f(E1, . . . , En), for E1, . . . , En FOLP expressions. In
addition to that, the language includes symbols for constructing proof terms. These include a countable
number of proof variables4, proof constants and functional symbols for operations on proofs.

Definition 2.1 Proof terms and formulas of FOLP are defined as follows:

s, t ::= xA | c | s · t | !s | s+ t | geni(s)

A,B ::= P (E1, . . . , En) | ⊥ |A⊃B | [[s]]ΞA | ∀i.A

where Ξ is a set of individual variables. We often abbreviate [[s]]∅A with [[s]]A.

We use “¬A” as an abbreviation for “A⊃⊥“. Note that the functional symbols for constructing proof
terms are binary “·”, unary “!”, binary “+”, (these three are inherited from LP) and an infinite number
of unary operators “geni()”, one for each individual variable i. The free individual variables in E are the
set of all variables that occur in it and is denoted FIV(E). A proof term has a free individual variable
i only if it occurs in the formula that decorates a proof variable and does not occur in an expression of
the form geni(s). As stated earlier, the individual variables which are free in [[t]]ΞA are exactly those
contained in Ξ. All other individual variables are assumed to be bound. The set of free proof variables
in A are all the proof variables that occur in A and are denoted FV(A).

Definition 2.2 Free individual variables in proof terms and formulas are defined by recursion as follows5:

FIV(P (E1, . . . , En)) ,
⋃
i∈1..n FIV(Ei)

FIV(⊥) , ∅
FIV(A⊃B) , FIV(A) ∪ FIV(B)

FIV([[t]]ΞA) , Ξ

FIV(∀i.A) , FIV(A)\{i}

FIV(xA) , FIV(A)

FIV(c) , ∅
FIV(s · t) , FIV(s) ∪ FIV(t)

FIV(!s) , FIV(s)

FIV(s+ t) , FIV(s) ∪ FIV(t)

FIV(geni(s)) , FIV(s)\{i}

For instance, in the formula [[c]]{j}(P (i)⊃Q(j)⊃P (i)), the variable j is free, while i is bound. We work
modulo α-equivalence over individual variables as generated by the following α-equivalence axioms:

∀i.A =α ∀j.A{i← j}, if j 6∈ FIV(A)
[[t]]ΞA =α [[t{i← j}]]ΞA{i← j}, if i 6∈ Ξ and j fresh

Furthermore, we assume the following variable convention: we rename where appropriate so that
the names of the bound individual variables are distinct and also different from the names of the free
individual variables, in any proof witness, formula, statement or proof. For example, we do not allow
formulas of the form [[s]]ΞA where Ξ contains one or more individual variables which are bound in either
s or A.

There are two notions of substitution, namely substitution of free individual variables and substitution
of proof term variables. The latter is the standard notion of substitution where, in particular, yB{xA ←
s} = yB . The former is defined below.

Definition 2.3 (Individual variable substitution in FOLP) Substitution of individual variable i in
a first-order expression E′ by E, written E′{i←E}, is defined as:

i{i←E} , E

j{i←E} , j, if j 6= i

f(E1, . . . , En){i←E} , f(E1{i←E}, . . . , En{i←E})
4In contrast to [AY11], we assume proof variables to be decorated with formulas.
5“,” denotes definitional equality.
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Substitution of individual variable i in a formula is defined as:

P (E1, . . . , En){i←E} , P (E1{i←E}, . . . , En{i←E})
⊥{i←E} , ⊥

(A⊃B){i←E} , A{i←E}⊃B{i←E}
([[s]]ΞA){i←E} , [[s{i←E}]](Ξ\{i})∪FIV(E)A{i←E}, if i ∈ Ξ

([[s]]ΞA){i←E} , [[s]]ΞA, if i 6∈ Ξ

(∀j.A){i←E} , ∀j.A{i←E}, if i 6= j

(∀i.A){i←E} , ∀i.A
Finally, substitution of individual variable i in a proof witness is defined as:

xA{i←E} , xA{i←E}

c{i←E} , c

(s · t){i←E} , s{i←E} · t{i←E}
(!s){i←E} , !s{i←E}

(s+ t){i←E} , s{i←E}+ t{i←E}
geni(s){i←E} , geni(s)

genj(s){i←E} , genj(s{i←E}), if j 6= i

Note that the formula which decorates a proof variable may change after a substitution. For example
xA{i←E} = xA{i←E}.

Remark 2.4 For every formula A, proof variable x and proof term s, FIV(A{xA ← s}) = FIV(A).

Definition 2.5 The axiom schemes and inference rules of FOLP are the following:

A1. Axioms of first-order logic in the language of FOLP
A2. ([[t]]Ξ,iA)⊃ [[t]]ΞA, if i 6∈ FIV(A)
A3. ([[t]]ΞA)⊃ [[t]]Ξ,iA
B1. ([[t]]ΞA)⊃A
B2. ([[s]]Ξ(A⊃B)) ⊃ ([[t]]ΞA) ⊃ [[(s · t)]]ΞB
B3a. ([[s]]ΞA)⊃ [[(s+ t)]]ΞA
B3b. ([[t]]ΞA)⊃ [[(s+ t)]]ΞA
B4. ([[t]]ΞA)⊃ [[!t]]Ξ[[t]]ΞA
B5. ([[t]]ΞA)⊃ [[geni(t)]]Ξ∀i.A, if i 6∈ Ξ
MP. ` A⊃B ∧ ` A ⇒ ` B
Gen. ` A ⇒ ` ∀i.A
Nec. A an axiom ⇒ ` [[c]]A

where we assume the following axiom schemes for first-order logic:

A1a. A⊃B⊃A
A1b. (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
A1c. ¬¬A⊃A
A1d. (∀i.A)⊃A{i← E}
A1e. (∀i.(A⊃B))⊃(∀i.A)⊃∀i.B
A1f. A⊃∀i.A, if i 6∈ FIV(A)

A FOLP-derivation (π, π′, etc) is a sequence of formulas each of which is an instance of an axiom or
the conclusion of an instance of a rule whose premisses occur before in the sequence. A set of labeled
hypotheses (Γ,Γ′, etc.) is written {xA1

1 , . . . , xAnn } where the xi, with i ∈ 1..n, are labels taken from some
given infinite set of labels. A FOLP-derivation from a set of labeled hypotheses {xA1

1 , . . . , xAnn } is one in
which the formulas Ai, for i ∈ 1..n, may also be used in the sequence.
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A constant specification is a set C of formulas of FOLP of the form [[c]]∅A. It is assumed that A is
an axiom. Given a constant specification C, a derivation is said to meet it if whenever the rule Nec is
used to introduce [[c]]∅A, then [[c]]∅A is in C. A derivation π determines the (finite) constant specification
C consisting of formulas of FOLP of the form [[c]]∅A which are conclusions of instances of Nec in π. A
constant specification is injective if [[c]]∅A1 ∈ C and [[c]]∅A2 ∈ C, implies A1 = A2.

2.1 Additional Comments

FOLP was introduced in [AY01]. Artemov and Yavorskaya [AY11] later proposed a presentation of
FOLP that enjoys a natural provability semantics [AY11, Thm.4 and Thm.6] and that is capable, at
the same time, of realizing the full set of first-order S4 theorems [AY11, Thm.2]: FOS4 ` A implies
FOLP ` Ar, for some normal realization •r. Just like its propositional counterpart, it can internalize its
own proofs [AY11, Thm.1]: [[x0]]Ξ0A0, . . . , [[xn]]ΞnAn ` A in FOLP implies there exists a proof term t s.t.
[[x0]]Ξ0

A0, . . . , [[xn]]ΞnAn ` [[t(x0, . . . , xn)]]Ξ0∪...∪ΞnA in FOLP.
Although arithmetical completeness is unattainable, completeness with respect to a Kripke semantics

has been established by Fitting [Fit14]. A further extension of LP that has been considered is one which
includes quantification over proof variables. Such a system was studied in [Yav01] and shown not to be
axiomatizable. Also related is [Yav00] where the parameter i in the formula 2A(i) is assumed bound
(coined “binding interpretation” in op.cit.). This system is shown to have a complete axiomatization,
however it does not suffice to realize first-order modal logic [AY11].

3 First-Order Hypothetical Logic of Proofs

We now address the Natural Deduction presentation of FOLP, namely FOHLP. The language of FOHLP
is similar to that of FOLP except that 1) it is augmented with a set of a validity variables v1

A1

Ξ1
, v2

A2

Ξ2
, . . .

and one of falsehood variables αB1
1 , αB2

2 , . . .; and 2) proof terms are replaced by proof witnesses. Formulas
are as in Def. 2.1, except now s ranges over proof witnesses.

Definition 3.1 Proof witnesses of FOHLP are defined by the following syntax:

r, s, t ::= xA | vAΞ
| λxA.s | s · t
| !s | t〈vAΞ′ :=r, s〉
| [αA]s |µαA.s
| s+ t

| geni(s) | insEi (s)

A proof witness is one of the following: a truth variable xA, a validity variable vAΞ , an abstraction
λxA.s (xA is bound with scope s), application s · t, bang !s (which binds all free occurrences of truth and
falsehood variables in s), unbox t〈vAΞ′ :=r, s〉 (vAΞ is bound with scope t), name [αA]s, name abstraction
µαA.s (αA is bound with scope s), plus s+ t, generalization geni(s), and instantiation insEi (s). Regarding
proof witnesses of the form t〈vAΞ′ :=r, s〉 they can be read as “replace all free occurrences of vAΞ′ by r in
the formula witnessed by t, with s bearing witness to the truth of [[r]]ΞA”.

Definition 3.2 The set of free variables of validity, truth and falsehood in a formula A are denoted
FVT(A), FVV(A) and FVF(A), resp. The definition of FVT(A) is as follows (FVV(A) and FVF(A) are
similar and hence omitted), where FVT(A,B) abbreviates FVT(A) ∪ FVT(B):
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FVT(P (E1, . . . , En)) , ∅
FVT(⊥) , ∅

FVT(A⊃B) , FVT(A,B)

FVT([[s]]ΞA) , FVT(s) ∪ FVT(A)

FVT(∀i.A) , FVT(A)

The set of free variables of validity, truth and falsehood in a proof witness s, denoted FVT(s), FVV(s)
and FVF(s), resp., are defined as follows:

FVT(xA) , {xA}
FVT(vAΞ ) , ∅

FVT(λxA.s) , FVT(s)\{xA}
FVT(s · t) , FVT(s, t)

FVT(!s) , ∅
FVT(s〈vAΞ :=r, t〉) , FVT(t, s)

FVT([αA]s) , FVT(s)

FVT(µαA.s) , FVT(s)

FVT(s+ t) , FVT(s, t)

FVT(geni(s)) , FVT(s)

FVT(insEi (s)) , FVT(s)

FVV(xA) , ∅
FVV(vAΞ ) , {vAΞ }

FVV(λxA.s) , FVV(s)

FVV(s · t) , FVV(s, t)

FVV(!s) , FVV(s)

FVV(s〈vAΞ :=r, t〉) , (FVV(t)\{vAΞ }) ∪ FVV(r, s)

FVV([αA]s) , FVV(s)

FVV(µαA.s) , FVV(s)

FVV(s+ t) , FVV(s, t)

FVV(geni(s)) , FVV(s)

FVV(insEi (s)) , FVV(s)

FVF(xA) , ∅
FVF(vAΞ ) , ∅

FVF(λxA.s) , FVF(s)

FVF(s · t) , FVF(s, t)

FVF(!s) , ∅
FVF(s〈vAΞ :=r, t〉) , FVF(t, s)

FVF([αA]s) , FVF(s) ∪ {αA}
FVF(µαA.s) , FVF(s)\{αA}

FVF(s+ t) , FVF(s, t)

FVF(geni(s)) , FVF(s)

FVF(insEi (s)) , FVF(s)

We assume the following variable conventions: all bound variable names are different from each
other, and different from all free variables. We also assume that application “·” and sum “+” are
left-associative, and implication “⊃” is right-associative. The operators “!”, “¬” and “[[ ]]” have prece-
dence over “·”, “+” and “⊃”, which in turn have precedence over “λ”, “µ” and “[ ]”. For example,
[α([[r]]A)⊃((¬B)⊃C)]((!s) + t) may be written [α[[r]]A⊃¬B⊃C ]!s+ t.

Definition 3.3 (Free individual variables of formulas and proof witnesses) The set of free in-
dividual variables of a formula A, denoted FIV(A), is defined as in Def. 2.2. The set of free individual
variables of a proof witness ar defined as follows:
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FIV(xA) , FIV(A)

FIV(vAΞ ) , Ξ

FIV(λxA.s) , FIV(A) ∪ FIV(s)

FIV(s · t) , FIV(s) ∪ FIV(t)

FIV(!s) , FIV(s)

FIV(t〈vAΞ :=r, s〉) , FIV(t) ∪ FIV(r) ∪ FIV(s) ∪ Ξ

FIV([αA]s) , FIV(A) ∪ FIV(s)

FIV(µαA.s) , FIV(A) ∪ FIV(s)

FIV(s+ t) , FIV(s) ∪ FIV(t)

FIV(geni(s)) , FIV(s)\{i}
FIV(insEi (s)) , FIV(s)\{i} ∪ FIV(E)

Note the clause defining FIV(vAΞ ): all free individual variables that are not in Ξ are considered bound
whereas those that are in Ξ are considered free (disregarding whether they occur in A or not).

Individual variable substitution is defined similarly to that of FOLP (Def. 2.3). The only difference is
that the clause for proof constants is dropped and the following new ones are added, where in the clause

for insE
′

i (s){i← E} we may assume i 6∈ FIV(E′) by the variable convention:

vAΞ {i←E} , v
A{i←E}
(Ξ\{i})∪FIV(E), if i ∈ Ξ

vAΞ {i←E} , vAΞ , if i 6∈ Ξ

(t〈vAΞ :=r, s〉){i←E} , t{i← E}〈vAΞ {i← E}:=r{i← E}, s{i← E}〉
(λxA.s){i←E} , λxA{i←E}.s{i←E}
([αA]s){i←E} , [αA{i←E}]s{i←E}

(µαA.s){i←E} , µαA{i←E}.s{i←E}
insE

′

i (s){i←E} , insE
′

i (s), i 6∈ FIV(E′)

insE
′

j (s){i←E} , ins
E′{i←E}
j (s{i←E}), if j 6= i

A truth context (Γ) is a set of truth hypotheses {xA1
1 , . . . , xAnn }; a validity context (Θ) is a

set of validity variables {v1
A1

Ξ1
, . . . , vn

An
Ξn
}; a falsehood context (∆) is a set of falsehood variables

{αA1
1 , . . . , αAkk }. We write · for the empty context. We write xA ∈ Γ if Γ = Γ′ ∪ {xA}. Similarly for

vAΞ ∈ Θ and αA ∈ ∆. Free individual variables of truth and falsehood contexts are defined as expected:

FIV(Γ) , {FIV(A) | xA ∈ Γ}
FIV(∆) , {FIV(A) | αA ∈ ∆}
FIV(Θ) ,

⋃
vAΞ∈Θ

Ξ

A (FOHLP) judgement is an expression of the form:

Θ; Γ; ∆ ` A | s

It will often be convenient to abbreviate Θ; Γ; ∆ in order to improve readability. We will use H for this
purpose and refer to it as a composite context. So the above judgement will also be written H ` A | s.
We write i 6∈ FIV(H) for i 6∈ FIV(Θ,Γ,∆). Also we write: H, xA for Θ; Γ, xA; ∆, H, αA for Θ; Γ; ∆, αA,
and H, vAΞ for Θ, vAΞ ; Γ; ∆.

