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Abstract. The aim of the present studywas to evaluate the effects of spermmotility enhancers and different IVF times on
cleavage, polyspermy, blastocyst formation, embryo quality and hatching ability. In Experiment 1, sex-sorted
X chromosome-bearing Bos taurus spermatozoa were incubated for 30min before 18 h fertilisation with hyperactivating

factors, namely 10mM caffeine (CA), 5mM theophylline (TH), 10mM caffeine and 5mM theophylline (CAþTH); and
untreated spermatozoa (control). In Experiment 2, matured B. taurus oocytes were fertilised using a short (8 h) or standard
(18 h) fertilisation length, comparing two different fertilisation media, namely synthetic oviducal fluid (SOF) fertilisation
medium (SOF-FERT) and M199 fertilisation medium (M199-FERT). Cleavage and blastocyst formation rates were

significantly higher in the CAþTH group (77% and 27%, respectively) compared with the control group (71% and 21%,
respectively). Cleavage rates and blastocyst formation were significantly lower for the shortest fertilisation time (8 h) in
M199-FERT medium (42% and 12%, respectively). The SOF-FERT medium with an 8 h fertilisation time resulted in the

highest cleavage rates and blastocyst formation (74% and 29%, respectively). The SOF-FERT medium produced the
highest embryo quality (50% Grade 1) and hatching rate (66%). Motility enhancers did not affect polyspermy rates,
whereas polyspermy was affected when fertilisation length was extended from 8 h (3%) to 18 h (9%) and in M199-FERT

(14%) compared with SOF-FERT (6%). We conclude that adding the motility enhancers CA and TH to sex sorted
spermatozoa and Tyrode’s albumin lactate pyruvate (TALP)-Sperm can improve cleavage and embryo development rates
without increasing polyspermy. In addition, shortening the oocyte–sperm coincubation time (8 h) resulted in similar

overall embryo performance rates compared with the prolonged (18 h) interval.
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Introduction

Unlike spermatozoa from other animal species, mammalian
spermatozoa are unable to fertilise oocytes immediately after
ejaculation. Spermatozoa must undergo a cascade of biochemical
and physiological changes to acquire fertilising competence,

called capacitation (Austin 1952; Bedford 1970). Capacitation
gives the spermatozoa the ability to achieve hyperactive
motility, interact with the zona pellucida (ZP), undergo the

acrosome reaction and fuse with the oocyte’s plasma membrane

(Yanagimachi 1989, 1994b, 2011; Bailey 2010). Capacitation
occurs in the female reproductive tract, but can also be realised
in vitro (Coy et al. 2012; Parrish 2014).

Sperm capacitation is partially accomplished by removing

decapacitating factors present in the seminal plasma. These
factors modulate the fertilising ability of the spermatozoa by
preventing the premature onset of capacitation (Bailey 2010;
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Fraser 2010). Furthermore, the removal of decapacitation
factors adhering to the sperm plasma membrane causes bio-

chemical and structural alterations leading to changes in the
lipid composition of the sperm membrane and internal pH,
increasing permeability to calcium and increased cellular

metabolism and thus supporting the changing pattern of sperm
motility and velocity (hyperactivation; Begley and Quinn 1982;
Visconti et al. 1998; Suarez 2008).

Several biochemical candidates are recognised as capa-
citating factors. In Bovidae, the most commonly used in vitro

capacitation factor is heparin (Parrish et al. 1988). Heparin
stimulates the increase in intracellular calcium, pH and cAMP

(Breininger et al. 2010). In addition to heparin, caffeine has been
widely used as an in vitro fertilisation supplement to induce
sperm capacitation and to increase sperm motility (Niwa and

Ohgoda 1988; Park et al. 1989).
The enzyme phosphodiesterase (PDE) metabolises cAMP to

50-AMP. PDE is present in mature spermatozoa (Visconti and

Kopf 1998). Caffeine and theophylline are PDE inhibitors and
their actions can lead to an increase in cAMP levels. Caffeine
and heparin could act synergistically to induce sperm capacita-
tion and, along with bovine serum albumin (BSA), promote the

acrosome reaction and gamete fusion in vitro (Park et al. 1989;
Parrish 2014). The use of xanthine derivatives, such as caffeine
and theophylline, for pharmacological stimulation of sperm

motility (hyperactivation) has had great impact on assisted
reproduction techniques (ARTs) in humans when semen
samples had slow sperm motility (Loughlin and Agarwal 1992;

Lanzafame et al. 1994; Henkel and Schill 2003; Henkel 2012).
Two bovine IVF systems in particular are popular among

research and commercial users: (1) a short sperm–oocyte

coincubation time (#8 h); and (2) a prolonged sperm–oocyte
coincubation time (.16 h). Short exposure of oocytes to sper-
matozoa may improve IVF outcome by enhancing embryo
quality (Berland et al. 2011), but can lead to lower cleavage

and embryo development rates (Ward et al. 2002; Kochhar et al.
2003). Overnight sperm–oocyte coincubation is a routine
practice in IVF laboratories. During this prolonged interaction

(.16 h), oocytes and zygotes may be exposed to suboptimal
culture conditions with increased reactive oxygen species
(ROS) produced by dead spermatozoa (Baker and Aitken

2004; Dalvit et al. 2005; Tsunoda et al. 2014).
Currently, sex-sorted spermatozoa (SS) have been success-

fully used in most mammalian farm species (Johnson 1991;
Hohenboken 1999; Lindsey et al. 2001; Evans et al. 2004),

although the major positive economic impact has been noted
in the dairy sector (Weigel 2004; De Vries et al. 2008).
However, there are still some inefficiencies because of the

sperm sex-sorting process (Seidel and Garner 2002; Rath et al.