Definition 3.4 The inference schemes of FOHLP derive judgements (Fig. 2) and proof witness equiv-
alence judgements (Fig 3, Fig 4 and Fig 5). We say Θ; Γ; ∆ ` A | s is derivable if there is a derivation of
it using these inference schemes and write �FOHLP Θ; Γ; ∆ ` A | s (or also �FOHLPH ` A | s) in that case.
Similarly for H ` s≡ t : A.
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Var
H, xA ` A |xA

H, xA ` B | s
⊃ I

H ` A⊃B |λxA.s

H ` A⊃B | s H ` A | t
⊃E

H ` B | s · t

VarM
H, vAΞ ` A | vAΞ

Θ; ·; · ` A | s Θ; ·; · ` s≡ t :A FIV(Θ) ∩ FIV(A) ⊆ Ξ
2I

Θ; Γ; ∆ ` [[t]]ΞA | !t

H ` [[r]]ΞA | s H, vAΞ′ ` C | t Ξ ∩ FIV(A) ⊆ Ξ′

2E
H ` C{vAΞ′← r} | t〈vAΞ′ :=r, s〉

H ` A | s
PlusL

H ` A | s+ t

H ` A | t
PlusR

H ` A | s+ t

H, αA ` ⊥ | s
NAbs

H ` A |µαA.s

H, αA ` A | s
Name

H, αA ` ⊥ | [αA]s

H ` A | s i 6∈ FIV(H)
∀I

H ` ∀i.A | geni(s)

H ` ∀i.A | s
∀E

H ` A{i← E} | insEi (s)

Figure 2: Axiom and inference schemes of FOHLP
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H, xA ` B | s H ` A | t
Eq-β

H ` (λxA.s) · t≡s{xA ← t} : B

Θ; ·; · ` A | s FIV(Θ) ∩ FIV(A) ⊆ Ξ Θ, vAΞ ; Γ; ∆ ` C | t
Eq-γ

Θ; Γ; ∆ ` t〈vAΞ :=s, !s〉≡ t{vAΞ ← s} : C{vAΞ ← s}

H ` A | s i 6∈ FIV(Θ,Γ,∆)
Eq-ξ

H ` insEi (geni(s))≡s{i← E} : A{i← E}

H ` [[r]]ΞA | s H, vAΞ′ ` C |u Ξ ∩ FIV(A) ⊆ Ξ′

Eq-φL
H ` u〈vAΞ′ :=r, (s+ t)〉≡u〈vAΞ′ :=r, s〉+ t : C{vAΞ′ ← r}

H ` [[r]]ΞA | t H, vAΞ′ ` C |u Ξ ∩ FIV(A) ⊆ Ξ′

Eq-φR
H ` u〈vAΞ′ :=r, (s+ t)〉≡s+ u〈vAΞ′ :=r, t〉 : C{vAΞ′ ← r}

H ` A⊃B | r H ` A | t
Eq-ψL

H ` (r + s) · t≡(r · t) + s : B

H ` A⊃B | s H ` A | t
Eq-ψR

H ` (r + s) · t≡r + (s · t) : B

H ` ∀i.A | s
Eq-εL

H ` insEi (s+ t)≡ insEi (s) + t : A{i← E}

H ` ∀i.A | t
Eq-εR

H ` insEi (s+ t)≡s+ insEi (t) : A{i← E}

Figure 3: Proof witness equivalence (1/2)

The axiom scheme Var states that the judgement H, xA ` A |xA is evident in itself: if we assume
that xA is a witness that proposition A is true, then we immediately conclude that A is true with proof
witness xA.

The introduction scheme for the [[t]]Ξ modality internalizes meta-level evidence into the object logic.
It states that if s is unconditional evidence that A is true, then A is in fact valid with proof witness s,
or more generally, any proof witness t equivalent to s. Evidence for the truth of [[t]]ΞA is constructed
from the (verified) evidence that A is unconditionally true by prefixing it with a bang constructor.
FIV(Θ) ∩ FIV(A) ⊆ Ξ is necessary to avoid binding individual variables which are used as free variables
in the premises. As mentioned in the introduction, without that restriction we would be able to prove
theorems not provable in FOLP.

Remark 3.5 We may also introduce a less general variant of 2I:

Θ; ·; · ` A | t FIV(Θ) ∩ FIV(A) ⊆ Ξ
2I′

Θ; Γ; ∆ ` [[t]]ΞA | !t

This variant presents the same problem as its propositional counterpart [AB07, BS14], as equivalence
is still required for proof normalization. However, it shall prove useful for some technical results that
follow.

The 2E scheme allows the discharging of validity hypotheses. In order to discharge the validity
hypothesis vAΞ′ , a proof of the validity of A is required. In this system, this requires proving that [[r]]ΞA

12



H, αA, βA ` ⊥ | s
Eq-µ

H, βA ` [βA]µαA.s≡s{αA ← βA} : ⊥

H, αA⊃B ` ⊥ | s H ` A | t
Eq-ζ

H ` (µαA⊃B .s) · t≡µβB .sL [αA⊃B ](•)← [βB ](•)t M : B

H ` A | s αA6∈ FVF(s)
Eq-θ

H ` µαA.[αA]s≡s : A

H, αA ` A | s
Eq-χL

H, αA ` [αA]s+ t≡([αA]s) + t : ⊥

H, αA ` A | t
Eq-χR

H, αA ` [αA]s+ t≡s+ [αA]t : ⊥

H, αA ` ⊥ | s
Eq-ιL

H ` µαA.(s+ t)≡(µαA.s) + t : A

H, αA ` ⊥ | t
Eq-ιR

H ` µαA.(s+ t)≡s+ µαA.t : A

Figure 4: Proof witness equivalence (2/2)

is true with proof witness s, for some proof witnesses r and s. Note that r is a witness that A is
unconditionally true (i.e. valid) whereas s is witness to the truth of [[r]]ΞA. The former is then substituted
in the place of all free occurrences of vAΞ′ in the proposition C. This construction is recorded with proof
witness s〈vAΞ′ :=r, t〉 in the conclusion, meaning that s is proof that r can be used in place of vAΞ′ in t. This
has the practical effect of allowing us to take the witness r out of the box from [[r]]ΞA. The expression
C{vAΞ′ ← r} denotes the substitution of vAΞ′ by r in C. Two final remarks on 2E, its witness includes
s since this is required for the proof that derivable FOHLP formulas are also derivable in FOLP (Sec. 4)
and also for Type Preservation (see validity variable substitution and its use in the reduction rule γ in
Def. 5.11). The condition Ξ ∩ FIV(A) ⊆ Ξ′ prevents a proof of a formula with free individual variables
to be used as proof of a formula where those variables are bound, as discussed in the introduction. The
converse can be done safely (just like a proof of ∀i.P (i) can be used to prove P (i)), which is why the
inclusion is oriented in only one direction.

Regarding the schemes for plus we comment on PlusL, the case of PlusR being similar. Informally,
the proof witness s + t testifies that either s or t is witness to the truth of A without supplying details
on which of the two. Note that t is any proof witness whatsoever. Indeed, it may even contain variables
not included in H. The reason is that we seek to preserve the theorems of FOLP in FOHLP, in particular
[[s]]A ⊃ [[s+ t]]A, which places no restriction on t.

Remark 3.6 In the derivation of a judgement Θ; Γ; ∆ ` D | s we assume the following freshness con-
dition: for every pair of formulas A, B such that xA ∈ Γ, vAΞ ∈ Θ or αA ∈ ∆:

• if yB ∈ Γ, then yB 6∈ FVT(A) ∪ FVT(D);

• if wBΞ′ ∈ Θ, then wBΞ′ 6∈ FVV(A); and

• if βB ∈ ∆, then βB 6∈ FVF(A) ∪ FVF(D).

That this entails no loss of generality is reflected in Lem. 3.12.

The schemes defining H ` s≡ t : A encode equality of derivations as follows from proof normalisa-
tion [AB07]. It should be mentioned that the resulting equational theory is consistent (Cor. 5.19) in
the sense that there exist H, A, s and t s.t.
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H ` A | s
Eq-Refl

H ` s≡s : A

H ` s≡ t : A
Eq-Symm

H ` t≡s : A

H ` r≡s : A H ` s≡ t : A
Eq-Trans

H ` r≡ t : A

H, xA ` s≡ t : B
Eq-λ

H ` λxA.s≡λxA.t : A⊃B

H ` s≡s′ : A⊃B H ` t≡ t′ : A
Eq-·

H ` s · t≡s′ · t′ : B

H ` s≡s′ : [[r]]ΞA H, vAΞ′ ` t≡ t′ : C Ξ ∩ FIV(A) ⊆ Ξ′

Eq-〈〉
H ` t〈vAΞ′ :=r, s〉≡ t′〈vAΞ′ :=r, s′〉 : C{vAΞ′← r}

H ` r≡s : A
Eq-+L

H ` r + t≡s+ t : A

H ` r≡s : A
Eq-+R

H ` t+ r≡ t+ s : A

H, αA ` s≡ t : A
Eq-[α]

H, αA ` [αA]s≡ [αA]t : ⊥
H, αA ` s≡ t : ⊥

Eq-µα
H ` µαA.s≡µαA.t : A

H ` s≡ t : A i 6∈ FIV(H)
Eq-gen

H ` geni(s)≡geni(t) : ∀i.A

H ` s≡ t : ∀i.A
Eq-ins

H ` insEi (s)≡ insEi (t) : A{i← E}

Figure 5: Equivalence and compatibility schemes

• H ` A | s is derivable;

• H ` A | t is derivable; and

• the judgement H ` s≡ t : A is not derivable.

The schemes in Fig 5 ensure that proof witness equivalence is indeed an equivalence, and is compatible
with all operators with the exception of “!”. Intuitively, a proof witness such as !s, of a formula such
as [[s]]ΞA, supplies intensional information on how this formula is proved. For any proof witness t with
t 6= s, the proof encoded by !t is intensionally different from s and hence cannot be equated with it. In
fact !s and !t prove different formulas (since !t proves [[t]]ΞA). This does not present an obstacle for proof
normalisation “under” a box type constuctor since the introduction scheme for 2I includes the judgement
on proof witness equivalence (cf. case of internal reduction reduction under a “!” in Prop. 5.14).

3.1 Basic Results

In this section we use � Θ; Γ;A ` ∆ | s as shorthand for derivability in FOHLP, written �FOHLP Θ; Γ;A ` ∆ | s.
This applies to all judgements in the statements of the results presented below.
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Lemma 3.7 (Weakening and Strengthening) Suppose � Θ; Γ;A ` ∆ | s. Then:

1. � Θ ∪Θ′; Γ ∪ Γ′;A ` ∆ ∪∆′ | s; and

2. � Θ ∩ FVV(s); Γ ∩ FVT(s);A ` ∆ ∩ FVF(s) | s.

Lemma 3.8 (Weakening for proof witness equivalence) Suppose � Θ; Γ; ∆ ` s≡ t : A. Then also
� Θ ∪Θ′; Γ ∪ Γ′; ∆ ∪∆′ ` s≡ t : A.

The following substitution principles hold.

Lemma 3.9 (Validity Variable Substitution)

1. If � Θ, vAΞ ; Γ; ∆ ` B | s and � Θ; ·; · ` A | t, then � Θ; Γ; ∆ ` B{vAΞ ← t} | s{vAΞ ← t}.

2. If � Θ, vAΞ ; Γ; ∆ ` s≡r : B and � Θ; ·; · ` A | t, then � Θ; Γ; ∆ ` s{vAΞ ← t}≡r{vAΞ ← t} : B{vAΞ ←
t}.

Lemma 3.10 (Individual Variable Substitution)

1. If � Θ; Γ; ∆ ` D | r, then � Θ{i←E}; Γ{i←E}; ∆{i←E} ` D{i←E} | r{i←E}.

2. If � Θ; Γ; ∆ ` r1≡r2 : D, then � Θ{i←E}; Γ{i←E}; ∆{i←E} ` r1{i←E}≡ r2{i←E} : D{i←
E}.

Lemma 3.11 If � Θ; Γ; ∆ ` s≡ t : D, then both � Θ; Γ; ∆ ` D | s and � Θ; Γ; ∆ ` D | t.

Lemma 3.12 If � Θ; Γ, zB ; ∆ ` D | s, then there is a proof witness s′ such that � Θ; Γ, yB ; ∆ ` D | s′
with yB a fresh variable.

Similarly, if � Θ; Γ; ∆, αB ` D | s, then there is a proof witness s′ such that � Θ; Γ; ∆, βB ` D | s′ with
βB a fresh variable.

4 Relating FOLP and FOHLP

All theorems of FOLP can be proved in FOHLP (Sec. 4.1). This may be shown by introducing a simple
translation from formulas in FOLP to formulas of FOHLP and then transforming a proof of theorem A in
FOLP to a proof of the translation of A in FOHLP. The reverse translation is more complicated (Sec. 4.2).
Several issues arise when translating proof witnesses. One of them is the translation of lambda abstraction
and name abstraction; these must be simulated in FOLP. The other is the translation of the bang and
the unbox proof witness constructors; here the problem is upholding the role of variables as registered in
the decoration of the modality. These issues require that the reverse translation have as target a simple
variant of FOLP that consists in adding a number of FOLP theorems as axioms (cf. Def. 4.3). The new
axioms allow Nec. to apply to them too.

4.1 From FOLP to FOHLP

Let π be a FOLP-proof. We introduce a simple translation •π, parameterized over π, from formulas in
FOLP to those in FOHLP. The derivation π is used to determine the (finite) constant specification Cπ
and, from this, the translation of the constants. For technical convenience, we assume that the formulas
in Cπ are ordered. We define Cπ(c) , {A | [[c]]∅A ∈ Cπ}. Note that Cπ(c) consists of formulas that are
instances of axioms of FOLP. We write 〈B1, xB ,Ξ, B〉 to denote a proof witness (Fig. 6) associated to the
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〈A1a, A,B〉 , (λxA.λyB .xA)

〈A1b, A,B,C〉 , (λxA⊃B⊃C .λyA⊃B .λzA.xA⊃B⊃C · zA · (yA⊃B · zA))

〈A1c, A〉 , (λy¬¬A.µαA.y¬¬A · λxA.[αA]xA)

〈A1d, A, i, E〉 , λx∀i.A.insEi (x∀i.A)

〈A1e, A,B, i〉 , λx∀i.A⊃B .λy∀i.A.genj(insji(x
∀i.(A⊃B)) · insji(y

∀i.A))

〈A1f, A, i〉 , λxA.geni(x
A)

〈A2, t,Ξ, i, A〉 , λx[[t]]Ξ,iA.!vAΞ 〈vAΞ :=t, x[[t]]Ξ,iA〉
〈A3, t,Ξ, i, A〉 , λx[[t]]ΞA.!vAΞ,i〈vAΞ,i:=t, x[[t]]ΞA〉
〈B1, t,Ξ, A〉 , λx[[t]]ΞA.vAΞ 〈vAΞ :=t, x[[t]]ΞA〉

〈B2, s,Ξ, A,B, t〉 , λx[[s]]ΞA⊃B .λy[[t]]ΞA.!(wA⊃BΞ · vAΞ )〈wA⊃BΞ :=s, x[[s]]ΞA⊃B〉〈vAΞ :=t, y[[t]]ΞA〉
〈B3a, s,Ξ, A, t〉 , λx[[s]]ΞA.!(vAΞ + t)〈vAΞ :=s, x[[s]]ΞA〉
〈B3b, t,Ξ, A, s〉 , λx[[t]]ΞA.!(s+ vAΞ )〈vAΞ :=t, x[[s]]ΞA〉
〈B4, s,Ξ, A〉 , λx[[s]]ΞA.!!vAΞ 〈vAΞ :=s, x[[s]]ΞA〉
〈B5, t,Ξ, A, i〉 , λx[[t]]ΞA.!geni(v

A
Ξ )〈vAΞ :=t, x[[t]]ΞA〉

Figure 6: Translation of proof constants to proof witnesses

formula ([[xB ]]ΞB)⊃B, the instance of axiom B1 in the language of FOHLP obtained from instantiating
its metavariables (in order of appearance) with xB , Ξ and B, resp. Similar notation is used for the
instances of other axiom schemes. If we know that A is an instance of an axiom, we write 〈A〉 to
denote its unique6 decomposition in terms of the associated axiom scheme and instance variables. For
example, 〈([[xB ]]ΞB)⊃B〉 = 〈B1, xB ,Ξ, B〉. Translation of formulas and proof terms are defined by
mutual recursion.

Definition 4.1 The translation •π from FOLP proof terms and formulas to FOHLP proof witnesses and
formulas is defined as follows:

Eπ , E

P (E1, . . . , En)
π
, P (E1, . . . , En)

⊥π , ⊥
A⊃Bπ , Aπ ⊃ Bπ
[[s]]ΞAπ , [[sπ]]ΞAπ
∀i.Aπ , ∀i.Aπ

cπ , 〈A1〉
π

+ . . .+ 〈An〉
π

xAπ , xAπ

s · tπ , sπ · tπ
!sπ , !sπ

s+ tπ , sπ + tπ
geni(s)π , geni(sπ)

where Cπ(c) = {A1, . . . , An} and:

〈A1a, A,B〉
π
, 〈A1a, Aπ, Bπ〉

〈A1b, A,B,C〉
π
, 〈A1b, Aπ, Bπ, Cπ〉

〈A1c, A〉
π
, 〈A1c, Aπ〉

〈A1d, A, i, E〉
π
, 〈A1d, Aπ, i, E〉

〈A1e, A,B, i〉
π
, 〈A1e, Aπ, Bπ, i〉

〈A1f, A, i〉
π
, 〈A1f, Aπ, i〉

〈A2, t,Ξ, i, A〉
π
, 〈A2, tπ,Ξ, i, Aπ〉

〈A3, t,Ξ, i, A〉
π
, 〈A3, tπ,Ξ, i, Aπ〉

〈B1, t,Ξ, A〉
π
, 〈B1, tπ,Ξ, Aπ〉

〈B2, s,Ξ, A,B, t〉
π
, 〈B2, sπ,Ξ, Aπ, Bπ, tπ〉

〈B3a, s,Ξ, A, t〉
π
, 〈B3a, sπ,Ξ, Aπ, tπ〉

〈B3b, t,Ξ, A, s〉
π
, 〈B3b, tπ,Ξ, Aπ, sπ〉

〈B4, s,Ξ, A〉
π
, 〈B4, sπ,Ξ, Aπ〉

〈B5, t,Ξ, A, i〉
π
, 〈B5, tπ,Ξ, Aπ, i〉

Also, we define Γπ , {xAπ | xA ∈ Γ}.
6There is one exception to uniqueness due to the overlap between axioms B3a and B3b, namely in the case of [[s]]ΞA⊃

[[s+ s]]ΞA. In this case, we always select B3a over B3b.
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Proposition 4.2 �FOLP Γ ` A implies �FOHLP ·; Γπ; · ` Aπ | s, for some proof witness s.

The proof is by induction on the derivation π of Γ ` A; sample cases of the key axioms (A2, A3 and
B5) and Nec are:

• A2. ([[t]]Ξ,iA)⊃ [[t]]ΞA, if i 6∈ FIV(A).

Var
·;x[[t]]Ξ,iA; · ` [[t]]Ξ,iA |x[[t]]Ξ,iA

VarM
vAΞ ; ·; · ` A | vAΞ

2I
vAΞ ;x[[t]]Ξ,iA; · ` [[vAΞ ]]ΞA | !vAΞ

2E
·;x[[t]]Ξ,iA; · ` [[t]]ΞA | !vAΞ 〈vAΞ :=t, x[[t]]Ξ,iA〉

⊃ I
·; ·; · ` ([[t]]Ξ,iA)⊃ [[t]]ΞA |λx[[t]]Ξ,iA.!vAΞ 〈vAΞ :=t, x[[t]]Ξ,iA〉

The restriction for 2I holds, since Ξ ∩ FIV(A) ⊆ Ξ. That of 2E holds, since Ξ, i ∩ FIV(A) ⊆ Ξ
because i 6∈ FIV(A).

• A3. ([[t]]ΞA)⊃ [[t]]Ξ,iA.

Var
·;x[[t]]ΞA; · ` [[t]]ΞA |x[[t]]ΞA

VarM
vAΞ,i; ·; · ` A | vAΞ,i

2I
vAΞ,i;x

[[t]]ΞA; · ` [[vAΞ,i]]Ξ,iA | !vAΞ,i
2E

·;x[[t]]ΞA; · ` [[t]]Ξ,iA | !vAΞ,i〈vAΞ,i:=t, x[[t]]ΞA〉
⊃ I

·; ·; · ` ([[t]]ΞA)⊃ [[t]]Ξ,iA |λx[[t]]ΞA.!vAΞ,i〈vAΞ,i:=t, x[[t]]ΞA〉

The derivation is almost identical to that for A2, exchanging the occurrences of Ξ and Ξ, i. The
restriction for 2I holds, since Ξ, i∩ FIV(A) ⊆ Ξ, i. The restriction for 2E holds, since Ξ∩ FIV(A) ⊆
Ξ, i.

• B5. ([[t]]ΞA)⊃ [[geni(t)]]Ξ∀i.A, if i 6∈ Ξ.

Var
·;x[[t]]ΞA; · ` [[t]]ΞA |x[[t]]ΞA

VarM
vAΞ ; ·; · ` A | vAΞ ∀I

vAΞ ; ·; · ` ∀i.A | geni(v
A
Ξ )

2I
vAΞ ;x[[t]]ΞA; · ` [[geni(v

A
Ξ )]]Ξ∀i.A | !geni(v

A
Ξ )

2E
·;x[[t]]ΞA; · ` [[geni(t)]]Ξ∀i.A | !geni(v

A
Ξ )〈vAΞ :=t, x[[t]]ΞA〉

⊃ I
·; ·; · ` ([[t]]ΞA)⊃ [[geni(t)]]Ξ∀i.A |λx[[t]]ΞA.!geni(v

A
Ξ )〈vAΞ :=t, x[[t]]ΞA〉

The restriction for ∀I holds, since i 6∈ Ξ. That of 2I holds, since Ξ ∩ FIV(∀i.A) ⊆ Ξ. Finally, that
of 2E holds, since Ξ ∩ FIV(A) ⊆ Ξ.

• Nec. Then π is of the form ` [[c]]A, with A an instance of an axiom scheme. Note that, if
Cπ(c) = {A1, . . . , An}, then A = Ai for some i ∈ 1..n. In this case, it is easy to verify that the
judgement: ·; ·; · ` Aiπ | 〈Ai〉π can be derived (recall that the proof witness 〈A〉

π
is defined in Fig. 6).

Therefore,

·; ·; · ` Aiπ | 〈Ai〉π (PlusL,PlusR)∗
·; ·; · ` Aiπ | 〈A1〉

π
+ . . .+ 〈An〉

π 2I
·; ·; · ` [[〈A1〉

π
+ . . .+ 〈An〉

π
]]Aiπ | !(〈A1〉

π
+ . . .+ 〈An〉

π
)
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4.2 From FOHLP to FOLP

We first introduce Extended FOLP (EFOLP) which serves as target of our translation, and then address
the translation itself. EFOLP differs from FOLP in that some theorems of FOLP are adopted as axioms.

Let S
~i⇒ T be shorthand for (~i ∩ S) ⊆ T and S

~i⇒ ¬T be shorthand for ~i ∩ S ∩ T = ∅. EFOLP is defined
as follows.

Definition 4.3 (EFOLP) The proof terms and formulas of EFOLP are exactly those of FOLP (Def. 2.1).
The axiom and inference schemes are those of FOLP (Def. 2.5) modified as follows:

1. The following two axiom schemes:

A1d. (∀i.A)⊃A{i← E}
A1f. A⊃∀i.A, if i 6∈ FIV(A)

are replaced by more general ones:

A1dd. (∀~j.∀~i.A)⊃∀~j.(A{~i← ~E})
A1ff. ∀~j.A⊃∀~j.∀i.A, if i 6∈ FIV(A)

2. The following new axiom schemes are added:

A1g. ∀~i.A⊃∀~j.A, if ~j is a permutation of ~i

A1h. ∀~i.A⊃∀~j.A, FIV(A)
~j⇒~i

A1i. ∀~i.(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B, FIV(A)
~j⇒~i,FIV(B)

~k⇒~i, (FIV(A) ∩ FIV(B))
~k⇒ ~j

A4. A⊃A
A5. A⊃([[t]]ΞB⊃B)

A6. A⊃(∀~i.B⊃B)

A7. ∀~i.(A⊃B) ⊃ [[s]]ΞA ⊃ ∀~j.B, FIV(B)
~k⇒~i,FIV(B)

~k⇒ ¬Ξ,FIV(A)\Ξ ⊆~i
A8. [[s]]ΞA⊃∀~i.A, FIV(A)

~i⇒ ¬Ξ

A9. [[s]]Ξ(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B FIV(A)
~j⇒ ¬Ξ,FIV(B)

~k⇒ ¬Ξ, (FIV(A) ∩ FIV(B))
~k⇒ ~j

The full set of axiom schemes is given in Fig. 7. Note that they are all theorems of FOLP.

Lemma 4.4 All EFOLP-axioms are FOLP-theorems.

Just like FOLP, EFOLP enjoys internalisation of its own derivations. Our formulation below is a slight
variant of the Internalization Theorem mentioned in Sec. 2.1. It differs with respect to it in that the set
of free individual variables depends on the formula rather than the hypotheses used to prove it. This
eases some proofs (eg. Prop. 4.16). If Γ = A1, . . . An, then a context of the form [[u1]]Ξ1

A1, . . . , [[un]]ΞnAn
is referred to as [[~u]]~ΞΓ. The proof of Lem. 4.5 is by induction on the derivation of [[~u]]~ΞΓ ` D.

Lemma 4.5 (Internalization for EFOLP) �EFOLP [[~u]]~ΞΓ ` D implies there exists a proof term r such
that �EFOLP [[~u]]~ΞΓ ` [[r]]~ΞD.

Corollary 4.6 �EFOLP [[~u]]~ΞΓ ` D implies there exists a r
~Ξ,D such that �EFOLP [[~u]]~ΞΓ ` [[r

~Ξ,D]]~Ξ∩FIV(D)D.

Proof.- Since [[~u]]~ΞΓ ` [[r]]~ΞD is derivable for some r by Internalization, we can obtain [[~u]]~ΞΓ ` [[r]]~Ξ∩FIV(D)D

by using A2 and MP as many times as necessary. Take r
~Ξ,D = r. 2
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A1a. A⊃B⊃A
A1b. (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
A1c. ¬¬A⊃A
A1dd. (∀~j.∀~i.A)⊃∀~j.(A{~i← ~E})
A1e. (∀i.(A⊃B))⊃(∀i.A)⊃∀i.B
A1ff. ∀~j.A⊃∀~j.∀i.A, if i 6∈ FIV(A)

A1g. ∀~i.A⊃∀~j.A, if ~j is a permutation of ~i

A1h. ∀~i.A⊃∀~j.A, FIV(A)
~j⇒~i

A1i. ∀~i.(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B, FIV(A)
~j⇒~i,FIV(B)

~k⇒~i, (FIV(A) ∩ FIV(B))
~k⇒ ~j

A2. ([[t]]Ξ,iA)⊃ [[t]]ΞA, if i 6∈ FIV(A)
A3. ([[t]]ΞA)⊃ [[t]]Ξ,iA
A4. A⊃A
A5. A⊃([[t]]ΞB⊃B)

A6. A⊃(∀~i.B⊃B)

A7. ∀~i.(A⊃B) ⊃ [[s]]ΞA ⊃ ∀~k.B, FIV(B)
~k⇒~i,FIV(B)

~k⇒ ¬Ξ,FIV(A)\Ξ ⊆~i
A8. [[s]]ΞA⊃∀~i.A, FIV(A)

~i⇒ ¬Ξ

A9. [[s]]Ξ(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B FIV(A)
~j⇒ ¬Ξ,FIV(B)

~k⇒ ¬Ξ, (FIV(A) ∩ FIV(B))
~k⇒ ~j

B1. ([[t]]ΞA)⊃A
B2. ([[s]]Ξ(A⊃B)) ⊃ ([[t]]ΞA) ⊃ [[(s · t)]]ΞB
B3a. ([[s]]ΞA)⊃ [[(s+ t)]]ΞA
B3b. ([[t]]ΞA)⊃ [[(s+ t)]]ΞA
B4. ([[t]]ΞA)⊃ [[!t]]Ξ[[t]]ΞA
B5. ([[t]]ΞA)⊃ [[geni(t)]]Ξ∀i.A, if i 6∈ Ξ

Figure 7: Axiom schemes of EFOLP
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4.2.1 Stripping and λ-Abstraction in EFOLP

The main property of EFOLP that we require for our translation is the Stripping Lemma (Lem. 4.11). It

states that if π is a EFOLP-derivation of Γ, x[[yA]]ΞA ` B and yA /∈ Γ, then there is a EFOLP-derivation
π′ of Γ, yA ` ByA . Here ByA means stripping B of all modalities whose associated proof term has yA

among its free variables and replacing these modalities by universal quantification over an appropriate
set of individial variables.

Definition 4.7 The result of stripping a variable xC from a formula A, denoted AxC , is defined induc-
tively as follows:

P (E1, . . . , En)xC , P (E1, . . . , En)

⊥xC , ⊥
(A⊃B)xC , AxC ⊃BxC

([[s]]ΞA)xC ,

{
∀~i.AxC , if xC ∈ FV(s)
[[s]]ΞAxC , otherwise

where ~i , FIV(A)\Ξ
(∀i.A)xC , ∀i.AxC

Stripping does not introduce new free individual variables as may be verified by induction on A:

Lemma 4.8 FIV(AxC ) ⊆ FIV(A).

The Stripping Lemma is a key ingredient of the λ-Abstraction Lemma (Lem. 4.12) which will allow us
to internalise the hypothetical reasoning of FOHLP in EFOLP. A detailed account of the role this lemma
plays in our translation is given in Sec. 4.2.2. The rest of this subsection presents some preliminary results
required to prove both the Stripping and the λ-Abstraction lemmas.

Lemma 4.9 Suppose S′ ⊆ S. Then

1. S
~j⇒ T implies S′

~j⇒ T

2. S
~j⇒ ¬T implies S′

~j⇒ ¬T

Proof.- Immediate from the definition of S
~j⇒ T and S

~j⇒ ¬T . 2

Lemma 4.10 Let A be an axiom of EFOLP and let xB be a variable. Then AxB is an axiom of EFOLP.

Proof.- We consider each axiom scheme.

• A1. A is one of the following

A1a. A⊃B⊃A
A1b. (A⊃B⊃C)⊃(A⊃B)⊃A⊃C
A1c. ¬¬A⊃A
A1d. (∀i.A)⊃A{i← E}
A1dd. (∀~j.∀~i.A)⊃∀~j.(A{~i← ~E})
A1e. (∀i.(A⊃B))⊃(∀i.A)⊃∀i.B
A1f. A⊃∀i.A, if i 6∈ FIV(A)

A1ff. ∀~j.A⊃∀~j.∀i.A, if i 6∈ FIV(A)

A1g. ∀~i.A⊃∀~j.A, if ~j is a permutation of ~i

A1h. ∀~i.A⊃∀~j.A, FIV(A)
~j⇒~i

A1i. ∀~i.(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B if FIV(A)
~j⇒~i,FIV(B)

~k⇒~i, (FIV(A) ∩ FIV(B))
~k⇒ ~j.
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These cases are all immediate except for those that include side conditions on free individual vari-
ables, namely A1ff, A1h and A1i. For the former we proceed as follows. First note that AxB is of
the form ∀j.A′⊃∀j.∀i.A′, for A′ = AxB . Thus we must check that i /∈ FIV(A′). This follows from
Lem. 4.8 and i /∈ FIV(A). A1h is similar, except that we resort to both Lem. 4.8 and Lem. 4.9(1).

In A1i, AxB is of the form ∀~i.(A′⊃B′) ⊃ ∀~j.A′ ⊃ ∀~k.B′. This is an instance of A1i. The associated

conditions follow from FIV(A)
~j⇒~i, FIV(B)

~k⇒~i, (FIV(A) ∩ FIV(B))
~k⇒ ~j, Lem. 4.8 and Lem. 4.9(1).

• A2. A is [[t]]Ξ,iA⊃ [[t]]ΞA, where i 6∈ FIV(A). In this case AxB must be of the one of the forms

– [[t]]Ξ,iA
′⊃ [[t]]ΞA

′. This is an instance of A2, given that i /∈ FIV(A′) as follows from Lem. 4.8.

– ∀~j.A′⊃∀~j.A′. Note that here we have the same prefix ∀~j to the left and right of ⊃ given that
i 6∈ FIV(A). This formula is an instance of A4.

• A3. A is [[t]]ΞA⊃ [[t]]Ξ,iA. In this case AxB must be of one of the forms

– [[t]]ΞA
′⊃ [[t]]Ξ,iA

′. This is an instance of A3.

– ∀~j.A′⊃∀~j.A′, with i ∈ Ξ. This is an instance of A4.

– ∀~j1, i, ~j2.A′⊃∀~j1, ~j2.A′, where i /∈ Ξ and i ∈ FIV(A). This is an instance of A1d.

– ∀~j.A′⊃∀~j.A′ assuming i /∈ Ξ and i /∈ FIV(A). This is an instance of A4.

• A4. A is A⊃A. In this case, AxB is an instance of A4 itself.

• A5. A is A⊃([[t]]ΞB⊃B). In this case, AxB is of one of the forms

– A′⊃([[t]]ΞB
′⊃B′). This is an instance of A5.

– A′⊃(∀~i.B′⊃B′), where ~i = FIV(B)\Ξ. This formula is an instance of A6.

• A6. A is A⊃ (∀~i.B⊃B). In this case, AxB is of the form A′⊃ (∀~i.B′⊃B′) and hence an instance
of A6 itself.

• A7. A is ∀~i.(A⊃B) ⊃ [[s]]ΞA ⊃ ∀~k.B, with FIV(B)
~k⇒ ~i,FIV(B)

~k⇒ ¬Ξ and FIV(A)\Ξ ⊆ ~i. In this
case, AxB is of one of the forms

– ∀~i.(A′ ⊃B′) ⊃ [[s]]ΞA
′ ⊃ ∀~k.B′. To verify that this is an instance of A7, we must check the

conditions FIV(B′)
~k⇒~i,FIV(B′)

~k⇒ ¬Ξ and FIV(A′)\Ξ ⊆~i. They all follow from the hypotheses
and Lem. 4.8.

– ∀~i.(A′⊃B′) ⊃ ∀~j.A′ ⊃ ∀~k.B′, where~j = FIV(A)\Ξ. This is an instance of A1i. For this we must

verify that FIV(A′)
~j⇒~i, FIV(B′)

~k⇒~i and (FIV(A′) ∩ FIV(B′))
~k⇒ ~j. The first condition follows

from the definition of ~j (recall from above that ~j = FIV(A)\Ξ), the hypothesis FIV(A)\Ξ ⊆ ~i
and Lem. 4.8. The second condition follows from FIV(B′)

~k⇒~i and Lem. 4.8. The last condition

follows from the definition of ~j, the hypothesis FIV(B)
~k⇒ ¬Ξ – since ~k ∩ FIV(B) ∩ FIV(A) ⊆

FIV(A) – and Lem. 4.8.

• A8. A is [[s]]ΞA⊃∀~i.A, where FIV(A)
~i⇒ ¬Ξ. In this case, AxB is of one of the forms

– [[s]]ΞA
′⊃∀~i.A′. This is an instance of A8 as follows from Lem. 4.8, Lem. 4.9(2) and FIV(A)

~i⇒
¬Ξ.

– ∀~j.A′ ⊃ ∀~i.A′, where ~j = FIV(A)\Ξ. This formula is an instance of A1h. In order to verify

FIV(A′)
~i⇒ ~j, assume k ∈ FIV(A′) ∩~i. Then k ∈ FIV(A) from Lem. 4.8. From the condition

FIV(A)
~i⇒ ¬Ξ, we deduce k /∈ Ξ. Finally, the definition of ~j yields k ∈ ~j, as required.

• A9. A is [[s]]Ξ(A⊃B) ⊃ ∀~j.A ⊃ ∀~k.B where FIV(A)
~j⇒ ¬Ξ, FIV(B)

~k⇒ ¬Ξ and (FIV(A) ∩ FIV(B))
~k⇒

~j. In this case, AxB if of one of the forms:
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– [[s]]Ξ(A′⊃B′) ⊃ ∀~i.A′ ⊃ ∀~j.B′. This is an instance of A9. Indeed, the conditions FIV(A′)
~j⇒ ¬Ξ,

FIV(B′)
~k⇒ ¬Ξ and (FIV(A′) ∩ FIV(B′))

~k⇒ ~j follow from Lem. 4.8 and Lem. 4.9(2).

– ∀~i.(A′ ⊃ B′) ⊃ ∀~j.A′ ⊃ ∀~k.B′, where ~i = FIV(A ⊃ B)\Ξ. To verify that this formula is an

instance of A1i, we must check that FIV(A′)
~j⇒ ~i, FIV(B′)

~k⇒ ~i and (FIV(A′) ∩ FIV(B′))
~k⇒ ~j.

This follows from FIV(A)
~j⇒ ¬Ξ, FIV(B)

~k⇒ ¬Ξ, (FIV(A) ∩ FIV(B))
~k⇒ ~j and Lem. 4.8.

• B1. A is [[t]]ΞA⊃A. In this case, AxB is of one of the forms

– [[t]]ΞA
′⊃A′ or

– ∀~i.A′⊃A′, where ~i = FIV(A)\Ξ. This formula is an instance of A1dd.

• B2. A is [[s]]Ξ(A⊃B) ⊃ [[t]]ΞA ⊃ [[s · t]]ΞB. In this case, AxB is of one of the following forms where
~i = FIV(A⊃B)\Ξ, ~j = FIV(A)\Ξ and ~k = FIV(B)\Ξ.

– [[s]]Ξ(A′⊃B′) ⊃ [[t]]ΞA
′ ⊃ [[s · t]]ΞB′. This formula is an instance of B2.

– ∀~i.(A′⊃B′) ⊃ [[t]]ΞA
′ ⊃ ∀~k.B′, with ~i = FIV(A⊃B)\Ξ and ~k = FIV(B)\Ξ. This formula is an

instance of A7. For that we must verify FIV(B′)
~k⇒~i,FIV(B′) ∩ ~k ∩ Ξ = ∅ and FIV(A′)\Ξ ⊆~i.

The first two conditions follow from Lem. 4.8 and the definitions of ~i and ~k. The latter follows
from Lem. 4.8 and the definition of ~i.

– [[s]]Ξ(A′ ⊃ B′) ⊃ ∀~j.A′ ⊃ ∀~k.B′, with ~j = FIV(A)\Ξ and ~k = FIV(B)\Ξ. This is an in-

stance of A9. We verify the associated conditions: FIV(A′)
~j⇒ ¬Ξ, FIV(B′)

~k⇒ ¬Ξ and

(FIV(A′) ∩ FIV(B′))
~k⇒ ~j. They all follow from Lem. 4.8 and the definitions of ~j and ~k.

– ∀~i.(A′⊃B′) ⊃ ∀~j.A′ ⊃ ∀~k.B′. This is an instance of A1i. The associated conditions, FIV(A′)
~j⇒

~i, FIV(B′)
~k⇒~i and (FIV(A′) ∩ FIV(B′))

~k⇒ ~j, follow from the definitions of ~i, ~j and ~k.

• B3a. A is [[s]]ΞA⊃ [[(s+ t)]]ΞA. In this case, AxB is of one of the forms:

– [[s]]ΞA
′⊃ [[(s+ t)]]ΞA

′. This is an instance of B3a.

– [[s]]ΞA
′ ⊃ ∀~i.A′, where ~i = FIV(A)\Ξ. This is an instance of A8. Note that the associated

condition FIV(A′)
~i⇒ ¬Ξ follows immediately from the definition of ~i.

– ∀~i.A′⊃∀~i.A′. This formula is an instance of A4.

• B3b. A is [[t]]ΞA⊃ [[(s+ t)]]ΞA. In this case, AxB is either of the form

– [[t]]ΞA
′⊃ [[(s+ t)]]ΞA

′ or

– [[t]]ΞA
′⊃∀~i.A′, where ~i = FIV(A)\Ξ, or

– ∀~i.A′⊃∀~i.A′.
These are dealt with in a similar way to the previous case.

• B4. A is [[t]]ΞA⊃ [[!t]]Ξ[[t]]ΞA. In this case, AxB is of one of the forms

– [[t]]ΞA
′⊃ [[!t]]Ξ[[t]]ΞA

′. This formula is an instance of B4.

– ∀~i.A′⊃∀~i.A′. This formula is an instance of A4.

• B5. A is [[t]]ΞA⊃ [[geni(t)]]Ξ∀i.A where i 6∈ Ξ. In this case, AxB is of one of the forms

– [[t]]ΞA
′⊃ [[geni(t)]]Ξ∀i.A′. This formula is an instance of B5.

– ∀~j.A′⊃∀~k.∀i.A′, where ~j = FIV(A)\Ξ and ~k = FIV(∀i.A)\Ξ. We consider two cases.

∗ First suppose i ∈ FIV(A′). Then since i ∈ FIV(A) (by Lem. 4.8), from the definitions of ~j

and ~k we deduce {~j} = {~k, i}. Thus we have an instance of A1g.
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∗ Suppose now that i /∈ FIV(A′). Then ~j = ~k and the second case is an instance of A1ff.

2

Lemma 4.11 (Stripping) Suppose π is a EFOLP-derivation of Γ, x[[yA]]ΞA ` B, yA /∈ Γ. Then there is
a EFOLP-derivation π′ of Γ, yA ` ByA .

Proof.- By induction on π.

• If B = [[yA]]ΞA and π is obtained by using the hypothesis x[[yA]]ΞA, then ByA = A and π′ is the
derivation of Γ, yA ` A obtained by using the hypothesis yA.

• If π is obtained by using a hypothesis zB ∈ Γ, then there is a derivation of Γ ` B which uses neither

x[[yA]]A nor yA. We obtain π′ from this derivation by Weakening, and ByA = B.

• If π is obtained by using an axiom, then by Lem. 4.10, ByA is also an axiom.

• If π is obtained by applying MP:

· · ·

Γ, x[[yA]]ΞA ` D⊃B

· · ·

Γ, x[[yA]]ΞA ` D
MP

Γ, x[[yA]]ΞA ` B

By the induction hypothesis, we have derivations of Γ, yA ` DyA⊃ByA and Γ, yA ` DyA . Therefore,
by MP, we obtain a derivation of Γ, yA ` ByA .

• If π is obtained by applying Gen, then B is of the form ∀i.D with i 6∈ FIV(Γ, x[[yA]]ΞA), and there

is a derivation of Γ, x[[yA]]ΞA ` DyA . By the induction hypothesis we can derive Γ, yA ` DyA . And,
since FIV(A) ⊆ Ξ, then i 6∈ FIV(Γ, yA). The result is obtained by Gen.

• If π is obtained by applying Nec, then B is of the form [[c]]D with c a proof constant and D is an
instance of an axiom. By Lem. 4.10, DyA is also an instance of an axiom. Therefore, [[c]]DyA is
derivable. Note that here the same constant has been used despite the fact that D and DyA may be
instances of different axioms.

2

Lemma 4.12 (λ-Abstraction) If �EFOLP [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[s(~u, xA)]]FIV(B)B with xA 6∈ Γ and xA 6∈
FV(B), then there exists a proof term tA⊃Bλ such that �EFOLP [[~u]]~ΞΓ ` [[tA⊃Bλ ]]~Ξ∩FIV(A⊃B)(A⊃B).

Proof.- W.l.o.g. we may assume that xA ∈ s(~u, xA). Indeed, if this were not the case, then we could add
it as follows:

(a) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[c]](B⊃A⊃B) (A1a,Nec)

(b) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[c]]FIV(A)∪FIV(B)(B⊃A⊃B) (a,A3∗,MP∗)

(c) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[s(~u, xA)]]FIV(B)B (Hypothesis)

(d) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[s(~u, xA)]]FIV(A)∪FIV(B)B (c,A3∗,MP∗)

(e) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[c · s(~u, xA)]]FIV(A)∪FIV(B)(A⊃B) (b, d,B2,MP∗)

(f) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[xA]]FIV(A)A (using y[[xA]]FIV(A)A)

(g) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[xA]]FIV(A)∪FIV(B)A (f,A3∗,MP∗)

(h) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[c · s(~u, xA) · xA]]FIV(A)∪FIV(B)B (e, g,B2,MP∗)

(i) [[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[c · s(~u, xA) · xA]]FIV(B)B (h,A2∗,MP∗)
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∗As many times as required.

We reason as follows:

[[~u]]~ΞΓ, y[[xA]]FIV(A)A ` [[s(~u, xA)]]FIV(B)B (Hypothesis)
[[~u]]~ΞΓ, xA ` B (Stripping, xA ∈ s(~u, xA), xA 6∈ Γ, FIV(B)\FIV(B) = ∅)
[[~u]]~ΞΓ ` A⊃B (Deduction for EFOLP)

[[~u]]~ΞΓ ` [[r
~Ξ,A⊃B ]]~Ξ∩FIV(A⊃B)(A⊃B) (Cor. 4.6)

Take tA⊃Bλ = r
~Ξ,A⊃B . 2

Corollary 4.13 (µ-Abstraction) Suppose �EFOLP [[~u]]~ΞΓ, y[[α¬A]]FIV(A)¬A ` [[s(~u, α¬A)]]⊥ with α¬A /∈ Γ.

Then [[~u]]~ΞΓ ` [[tAµ ]]~Ξ∩FIV(A)A, where tAµ , c · t¬¬Aλ .

Proof.- We reason as follows:

[[~u]]~ΞΓ ` [[t¬¬Aλ ([[~u]]~ΞΓ)]]~Ξ∩FIV(A)(¬¬A) (λ-Abstraction)

[[~u]]~ΞΓ ` [[c]](¬¬A⊃A) (A1c, Nec)
[[~u]]~ΞΓ ` [[c]]~Ξ∩FIV(A)(¬¬A⊃A) (A3 and MP as many times as needed)

[[~u]]~ΞΓ ` [[c · t¬¬Aλ ([[~u]]~ΞΓ)]]~Ξ∩FIV(A)A (B2, MP twice)

2

Lemma 4.14 (!-Abstraction) Suppose �EFOLP [[~u]]~ΞΓ ` [[s]]~Ξ∩FIV(A)A. Then there exists a proof term

tΞ,A! such that �EFOLP [[~u]]~ΞΓ ` [[tΞ,A! ]]~Ξ∩Ξ[[s]]ΞA, for any Ξ such that ~Ξ ∩ FIV(A) ⊆ Ξ.

Proof.- We reason as follows:

[[~u]]~ΞΓ ` [[s]]~Ξ∩FIV(A)A (Hypothesis)

[[~u]]~ΞΓ ` [[s]]ΞA (A3*, MP*, ~Ξ ∩ FIV(A) ⊆ Ξ)

[[~u]]~ΞΓ ` [[r
~Ξ,[[s]]ΞA]]~Ξ∩Ξ[[s]]ΞA (Cor. 4.6)

* As many times as required. Take tΞ,A! = r
~Ξ,[[s]]ΞA.

Note: if Ξ ⊆ ~Ξ, then we can take tΞ,A! =!s and the result holds by B4 instead of Cor. 4.6. 2

Lemma 4.15 (Substitution) Γ ` [[s]]ΞA, Γ, y[[xA]]Ξ′A ` B, Ξ ∩ FIV(A) ⊆ Ξ′ and xA /∈ FVT(Γ) implies
Γ ` B{xA ← s}.

4.2.2 Translation from FOHLP to EFOLP

We now address the main result of this section, namely the translation of formulas provable in FOHLP
into formulas provable in EFOLP. We proceed in two stages: first we shall define the translation between
formulas in both languages and then we prove the main result, namely:

Proposition 4.16 If �FOHLP Θ; Γ; ∆ ` D | s, then �EFOLP Θ? ∪ Γ? ∪∆? ` [[s?]]FIV(H?)∩FIV(D?)D
?.
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For the first stage we introduce the defining clauses of the translation in a step-by-step manner until
we obtain the complete definition. We begin by showing how to translate formulas, contexts and proof
terms without considering the proof terms constructors lambda and name abstractions, unbox and bang.
We the add clauses for lambda and name abstraction. Finally, we add clauses for bang.

For the second stage, the proof of Prop. 4.16 itself, we shall proceed by induction on derivations
in FOHLP. We assume that derivations in FOHLP use the more simple modal introduction scheme 2I′

(cf. Rem. 3.5) instead of 2I. A consequence of this is that if �FOHLP Θ; Γ; ∆ ` A | s, then we may assume
that the derivation does not make use of the equivalence rules. That we may adopt this assumption
without loss of generality follows from Lemma 3.11 (whose proof resorts to 2I′ rather than 2I).normal
form.

Translating formulas, contexts and judgements. The translation •? from FOHLP to FOLP is
defined as follows for formulas and contexts:

P (E1, . . . , En)
? , P (E1, . . . , En)

⊥? , ⊥
(A⊃B)

? , A?⊃B?
∀i.A? , ∀i.A?

[[s]]ΞA
? , [[s?]]ΞA

?

·? , ·
(Θ, vAΞ )

?
, Θ?, [[vA

?

]]ΞA
?

(Γ, xA)
?
, Γ?, [[xA

?

]]FIV(A?)A
?

(∆, αA)
?
, ∆?, [[α¬A

?

]]FIV(A?)¬A?

Remark 4.17 For every formula A, FIV(A) = FIV(A?). Note that FOHLP-proof witnesses and FOLP-
proof terms play no role in the definition of the free individual variables of a formula.

The translation of a FOHLP-judgement Θ; Γ; ∆ ` A | s is defined as:

(Θ; Γ; ∆ ` A | s)? , Θ?,Γ?,∆? ` [[s?]]FIV(Θ?∪Γ?∪∆?)∩FIV(A?)A
?

Towards translation of proof witnesses. For proof witnesses (disregarding lambda and name ab-
stractions, unbox and bang) we have:

(xA)
?
, xA

?

(vAΞ )
?
, vA

?

(s · t)? , s? · t?
([αA]s)

?
, α¬A

? · s?

(s+ t)
? , s? + t?

geni(s)
? , geni(s

?)

insEi (s)
?
, c · s?

In the clause for insEi (s) we assume [[c]]∅A ∈ C, for all formulas A which are instances of axiom scheme

A1dd (which we recall is (∀~j.∀~i.A)⊃∀~j.(A{~i← ~E})).

Translating lambda and name abstraction. We now explain how we address lambda abstraction
(name abstraction is addressed similarly). Suppose that the last scheme applied in the derivation π of a
judgement Θ; Γ; ∆ ` C | s is:

Θ; Γ, xA; ∆ ` B | s
⊃ I

Θ; Γ; ∆ ` A⊃B |λxA.s

The induction hypothesis of our forthcoming proof (Prop. 4.16) will yield derivability in EFOLP of:

Θ? ∪ Γ?, [[xA
?

]]FIV(A?)A
? ∪∆? ` [[s?]]FIV(Θ?∪Γ?∪∆?)∩FIV(B?)B

? (3)

However, we are after derivability of Θ? ∪ Γ? ∪∆? ` [[t]]FIV(Θ?∪Γ?∪∆?)∩FIV(A?⊃B?)(A
?⊃B?), for an appro-

priate proof term t. Building a derivation of this judgement requires three steps:
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1. We first need to “drop” the outermost modalities of [[xA
?

]]FIV(A?)A
? and [[s?]]FIV(Θ?∪Γ?∪∆?)∩FIV(B?)B

?

from (3). This is achieved via the Stripping Lemma (Lem. 4.11).

2. This allows us then to resort to the standard Deduction Theorem to deduce A?⊃B?.

3. Finally, we resort to the reflective capabilities of EFOLP in order to deduce the appropriate proof
term t. This is achieved via the Internalization Lemma (Lem. 4.5).

These three steps conform the content of the λ-Abstraction Lemma (Lemma 4.12). Note that t is
thus a function of the original EFOLP derivation of (3). In turn, (3) is obtained from analysing the
FOHLP derivation π, and may contain multiple FOHLP derivations of an FOHLP judgement7. Thus
we shall assume in our proof of Proposition 4.16 (and Corollary 4.18) that π is canonical in the sense
that multiple occurrences of a judgement in π all have the exact same proof. The clauses defining the
translation of lambda (λxA.s)

?
and name abstraction (µαA.s)

?
, are:

(λxA.s)
?
, tA

?⊃B?
λ , if there exists a EFOLP-context [[~u]]~ΞΓ, a formula B and a fresh y[[xA

?
]]FIV(A)A

?

s.t.

�EFOLP [[~u]]~ΞΓ, y[[xA
?

]]FIV(A)A
? ` [[s?]]FIV([[~u]]~ΞΓ)∩FIV(B?)B

?.

(λxA.s)
?
, d · d, otherwise.

(µαA.s)
?
, tA

?

µ , if there exists a EFOLP-context [[~u]]~ΞΓ and a fresh y[[α¬A
?

]]FIV(A?)A
?

s.t.

�EFOLP [[~u]]~ΞΓ, y[[α¬A
?

]]FIV(A?)A
? ` [[s?]]∅⊥.

(µαA.s)
?
, d · d, otherwise.

Here we assume [[d]]∅A ∈ C, for all formulas A which are instances of axiom scheme A1c, the axiom
scheme of classical logic ¬¬A⊃A. In our use of this translation (Prop. 4.16) the conditions of the first
and third clauses shall be met when dealing with modalities that are introduced using 2I and in which
the translated abstraction that occurs in the internalized proof witness is proved in π itself; the second
and fourth cases are used when these abstractions that occur in modalities do not represent valid proofs8.
The proof terms defined by the first and third clauses all depend on the form that the assumed EFOLP
derivation takes. Since there are non-linear constraints in our terms (cf. ⊃E in Fig. 2 has A in positive
and negative positions), hence the reason for the assumption that π be canonical.

Translating bang. Regarding the clause for (!t)
?
, defining it simply as !t? presents technical difficulties

when addressing the case 2I′. Indeed, suppose the FOHLP derivation ends in:

Θ; ·; · ` A | t FIV(Θ) ∩ FIV(A) ⊆ Ξ
2I′

Θ; Γ; ∆ ` [[t]]ΞA | !t

The induction hypothesis yields:

Θ? ` [[t?]]FIV(Θ?)∩FIV(A?)A
?

from which we can obtain the following, given the condition FIV(Θ) ∩ FIV(A) ⊆ Ξ of 2I′:

Θ? ` [[t?]]ΞA
?

But then B4 yields:

Θ? ` [[!t?]]Ξ[[t?]]ΞA
?

7Since we assume 2I′ rather than 2I, the sole source of this multiplicity is PlusL and PlusR.
8Eg. ·;x[[λzA.z·z]]ΞB ; · ` [[λzA.z · z]]ΞB |x[[λzA.z·z]]ΞB .
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However we are after:

Θ? ` [[!t?]]FIV(Θ?∪Γ?∪∆?)∩Ξ[[t?]]ΞA
?

Unfortunately, it is not sound to simply discard the variables in Ξ in order to obtain FIV(Θ?∪Γ?∪∆?)∩Ξ.
A similar situation arises if we define t〈vAΞ :=r, s〉 as t?{vA? ← r?}. We thus define (!t)

?
and (t〈vAΞ :=r, s〉)?

as follows:

(!t)
? , tΞ,A

?

! , if there exists a EFOLP-context [[~u]]~ΞΓ and a formula A s.t.
�EFOLP [[~u]]~ΞΓ ` [[t?]]FIV([[~u]]~ΞΓ)∩FIV(A?)A

? and FIV([[~u]]~ΞΓ) ∩ FIV(A?) ⊆ Ξ.

(!t)
? , !t?, otherwise.

(t〈vAΞ :=r, s〉)? , r
~Ξ,C?{vA

?
←r?}, if there exists a EFOLP-context [[~u]]~ΞΓ and a formula C s.t.

�EFOLP [[~u]]~ΞΓ ` [[t?{vA? ← r?}]](FIV([[~u]]~ΞΓ)∪Ξ)C
?{vA? ← r?}.

(t〈vAΞ :=r, s〉)? , t?{vA? ← r?}, otherwise.

This completes the definition of the translation. We now focus on the proof of Prop. 4.16 whose
statement, we recall from above, reads:

If �FOHLPH ` D | s, then �EFOLPH? ` [[s?]]FIV(H?)∩FIV(D?)D
?, where H? is shorthand for Θ?∪Γ?∪∆?.

Proof.- By induction on the derivation of H ` D | s. As mentioned in the beginning of this subsection, we
assume that the derivation does not resort to proof witness equivalence. We analyze the last rule used.

• Case Var. H ` D | s is Θ; Γ′, xA; ∆ ` A |xA. Trivially �EFOLP Θ? ∪ Γ? ∪∆? ` [[xA
?

]]FIV(A?)A
?. Since

[[xA
?

]]FIV(A?)A
? ∈ Γ?, then FIV(H?) ∩ FIV(A?) = FIV(A?).

• Case VarM. In this case s = vDΞ , Θ = Θ′, vDΞ and hence H = Θ′, vDΞ ; Γ; ∆. H? ` [[vD
?

]]ΞD
? is

derivable in EFOLP since vD
? ∈ H?. Note also that FIV(H?) ∩ FIV(D?) = FIV(D?). We can use A2

and A3 as necessary (along with MP) to derive H? ` [[vD
?

]]FIV(D?)D
?.

• Case ⊃ I. The derivation ends in:

Θ; Γ, xA; ∆ ` B | t
⊃ I

Θ; Γ; ∆ ` A⊃B |λxA.t
By the induction hypothesis we can derive:

Θ? ∪ Γ?, [[xA
?

]]FIV(A)A
? ∪∆? ` [[s?]]FIV(H?)∩FIV(B?)B

? (4)

Thus, our translation requires that we prove:

H? ` [[tA
?⊃B?

λ ]]FIV(H?)∩FIV(A?⊃B?)(A
?⊃B?) (5)

in EFOLP in order to conclude. From (4) and possibly multiple uses of A2, A3 and MP:

Θ? ∪ Γ?, [[xA
?

]]FIV(A?)A
? ∪∆? ` [[s?]]FIV(B?)B

?

By our freshness convention, we know that xA /∈ H and xA /∈ FVT(B). Therefore, xA
?

/∈ H? and
xA

?

/∈ FV(B?). We then resort to the λ-Abstraction Lemma (4.12) to obtain tA
?⊃B?

λ s.t.

�EFOLPH? ` [[tA
?⊃B?

λ ]]FIV(H?)∩FIV(A?⊃B?)(A
?⊃B?).

• Case ⊃E. The derivation ends in:

Θ; Γ; ∆ ` A⊃B | s Θ; Γ; ∆ ` A | t
⊃E

Θ; Γ; ∆ ` B | s · t
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By the induction hypothesis both of the following judgements are derivable in EFOLP:

1. H? ` [[s?]]FIV(H?)∩FIV(A?⊃B?)(A⊃B)
?

and

2. H? ` [[t?]]FIV(H?)∩FIV(A?)A
?

We can derive H? ` [[t?]]FIV(H?)∩FIV(A?⊃B?)A
? by using A3 and MP as many times as required (keep

in mind that FIV(A) = FIV(A?) ⊆ FIV(A? ⊃ B?)). Then, using B2 and MP twice, we derive
H? ` [[(s? · t?)]]FIV(H?)∩FIV(A?⊃B?)B

?.

Note that A? is the same on both sides, since we are assuming canonical derivations and thus
translations are unique.

• Case 2I′. In this case D = [[t]]ΞA and the derivation ends in:

Θ; ·; · ` A | t FIV(Θ) ∩ FIV(A) ⊆ Ξ
2I′

Θ; Γ; ∆ ` [[t]]ΞA | !t
We reason as follows, where * in step (c) means A3 and MP are used possibly multiple times:

(a) Θ? ` [[t?]]FIV(Θ?)∩FIV(A?)A
? (IH)

(b) Θ? ` [[tΞ,A
?

! ]]FIV(Θ?)∩Ξ[[t]]ΞA
? (Lem. 4.14, FIV(Θ?) ∩ FIV(A?) ⊆ Ξ)

(c) Θ? ∪ Γ? ∪∆? ` [[tΞ,A! ]]FIV(H?)∩Ξ[[t?]]ΞA
? (A3 and MP)*

We know that tΞ,A! is the correct for translation for !t, since �EFOLP Θ? ` [[t?]]FIV(Θ?)∩FIV(A)A
? and

FIV(Θ?) ∩ FIV(A) ⊆ Ξ.

• Case 2E. The derivation ends in:

Θ; Γ; ∆ ` [[r]]ΞA | s′ Θ, vAΞ′ ; Γ; ∆ ` C | t Ξ ∩ FIV(A) ⊆ Ξ′

2E
Θ; Γ; ∆ ` C{vAΞ′ ← r} | t〈vAΞ′ :=r, s′〉

with D = C{vAΞ′ ← r} and s = t〈vAΞ′ :=r, s′〉.
By the induction hypothesis both of the following judgements are derivable in EFOLP:

1. H? ` [[s′
?
]]FIV(H?)∩Ξ[[r?]]ΞA

?

2. H?, [[vA? ]]Ξ′A
? ` [[t?]](FIV(H?)∪Ξ′)∩FIV(C?)C

?

We now reason as follows:

(a)H? ` ([[s′
?
]]FIV(H?)∩Ξ[[r?]]ΞA

?)⊃([[r?]]ΞA
?) (B1)

(b)H? ` [[r?]]ΞA
? ((a), MP)

(c) H? ` [[t?{vA? ← r?}]]((FIV(H?)∪Ξ′)∩FIV(C?))C
?{vA? ← r?} (Lem. 4.15, (b), (2))

(d)H? ` C?{vA? ← r?} (B1, MP)

(e) H? ` [[rFIV(H?),C?{vA
?
←r?}]](FIV(H?)∩FIV(C?))C

?{vA? ← r?}(Cor. 4.6)

By Remark 2.4, FIV(C?) = FIV(C?{vA? ← r?}).
We know that rFIV(H?),C?{vA

?
←r?} is the correct translation for t〈vAΞ′ :=r, s′〉, since H? ` [[t?{vA? ←

r?}]]((FIV(H?)∪Ξ′)∩FIV(C?))C
?{vA? ← r?} is derivable in EFOLP by (c), and therefore so is H? `

[[t?{vA? ← r?}]]FIV(H?)∪Ξ′C
?{vA? ← r?}.

• Case PlusL (PlusR is similar and hence ommitted). The derivation ends in:

Θ; Γ; ∆ ` A | s
PlusL

Θ; Γ; ∆ ` A | s+ t

By the induction hypothesis �EFOLPH? ` [[s?]]FIV(H?)∩FIV(A?)A
?. Thus, by B3a and MP, also

�EFOLPH? ` [[s? + t?]]FIV(H?)∩FIV(A?)A
?.
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• Case NAbs. The derivation ends in:

Θ; Γ; ∆, αA ` ⊥ | s
NAbs

Θ; Γ; ∆ ` A |µαA.s

By the induction hypothesis, �EFOLPH?, [[α¬A
?

]]FIV(A?)A
? ` [[s?]]∅⊥, and thus µαA.s

?
= tA

?

µ = cA1c
A? ·

t¬¬Aλ . By our freshness convention, we know that αA /∈ H, therefore α¬A
?

/∈ H? and by the
µ-Abstraction Corollary (4.13), H? ` [[tA

?

µ ]]FIV(H?)∩FIV(A?)A
? is derivable in EFOLP.

• Case Name. The derivation ends in:

Θ; Γ; ∆, αA ` A | s
Name

Θ; Γ; ∆, αA ` ⊥ | [αA]s

By the induction hypothesis, �EFOLPH?, x[[α¬A
?

]]FIV(A?)¬A? ` [[s?]]FIV(H?)∩FIV(A?)A
?.

Note that FIV(H?, x[[α¬A
?

]]FIV(A?)¬A?) ∩ FIV(A?) = FIV(A?).

We reason as follows:

(1) H?, x[[α¬A
?

]]FIV(A?)¬A? ` [[α¬A
?

]]FIV(A?)¬A? (hypothesis x[[α¬A
?

]]FIV(A?)¬A?)

(2) H?, x[[α¬A
?

]]FIV(A?)¬A? ` [[s?]]FIV(A?)A
? (IH)

(3) H?, x[[α¬A
?

]]FIV(A?)¬A? ` [[α¬A
? · s?]]FIV(A?)⊥ (B2 and MP twice)

(4) H?, x[[α¬A
?

]]FIV(A?)¬A? ` [[α¬A
? · s?]]⊥ (A2 and MP as required)

• Case ∀I. The derivation ends in:

Θ; Γ; ∆ ` A | t i 6∈ FIV(Θ,Γ,∆)
∀I

Θ; Γ; ∆ ` ∀i.A | geni(t)

with D = ∀i.A and s = geni(t). By the induction hypothesis, �EFOLPH? ` [[t?]]FIV(H?)∩FIV(A?)A
?.

Since i 6∈ FIV(H), then i 6∈ FIV(H?), and thus we can obtain the result by B5, A2, and MP (twice).

• Case ∀E. The derivation ends in:

Θ; Γ; ∆ ` ∀i.A | t
∀E

Θ; Γ; ∆ ` A{i← E} | insEi (t)

with D = A{i← E} and s = insEi (t). Let Ξ = FIV(H?)∩FIV(∀i.A?) and Ξ′ = FIV(H?)∩FIV(A?{i←
E}). By the induction hypothesis, �EFOLPH? ` [[t?]]Ξ∀i.A?.
Since FIV(∀i.A?) ⊆ FIV(A?{i←E}), then �EFOLPH? ` [[t?]]Ξ′∀i.A? by using A3 and MP as many
times as required.

We reason as follows, where * indicates multiple uses of an axiom:

(a) H? ` ∀i.A?⊃A?{i← E} (A1d)
(b) H? ` [[cA1d

A?,i,E ]]∀i.A?⊃A?{i← E} (Nec)

(c) H? ` [[cA1d
A?,i,E ]]Ξ′ ∀i.A?⊃A?{i← E} (A3*,MP*)

(d) H? ` [[cA1d]]Ξ′∀i.A?⊃A?{i← E}⊃ [[t?]]Ξ′∀i.A?⊃ [[(cA1d · t?)]]Ξ′A?{i← E} (B2)
(e) H? ` [[t?]]Ξ′∀i.A?⊃ [[(cA1d · t?)]]Ξ′A?{i← E} (MP)
(f) H? ` [[cA1d · t?]]Ξ′A?{i← E} (MP)

2

Corollary 4.18 If �FOHLP ·; ·; · ` A | s, then �EFOLP · ` [[s?]]FIV(A)A
? and �EFOLP · ` A?.
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5 Term Assignment

The λFOLP-calculus, our proposed term assignment for FOHLP, consists of a grammar that describes the
valid terms (Def. 5.1), the typing rules (Def. 5.3) and the reduction rules (Def. 5.11).

The proof witnesses of FOHLP do not encode derivations unequivocally. For instance, the proof witness
xA + yA ensures that A is true if we assume both xA and yA, but it does not tell us which hypothesis
was used in order to derive it. Similarly, !vAΞ can be used to verify that [[vAΞ ]]Ξ′A is true assuming vAΞ
as a validity hypothesis, but this may have been derived in an infinite number of ways, using 2I with
any witness which is equivalent to vAΞ (for example, vAΞ itself, (λxA.xA) · vAΞ , µαA.[αA]vAΞ , etc.). So we
introduce further information into proof witnesses to obtain λFOLP-terms.

Definition 5.1 The terms of λFOLP are given by the following grammar:

M,N ::= xA

| vAΞ

| (λxA.MB)A⊃B

| (MA⊃BNA)B

| (!MA)[[s]]ΞA

| (MB〈vAΞ′ :=r,N [[r]]ΞA〉)B{v
A
Ξ′←r}

| ([αA]MA)⊥

| (µαA.M⊥)A

| (MA+Ls)
A

| (s+RN
B)B

| (geni(M
A))∀i.A

| (insEi (M∀i.A))A{i←E}

The connection between λFOLP-terms and FOHLP-derivations should be clear from the notation. The
term (MA+Ls)

A encodes a proof of A which appends the witness s to a previous proof of A – encoded by
MA – by using PlusL. Analogously, (s+RM

A)A encodes the proof which results from appending s to a

proof of A by PlusR. Also the terms (!vAΞ )[[vAΞ ]]ΞA, (!vAΞ )[[(λxA.xA)·vAΞ ]]ΞA and (!vAΞ )[[vAΞ ]]Ξ∪Ξ′A encode different
derivations, in which 2I is used in different ways to prove different formulas. We often drop superindices
in terms for the sake of readability.

Remark 5.2 Some information regarding the derivations these terms encode is still left out, since our
terms do not encode the equivalence rules used to derive the second premise of T-2I, nor the contexts
used in the derivations (we may have assumed additional hypotheses which were never used). However,
these terms provide us with enough information to reason about the proof normalisation process and
other properties of the metatheory. A term assignment where complete information is recorded in the
terms may be consulted in [BB10].

Free variables of validity (FVV(•)), truth (FVT(•)) and falsehood (FVF(•)), as well as free individual
variables over terms are defined analogously to those for proof witnesses, and the notational conventions
extend to terms as expected.

Definition 5.3 Typing judgements in λFOLP take the form Θ; Γ; ∆ ` MA | s. The typing rules that
define which such judgements are derivable are given in Fig. 8. They arise from the inference schemes
of FOHLP of Fig. 2; hence every well-typed term encodes a derivation in FOHLP modulo the equivalence
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T-Var
H, xA ` xA |xA

H, xA `MB | s
T-⊃ I

H ` (λxA.MB)A⊃B |λxA.s

H `MA⊃B | s H `NA| t
T-⊃E

H `(MA⊃BNA)B | s · t

T-VarM
H, vAΞ ` vAΞ | vAΞ

Θ; ·; · `MA | s Θ; ·; · ` s≡ t :A FIV(Θ) ∩ FIV(A) ⊆ Ξ
T-2I

Θ; Γ; ∆ ` (!MA)[[t]]ΞA | !t

H `M [[r]]ΞA | s H, vAΞ′ ` NC | t Ξ ∩ FIV(A) ⊆ Ξ′

T-2E
H ` NC〈vAΞ′ :=r,M [[r]]ΞA〉C{v

A
Ξ′←r} | t〈vAΞ′ :=r, s〉

H `MA | s
T-PlusL

H ` (M+Lt)
A | s+ t

H ` NB | t
T-PlusR

H ` (s+RN)B | s+ t

H, αA `M⊥ | s
T-NAbs

H `(µαA.M)A |µαA.s

H, αA `MA | s
T-Name

H, αA `([αA]M)⊥ | [αA]s

H `MA|s i 6∈ FIV(H)
T-∀I

H `geni(M)∀i.A | geni(s)

H `M∀i.A | s
T-∀E

H ` insEi (M)A{i←E} | insEi (s)

Figure 8: Typing rules for λFOLP

rules, and every FOHLP-derivation can be encoded by a term. In particular, note that if Θ; Γ; ∆ `MA | s is
derivable with the typing rules of λFOLP, then Θ; Γ; ∆ ` A | s is derivable in FOHLP. We writeH `MA | s to
abbreviate Θ; Γ; ∆ `MA | s. Also, we write �λFOLP Θ; Γ; ∆ `MA | s to indicate that the typing judgement
Θ; Γ; ∆ `MA | s is derivable.

We now list some substitution principles.

Lemma 5.4 (Validity Variable Substitution)

1. If both �λFOLP Θ, vAΞ ; Γ; ∆ `MB | s and �λFOLP Θ; ·; · ` NA | t, then

�λFOLP Θ; Γ; ∆ `M{vAΞ ← NA, t}B{vAΞ←t} | s{vAΞ ← t}.

2. If both �FOHLP Θ, vAΞ ; Γ; ∆ ` s≡r : B and �λFOLP Θ; ·; · ` NA | t, then
�FOHLP Θ; Γ; ∆ ` s{vAΞ ← t}≡r{vAΞ ← t} : B{vAΞ ← t}.

Lemma 5.5 (Validity Variable Substitution with Equivalence) If

1. �λFOLP Θ, vAΞ ; Γ; ∆ `MB | s;

2. �λFOLP Θ; ·; · ` NA | r; and

3. �FOHLP Θ; ·; · ` r≡ t : A,
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then there exists s′ such that:

1. �λFOLP Θ; Γ; ∆ `MB{vAΞ ← NA, t}B{vAΞ←t} | s′; and

2. �FOHLP Θ; Γ; ∆ ` s′≡s{vAΞ ← t} : B{vAΞ ← t}.

Lemma 5.6 (Individual Variable Substitution)

1. If �λFOLP Θ; Γ; ∆ `MD | r, then �λFOLP Θ{i←E}; Γ{i←E}; ∆{i←E} `M{i←E}D{i←E} | r{i←E}.

2. If �FOHLP Θ; Γ; ∆ ` r1≡r2 : D, then
�FOHLP Θ{i←E}; Γ{i←E}; ∆{i←E} ` r1{i←E}≡r2{i←E} : D{i←E}.

Lemma 5.7 (Truth Variable Substitution) If �λFOLP Θ; Γ, yA; ∆ `MB | s and �λFOLP Θ; Γ; ∆ ` NA | t,
then �λFOLP Θ; Γ; ∆ `M{yA ← NA}B | s{yA ← t}.

Lemma 5.8 (Falsehood Variable Renaming) If �λFOLP Θ; Γ; ∆, αA, βA `MB | s, then we also have
�λFOLP Θ; Γ; ∆, βA `M{αA ← βA}B | s{αA ← βA}.

Lemma 5.9 (Structural Substitution) If �λFOLP Θ; Γ; ∆, αA⊃B `MD | s and �λFOLP Θ; Γ; ∆ ` NA | t,
then �λFOLP Θ; Γ; ∆, βB `ML [αA⊃B ](•)← [βB ](•)NA MD | sL [αA⊃B ](•)← [βB ](•)t M.

Lemma 5.10 (Inversion) Suppose �λFOLP Θ; Γ; ∆ ` ND | r.

• If ND = xA, then xA ∈ Γ, r = xA and D = A;

• If ND = vAΞ , then vAΞ ∈ Θ, r = vAΞ and D = A;

• If ND = (λxA.MB)A⊃B , then �λFOLP Θ; Γ, xA; ∆ `MB | s for some s, r = λxA.s and D = A⊃B;

• If ND = (MA⊃B
1 MA

2 )B , then both �λFOLP Θ; Γ; ∆ `MA⊃B
1 | s and �λFOLP Θ; Γ; ∆ `MA

2 | t for some s
and t, r = s · t and D = B;

• If ND = (!MA)[[t]]ΞA, then both �λFOLP Θ; ·; · `MA | s and �FOHLP Θ; ·; · ` s≡ t : A, for some s,
FIV(Θ) ∩ FIV(A) ⊆ Ξ, r =!t and D = [[t]]ΞA;

• If ND = (MB
2 〈vAΞ′ :=r′,M

[[r′]]ΞA
1 〉)B{vA←rA}, then both �λFOLP Θ; Γ; ∆ `M [[r′]]ΞA

1 | s and
�λFOLP Θ, vAΞ′ ; Γ; ∆ `MB

2 | t for some s and t, r = t〈vAΞ′ :=r, s〉, Ξ∩FIV(A) ⊆ Ξ′ andD = B{vA ← rA};

• If ND = ([αA]MA)⊥, then ∃ ∆′, s s.t. ∆ = ∆′, αA, �λFOLP Θ; Γ; ∆′, αA `MA | s, r = [αA]s, and
D = ⊥;

• If ND = (µαA.M⊥)A, then �λFOLP Θ; Γ; ∆, αA `M⊥ | s for some s, r = µαA.s, and D = A;

• If ND = (MA+Lt)
A, then �λFOLP Θ; Γ; ∆ `MA | s for some s, r = s+ t, and D = A;

• If ND = (s+RM
B)B , then �λFOLP Θ; Γ; ∆ `MB | t for some t, r = s+ t, and D = B;

• If ND = (geni(M
A))∀i.A, then �λFOLP Θ; Γ; ∆ `MA | s for some s, i 6∈ FIV(Θ,Γ,∆), r = geni(s) and

D = ∀i.A;

• If ND = (insEi (M∀i.A))A{i←E}, then �λFOLP Θ; Γ; ∆ `M∀i.A | s for some s, r = insEi (s) and D =
A{i←E}.
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Definition 5.11 Reduction in λFOLP, denoted →, is defined as the compatible closure of the following
two groups of rules:

• Principal rules:

β : (λxA.MB)NA → MB{xA ← NA}
µ : [βA]µαA.M⊥ → M⊥{αA ← βA}
ζ : (µαA⊃B .M⊥)NA → µβB .M⊥L [αA⊃B ](•)← [βB ](•)NA M
θ : µαA.[αA]MA → MA, if αA 6∈ FVF(MA)
γ : MB〈vAΞ :=r, !NA〉 → MB{vAΞ ← NA, r}, if FVT(NA) = FVF(NA) = ∅
ξ : insEi (geni(M

A)) → (MA){i← E}

• Permutative rules:

ψL : (MA⊃B+Lt)
A⊃BNA → (MA⊃BNA)B+Lt

ψR : (s+RM
A⊃B)A⊃BNA → s+R(MA⊃BNA)B

χL : [βA](MA+Lt)
A → ([βA]MA)⊥+Lt

χR : [βB ](s+RN
B)B → s+R([βB ]NB)⊥

φL : MB〈vAΞ′ :=r, (N [[r]]ΞA+Lt)〉 → (MB〈vAΞ′ :=r,N [[r]]ΞA〉)B{vAΞ′←rA}+Lt

φR : MB〈vAΞ′ :=r, (s+RN
[[r]]ΞA)〉 → s+R(MB〈vAΞ′ :=r,N [[r]]ΞA〉)B{vAΞ′←rA}

εL : insEi (M∀i.A+Lt) → insEi (M∀i.A)+Lt

εR : insEi (s+RM
∀i.A) → s+R insEi (M∀i.A)

ιL : µαA.(M⊥+Lt)
⊥ → (µαA.M⊥)+Lt, if αA 6∈ FVF(t)

ιR : µαA.(s+RN
⊥)⊥ → s+R(µαA.N⊥), if αA 6∈ FVF(s)

The restrictions to rules γ, θ, ιL and ιR prevent the creation of free variables upon reduction. Bound
variables may be renamed before reduction to avoid capture. We write � for the reflexive-transitive
closure of → and →+ for the transitive closure of →. Rules µ, ζ and θ are inherited from Parigot’s
λµ-calculus. Rules β, γ and ξ encode proof normalisation steps. For example, the γ rule encodes the
step in which the derivation:

π1

Θ; ·; · ` NA | r Θ; ·; · ` r≡ t : A FIV(Θ) ∩ FIV(A) ⊆ Ξ′

2I
H ` (!NA)[[t]]Ξ′A | !t

π2

H, vAΞ `MB | s Ξ ∩ FIV(A) ⊆ Ξ′

2E
H `MB〈vAΞ :=t, !NA〉B{v

A
Ξ←t} | s〈vAΞ :=t, !t〉

is transformed into the derivation given by the Validity Variable Substitution Principle (Lem. 5.4) applied
to π1 and π2:

H `M{vAΞ ← NA, t}B{vAΞ←t} | s′

where s′ is equivalent to s{vAΞ ← t}. The purpose of the permutative rules is to avoid operators “+L”
and “+R” from blocking reductions. They push the sums outside, unveiling inner redexes. For example:
((λxA.yB)A⊃B+Lt)

A⊃BzA →ψL ((λxA.yB)A⊃BzA)B+Lt→β yB+Lt.

5.1 Basic Results

The relation → is confluent. This is a consequence of the fact that all critical pairs may be closed
(cf. [BS14], where confluence of the term assignment for LP is proved; note moreover that no new
critical pairs are added with respect to that system). Strong normalisation of → is addressed in Sec. 5.2
(cf. Prop. 5.25). We now focus on type preservation and consistency of ≡.
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Lemma 5.12 If Θ; Γ; ∆ `MA | s is derivable, then FVT(s) ⊆ FVT(MA) and FVF(s) ⊆ FVF(MA).

Proof.- By induction on the derivation of Θ; Γ; ∆ `MA | s. The T-Var and T-VarM cases are straightfor-
ward. For T-2I, FVT(MA) = FVF(MA) = FVT(s) = FVF(s) = ·. In all other cases, the result is obtained
by induction hypothesis and basic set operations. 2

Lemma 5.13 If �λFOLP Θ; Γ; ∆ `MD | s and MD → ND by reducing a redex at the root of MD, then
�λFOLP Θ; Γ; ∆ ` ND | s′ for some witness s′ such that Θ; Γ; ∆ ` s≡s′ : D.

Proof.- By case analysis on the reduction rule that was used. We supply a sample case.

• γ: MD = MB
1 〈vAΞ′ :=r, (!MA

2 )[[r]]ΞA〉, ND = MB
1 {vAΞ′ ← MA

2 , r} and FVT(MA
2 ) = FVF(MA

2 ) = ∅.
By Inversion Lemma (twice), D = B{vAΞ ← r}, s =!r〈vAΞ′ :=r, t〉 and there is a witness r′ such that
FIV(Θ) ∩ FIV(A) ⊆ Ξ, Ξ ∩ FIV(A) ⊆ Ξ′, and Θ; ·; · ` r′ ≡ r : A as well as Θ; ·; · ` MA

2 | r′ and
Θ, vAΞ′ ; Γ; ∆ `MB

1 | t are derivable.

By Lemma 5.5, we can derive Θ; Γ; ∆ ` MB
1 {vAΞ′ ← MA

2 , r}B{v
A
Ξ′←r} | s′ and Θ; Γ; ∆ ` s′≡ t{vAΞ′ ←

r} : B{vAΞ′ ← r} for some witness s′; and, by Eq-Symm, we derive Θ; Γ; ∆ ` t{vAΞ′ ← r}≡s′ : B{vAΞ′ ←
r}. By Eq-γ -since FIV(Θ) ∩ FIV(A) ⊆ Ξ′-, we can derive Θ; Γ; ∆ ` s≡ t{vAΞ′ ← r} : B{vAΞ′ ← r}.
And finally, by Eq-Trans, Θ; Γ; ∆ ` s≡s′ : B{vAΞ′ ← r}.

Note that s and s′ are the same as the witnesses s and t for the corresponding equivalence rule from
Lemma 3.11.

2

Proposition 5.14 (Type Preservation) If �λFOLP Θ; Γ; ∆ `MB | s and MB → NB , then there exists
a proof witness s′ such that �λFOLP Θ; Γ; ∆ ` NB | s′ and �FOHLP Θ; Γ; ∆ ` s≡s′ : B.

Proof.- By induction on MB . If the reduction takes place at the root, then the result holds by Lemma
5.13. We illustrate a sample case of an internal reduction.

• If MB = (!MA
1 )[[r]]ΞA: in this case B = [[r]]ΞA, NB = (!NA

1 )[[r]]ΞA where MA
1 → NA

1 and, by the
Inversion Lemma, there is a witness t such that both Θ; ·; · ` MA

1 | t and Θ; ·; · ` t ≡ r : A are
derivable, FIV(Θ) ∩ FIV(A) ⊆ Ξ and s =!t.

By the induction hypothesis, we can derive Θ; ·; · ` NA
1 | t′ and Θ; ·; · ` t≡ t′ : A.

By Eq-Symm and Eq-Trans, we obtain Θ; ·; · ` t′ ≡ r : A. And, by T-2I, Θ; Γ; ∆ ` (!NA
1 )[[r]]ΞA | !r.

Θ; Γ; ∆ ` t′≡r : A is obtained by Weakening.

2

Corollary 5.15 If �λFOLP Θ; Γ; ∆ ` (!MB)A | t and MB → NB , then Θ; Γ; ∆ ` (!NB)A | t is derivable.

Proof.- By the Inversion Lemma, A = [[r]]ΞB, t =!r for some proof witness r, and there is an s such that
both Θ; ·; · ` MB | s and Θ; ·; · ` s≡ r : B are derivable. By Prop. 5.14, there is an s′ such that both
Θ; ·; · ` NB | s′ and Θ; ·; · ` s′≡s : B are derivable, and Θ ∩ FIV(A) ⊆ Ξ. By Eq-Trans, Θ; ·; · ` s′≡r : B
is also derivable. And, by T-2I, so is Θ; Γ; ∆ ` (!NB)[[r]]ΞB | !r. 2

We now address consistency of proof witness equality H ` s≡ t : A. For this we first define the notion
of proof witness associated to a term.

Definition 5.16 The proof witness associated to a term MA, denoted w(MA), is defined as follows:
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w(xA) , xA

w(vAΞ ) , vAΞ
w((λxA.MB)A⊃B) , λxA.w(MB)

w((MA⊃BNA)B) , w(MA⊃B) · w(NA)

w((!MA)[[s]]ΞA) , !s

w((MB〈vAΞ′ :=r,N [[r]]ΞA〉)B{vAΞ′←r}) , (w(MB)〈vAΞ′ :=r,w(N [[r]]ΞA)〉)
w(([αA]MA)⊥) , [αA] w(MA)

w((µαA.M⊥)A) , µαA.w(M⊥)

w((MA+Lt)
A) , w(MA) + t

w((s+RN
B)B) , s+ w(NB)

w((geni(M
A))∀i.A) , geni(w(MA))

w((insEi (M∀i.A))A{i←E}) , insEi (w(M∀i.A))

Remark 5.17 The proof witness w(MA) associated to a term MA is the only one such that the judge-
ment Θ; Γ; ∆ `MA | w(MA) is derivable for some Θ,Γ,∆.

Lemma 5.18 If �λFOLP Θ; Γ; ∆ ` s≡ t : B, then there are terms M1, M2, M3 s.t.:

1. �λFOLP Θ; Γ; ∆ `MB
1 | s;

2. �λFOLP Θ; Γ; ∆ `MB
2 | t;

3. M1 �M3; and

4. M2 �M3.

Proof.- Since there may be more than one candidate for M1 and M2, we will assume that the derivations
we are working with are canonical in the following sense:

• Whenever either (T-)PlusL or (T-)PlusR can be used to prove the same formula, we use (T-)PlusL.
This eliminates the possibility of two different terms encoding a proof with a witness of the form
s′+ t′. (T-)PlusR may still be used to derive judgements of the form Θ′; Γ′; ∆′ ` (s′+RM

A′)A
′ | s′+ t′

when Θ′; Γ′; ∆′ ` A′ | s′ is not derivable.

• We use (T-)2I’ instead of (T-)2I, in order to avoid the possibility of multiple (in fact infinite) terms
encoding a proof with a witness of the form !s′.

This way, if �FOHLP Θ′; Γ′; ∆′ ` A | r, there exactly one term M Θ′; Γ′; ∆′ ` MA | r has a canonical
derivation (this is straightforward by induction on s, since canonical derivations are syntax-driven).

In order to preserve this invariant, we will ensure that the derivations we construct are also canonical in
this sense (by using T-2I’ instead of T-2I, and not using T-PlusR unless this rule was used in the original
derivation).

The proof is by induction on the derivation of Θ; Γ; ∆ ` s≡ t : B. We exhibit a sample case.

• Eq-γ: s = t′〈vAΞ :=s′, !s′〉, t = t′{vAΞ ← s′}, B = C{vAΞ ← s′}, both Θ; ·; · ` NA | s′ and Θ, vAΞ ; Γ; ∆ `
MC | t′ are derivable by hypothesis for some MC and NA, and FIV(Θ) ∩ FIV(A) ⊆ Ξ.

Let Ξ1 = FIV(Θ). Since Ξ1 ∩ FIV(A) ⊆ Ξ1, then by T-2I, we get Θ; Γ; ∆ ` (!NA)[[s′]]Ξ1
A | !s′ –

note that we use the same proof witness s′ on both sides of the equivalence, which is the same
as using T-2I’, and thus the derivation is maintained canonical. Now, by T-2E, we can derive

Θ; Γ; ∆ `MC〈vAΞ :=s′, (!NA)[[s′]]Ξ1
A〉C{vAΞ←s′} | t′〈vAΞ :=s′, !s′〉.
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Take M1 = MC〈vAΞ :=s′, (!NA)[[s′]]Ξ1
A〉 and M2 = M3 = MC{vAΞ ← NA, s′}.

The judgement Θ; Γ; ∆ `MC{vAΞ←s
′}

2 | t′{vAΞ ← s′} can be obtained from Θ, vAΞ ; Γ; ∆ ` C | t′ and the
hypotheses by Lemma 3.9, and M1 →γ M2.

2

Corollary 5.19 The ≡ theory for FOHLP is consistent.

Proof.- Suppose that we can derive ·; {xA, yA}; · ` xA ≡ yA : A. By Lemma 5.18, there are M1, M2

and M3 oth ·; {xA, yA}; · ` MA
1 |xA and ·; {xA, yA}; · ` MA

2 | yA are derivable, and M1 � M3 and
M2 � M3. By Remark 5.17, xA = w(M1) and yA = w(M2). By Definition 5.16, M1 can only be xA

and M2 can only be yA. But both xA and M2 and yA are normal forms, so M3 cannot exist. Therefore,
·; {xA, yA}; · ` xA ≡ yA : A is not derivable. Since ·; {xA, yA}; · ` A |xA and ·; {xA, yA}; · ` A | yA are
both derivable (by Var), then the ≡ theory is consistent.

2

5.2 Strong Normalisation

In order to prove strong normalisation of term reduction, we follow our development for the propositional
setting [BS14]. This relies on mapping λFOLP-terms into terms of Parigot’s λµ-calculus with unit type
(λµ1) and then resorting to the known fact that λµ1 is SN. The reduction rules of λµ1 with unit type are
the same as those of λµ (Sec. 1.3 plus β). λµ1-judgements take the form M : Γ ` ∆, with M a λµ1-term,
Γ a truth context and ∆ a falsehood context. The typing rules are those introduced in Sec. 1.3 plus the
axiom Unit that reads, unit : Γ ` 1; ∆.

The mapping 〈| · |〉 associates types (formulas) and terms (proofs) in λFOLP with types and terms in
λµ1. The modal type [[s]]ΞA is mapped to a functional type whose domain is the unit type 1 and whose
co-domain is the mapping of A. Since λµ1 has truth and falsehood variables but not validity variables,
the mapping of validity variables will rely on a new set of truth variables in λµ1. Individual variables
and expressions are ignored.

Definition 5.20 We first translate types:

〈|P (E)|〉 , P

〈|⊥|〉 , ⊥
〈|A⊃B|〉 , 〈|A|〉⊃〈|B|〉
〈|[[s]]ΞA|〉 , 1⊃〈|A|〉
〈|∀i.A|〉 , 1⊃〈|A|〉

For terms we translate as follows:
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〈|xA|〉 , x〈|A|〉

〈|vAΞ |〉 , (x
1⊃〈|A|〉
v )unit

〈|(λxA.MB)A⊃B |〉 , λx〈|A|〉.〈|MB |〉
〈|(MA⊃BNB)B |〉 , 〈|MA⊃B |〉〈|NB |〉
〈|(!MA)[[s]]ΞA|〉 , λx1.〈|MA|〉x1, x1 fresh

〈|(MB〈vAΞ′ :=r,N [[r]]ΞA〉)B{vAΞ′←r}|〉 , (λx
1⊃〈|A|〉
v .〈|MB |〉)〈|N [[r]]ΞA|〉

〈|([αA]MA)⊥|〉 , [α〈|A|〉]〈|MA|〉
〈|(µαA.M⊥)A|〉 , µα〈|A|〉.〈|M⊥|〉
〈|(MA+Lt)

A|〉 , 〈|MA|〉
〈|(s+RM

A)A|〉 , 〈|MA|〉
〈|geni(M

A)|〉 , λx1i .〈|MA|〉
〈|insEi (M∀i.A)|〉 , 〈|M∀i.A|〉unit

The translation maps typable λFOLP-terms to typable λµ1-terms, as expected. This result is proved
by induction on the derivation of a given judgement Θ; Γ; ∆ ` MA | s and relies on the fact that 〈| • |〉
commutes with the various notions of substitutions.

Lemma 5.21 If �λFOLP Θ; Γ; ∆ `MA | s, then 〈|M |〉 : 〈|Θ|〉 ∪ 〈|Γ|〉 ` 〈|A|〉, 〈|∆|〉 is derivable in λµ1.

Some sample cases of the proof are:

• Case T-VarM: M = vAΞ , Θ = Θ′, vAΞ , 〈|M |〉 = (x
1⊃〈|A|〉
v )unit and 〈|Θ|〉 = 〈|Θ′|〉, x1⊃〈|A|〉v . We can

construct the following derivation in λµ1:

Ax
x1⊃〈|A|〉v : 〈|Θ′|〉, x1⊃〈|A|〉v ∪ 〈|Γ|〉 ` 1⊃〈|A|〉, 〈|∆|〉

Unit
unit : 〈|Θ′|〉, x1⊃〈|A|〉v ∪ 〈|Γ|〉 ` 1, 〈|∆|〉

⊃E
(x1⊃〈|A|〉v )unit : 〈|Θ′|〉, x1⊃〈|A|〉v ∪ 〈|Γ|〉 ` 〈|A|〉, 〈|∆|〉

• Case T-2I: M = (!NB)[[r]]ΞB , A = [[r]]ΞB, Θ = Θ1 ∪ Θ2, 〈|M |〉 = λx1.〈|NB |〉, 〈|A|〉 = 1⊃ 〈|B|〉 and,
by Weakening and the induction hypothesis, 〈|NB |〉 : 〈|Θ|〉 ` 〈|B|〉 is derivable in λµ1. We can derive
λx1.〈|NB |〉 : 〈|Θ|〉 ` 1⊃ 〈|B|〉 by Weakening and ⊃ I, and then obtain λx1.〈|NB |〉 : 〈|Θ|〉∪〈|Γ|〉 ` 1⊃
〈|B|〉, 〈|∆|〉 by Weakening.

• Case T-2E: (M = MC
1 〈vBr :=Ξ′,M

[[r]]ΞB
2 〉)C{vBΞ′←r}, A = C{vBΞ′ ← r}, 〈|M |〉 = λx

1⊃〈|B|〉
v .〈|M [[r]]ΞB

2 |〉〈|MC
1 |〉.

Note that 〈|A|〉 = 〈|C|〉. This follows from the fact that 〈|C{vAΞ ← r}|〉 = 〈|C|〉. We can construct
the following derivation:. It may be proved by exhibiting a polynomial interpretation over the
non-negative integers that ensures that reduction terminates.

Lemma 5.22 For all λFOLP-terms M and N , if M → N in λFOLP without the use of permutative rules,
then 〈|M |〉 →+ 〈|N |〉 in λµ1. That is, 〈|M |〉 reduces to 〈|N |〉 in 1 or more steps.

Lemma 5.23 For all λFOLP-terms M and N , if M → N in λFOLP using only permutative rules, then
〈|M |〉 = 〈|N |〉.

One last result before proceeding to the proof of SN. It may be proved by exhibiting a polynomial
interpretation over the non-negative integers that ensures that reduction terminates.

Lemma 5.24 Permutative reduction is SN.

Proposition 5.25 Every typable λFOLP-term is SN.
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Proof.- By contradiction. Assume that there is an infinite reduction sequence starting from a typable

λFOLP-term M0. We distinguish between principal reductions (
B→) and permutative reductions (

P→) within
this sequence. Since, by Lemma 5.24, permutative reduction is SN, our sequence must contain an infinite
number of principal reduction steps. Between any two principal steps, there may be 0 or more permutative
steps (always a finite number). Therefore, the reduction sequence has the form:

M0
P−−→−→M ′0

B→M1
P−−→−→M ′1

B→M2
P−−→−→M ′2

B→ · · ·

Additionally, by Lemma 5.23, 〈|Mi|〉 = 〈|M ′i |〉 for every i. Also, by Lemma 5.22, we know that for every i,
〈|Mi|〉 →+ 〈|Mi+1|〉 in λµ1. We can therefore construct an infinite λµ1-reduction sequence:

〈|M0|〉 →+ 〈|M1|〉 →+ 〈|M2|〉 →+ · · ·

However, M0 is typable in λFOLP and, by Prop. 5.14, so is every Mi. Since the mapping preserves typability
(Lemma 5.21), then we have an infinite reduction sequence of typable λµ1-terms. This is absurd, since
reduction of typable λµ1-terms is SN. Therefore, there cannot be an infinite reduction sequence starting
from a typable λFOLP-term. 2

6 Related Work

Modal Logic. There are numerous efforts in uncovering computational interpretations of modal logic.
Among those we know of, we mention those we consider most relevant.

In [Dij76], Kripke models were given a process interpretation, in which models were viewed as collec-
tions of computational states, and the binary relations as computational actions that transform one state
into another. This interpretation – along with the knowledge interpretation, among others – is discussed
further in [BVB+06].

[PW95] introduced λ→2, a proof term calculus for the intuitionistic modal logic S4, which was further
developed in [DP96, DP01b] to serve as a model for staged computation. Pfenning and Davies also
introduced a functional language based on λ→2, named Mini-ML2.

[MM96] introduced a set of modal typed λ-calculi, based on natural deduction presentations of positive
fragments of the modal logics K, K4, KT and S4. The authors proved the confluence and normalization
of the respective reductions.

In [Ran88], a modal logic of belief is used as a base to construct models of distributed systems, where
axioms can be added to the logic and treated as trust specifications. Thus modal formulas are used to
model trust and security issues in a distributed system.

[Moo03] provided a new interpretation of modal logic S4, in which the 2 and 3 modalities also describe
mobility and locality in a distributed computation. Based on Kripke’s “possible worlds” semantics,
worlds are seen as processes in a spatially distributed configuration. Here necessity describes a term that
is well-typed anywhere, and possibility a term that is well-typed somewhere. This way, typing is used
to determine the permissible mobility of terms among processes. This type theory characterizing the
mobility and locality of program terms in a distributed computation was further developed in [Moo05].
A similar interpretation, based on S5, was used in [MCH+04] to introduce Lambda 5, a foundational
language for spatially distributed programming which also addresses both mobility of code and locality
of resources.

In [JW04], a new intuitionistic (hybrid) modal logic is defined, and its proofs are interpreted as
distributed programs. Their logic is used to model remote procedure calls, broadcast commands, com-
mands to use portable code, and invocation of agents which can find their way to safe locations for their
execution.
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Logic of Proofs. There is less work in the case of LP.
A lambda calculus where information on how a result is computed (cf. Lévy labelling [Lév78]) rather

than just what the result is, dubbed the intensional lambda calculus, is explored in [AB07] via the Curry-
Howard methodology.

A calculus with computation trails [BB10, BB15]. The judgement Θ; Γ ` s≡ t : B is encoded and
reflected in the term assignment for 2I and understood as a computation trail or computation history with
applications to modeling history-based access control [AF03] and history-based information flow [BN05].

A calculus of certified mobile units which enriches mobile code with certificates (representing type
derivations) is presented in [BF12]. Such units take the form boxsM , s being the certificate and M the
executable. Composition of certified mobile units allows one to build mobile code out of other pieces of
mobile code together with certificates that are also composed out of other certificates.

Also there is [Kra12]. That work introduces a modal logic of interactive proofs with the purpose of
modelling communication within a multi-agent environment. In this setting, proofs are seen as messages
shared by agents with partial knowledge yet unlimited computing capabilities, each agent serving as an
oracle for the others, with only the communication medium having perfect knowledge. Proofs depend on
the agents’ knowledge, which is expanded through interaction with other agents. All logical conclusions
of known facts are assumed to be known. Variants of this logic are developed in [Kra14].

7 Conclusions and Future Work

We have developed a presentation of FOLP based on hypothetical reasoning, dubbed FOHLP. The work
builds, on the one hand, on Parigot’s Classical Natural Deduction and, on the other, on prior work
on hypothetical presentations of (Propositional) LP [AB07, BF12, BB10, BS14]. This yields a Natural
Deduction formalism for proving FOLP theorems. A term assignment is proposed whose reduction rules
arise from normalisation of derivations in FOHLP: derivations are represented as terms and normalisation
steps on derivations are encoded as reduction steps over terms. The resulting lambda calculus, the λFOLP-
calculus, is shown to enjoy Type Preservation and Strong Normalization. Regarding avenues for further
research, we mention the following.

LP and FOLP through Contextual Modal Type Theory. Inference schemes in Natural Deduction
presentations typically uphold the invariant that all free variables are declared in the hypotheses. The
PlusL scheme:

Θ; Γ; ∆ ` A | s
PlusL

Θ; Γ; ∆ ` A | s+ t

fails in this respect. Although we have argued (cf. Sec. 3) that this is required in order to prove all FOLP-
theorems in FOHLP, it seems reasonable to explore truth dependent modalities [NPP08] at the possible
cost of capturing a subset of LP-theorems. The modality 2A is replaced by [Γ]A which informally may
be read as 2(Γ ⊃ A). That is, validity of A is dependent on the truth of the hypotheses in Γ. A sample
of three inference schemes of the resulting Contextual Modal Logic [NPP08] are:

Θ; Γ1 ` A
2I

Θ; Γ2 ` [Γ1]A

Θ; Γ1 ` [Γ2]A Θ, v :: A[Γ2]; Γ1 ` C
2Ev

Θ; Γ1 ` C

Θ1, v :: A[Γ1],Θ2; Γ2 ` Γ1
mvar

Θ1, v :: A[Γ1],Θ2; Γ2 ` A

Rather than proving A4 (i.e. [[t]]A ⊃ [[s+ t]]A) one would prove a formula of the form:
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[[Γ,∆.s]]A ⊃ [[Γ,∆.s+ t]]A

Note that t would be allowed to have free variables in Γ,∆.

Logical framework based on FOHLP. It would be interesting to develop a logical framework based
on FOHLP. The Beluga framework [Pie10] may provide relevant inspiration for this purpose, since Beluga
itself is based on [NPP08], and it allows the use of multiple contexts as well as dependent types.

Type inference techniques for realization. We think that a fresh look at the realization of S4 in
the setting of HLP [BS14] and FOHLP could be an interesting avenue for exploration. It should be noted
that this is a non-trivial problem in the presence of inference schemes which mix polarities such as ⊃E,
hence the reason why the first such proof [Art95, Art01] relied on a cut-free sequent calculus presentation
of LP. Indeed, all known realization proofs, to the best of the authors’ knowledge, rely on presentations
where related9 occurrences of a 2 do not occur both in positive and negative positions. We think it could
be interesting to put the well-developed type-inference technology to work but to infer the decorations
of boxes rather than to infer types. We suspect relations with higher-order unification may appear along
the way.

Natural Deduction for other justification logics. Adapt the ideas of this paper to other justifica-
tion logics.
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