2009; Gosalvez et al. 2011a, 2011b). Among them, after flow
cytometric sorting of X and Y chromosome-bearing sper-

matozoa, the sorted sperm sample shows a marked reduction
in post-thaw motility and average lifespan (Hollinshead et al.

2003; Suh and Schenk 2003; Suh et al. 2005). This could be a

consequence of the DNA staining protocol, laser exposure,
electrical charge disruption, flow cytometer pressure forces, a
dilution effect, the freezing–thawing process and/or the accu-
mulation of insults (‘addition effect’) that affect or compromise

the essential sperm functions and fertilising capacity (Amann
1999; Schenk et al. 1999; Garner 2001, 2006, 2009; Suh et al.

2005; Mocé et al. 2006; Cran 2007; Schenk and Seidel 2007;
Rath et al. 2009; Gosalvez et al. 2011a, 2011b; Garner et al.
2013). In addition, a high variation of sex-sorting efficiencies

with regard to post sex-sorting sperm quality and embryo
production among bulls has been reported (Zhang et al. 2003;
Lu and Seidel 2004; Barceló-Fimbres et al. 2011). This vari-

ability may be reduced to acceptable levels using motility-
stimulating factors and optimising sperm–oocyte incubation
time. The main objective of the present study was to evaluate
the effects of sperm motility enhancers and different exposure

periods of bovine oocytes to sex-sorted spermatozoa in relation
to cleavage, polyspermy, blastocyst formation, embryo quality
and hatching ability.

Materials and methods

Unless otherwise stated, the chemicals used in the present study
were purchased from Sigma-Aldrich Chemical (St Louis, MO,

USA).

Oocyte recovery and IVM

Dairy cattle (Bos taurus) ovaries were collected from a

slaughterhouse (Cargill, Fresno, CA, USA) and transported to
the laboratory in an insulated container filled with prewarmed
saline solution at approximately 328C. The ovaries were washed
several times and placed in awater bath at (378C) in saline solution
for oocyte aspiration. Oocytes were aspirated from 2–6-mm antral
follicles using a 21-G butterfly needle connected to a vacuum

pump. Cumulus–oocyte complexes (COCs) containing compact
and complete cumulus cell layers were selected and matured in
groups of 50 COCs in 400mL M199 medium supplemented with
alanyl-L-glutamine (ALA-glutamine) (0.1mM), Na pyruvate

(0.2mM), gentamicin (5mg mL�1), epidermal growth factor
(50 ng mL�1), ovine (o) FSH (50ng mL�1), bovine (b) LH (3mg
mL�1), cysteamine (0.1mM) and 10% fetal bovine serum (FBS;

Hyclone, GE Healthcare, South Logan, UT, USA). IVM was
performed for 22–24h in a humidified atmosphere of 5% CO2 in
air at 38.58C.

IVF

Fertilisation (Day 0) was performed using frozen–thawed
X chromosome-bearing (hereafter referred to as ‘female’) sex-
sorted Jersey (B. taurus) spermatozoa (Genex Cooperative,

Shawano, WI, USA). Straws were thawed at 378C for 45 s and
then placed in an 80%–40% discontinuous density gradient
(PureSperm; Spectrum Technologies, Healdsburg, CA, USA)

for centrifugation (700g, 15min) at room temperature. Next, the
sperm sample was incubated for 30min in Tyrode’s albumin
lactate pyruvate (TALP)-Sperm before fertilisation in one of the

motility hyperactivation treated or untreated groups (a detailed
description is provided below in the experimental design sec-
tion). Then, a second centrifugation (300g, 5min, 22–238C) was
performed after discarding the supernatant and resuspending the
sperm pellet in TALP-Sperm (pH¼ 7.4, 295 mOsmol; Parrish
et al. 1986, 1988). Matured groups of 15–20 COCswere washed
twice with synthetic oviducal fluid (SOF)–HEPES and placed in
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50 mL fertilisation medium. The final sperm concentration was
adjusted to 1� 106 spermatozoamL�1 using a haemocytometer.

The fertilisation medium was supplemented with BSA (essen-
tially fatty acid free; 6mg mL�1), fructose (90mg mL�1),
penicillamine (3 mg mL�1), hypotaurine (11mg mL�1) and

heparin (20 mg mL�1; Ferré et al. 2015). Oocytes were coin-
cubated with spermatozoa at 38.58C in humidified atmosphere
of 5% CO2 in air.

Assessment of the nuclear status of presumptive zygotes

After IVF, presumptive zygotes were denuded mechanically by
pipetting and washing three times in synthetic oviducal fluid
(SOF)–HEPES. Thereafter, a minimum of 10 zygotes were

collected from each treatment group and fixed for evaluation of
polyspermy (Experiment 1, n¼ 580; Experiment 2, n¼ 720).
Briefly, after washing three times in phosphate-buffered saline

(PBS)–polyvinyl alcohol (PVA; 1mg mL�1), zygotes were
fixed in 4% paraformaldehyde for 10min and then washed in
PBS-PVA five times. Nuclear staining was performed using

100mg mL�1 Hoechst 33342 for 10min, after which zygotes
were washed three times with PBS-PVA and then mounted on
glass slides. Slides were examined and zygotes were classified

using an epifluorescent microscope at �400 magnification.
Embryos with two pronuclei (PN-2) were considered to have
been fertilised normally, whereas those with three or more
pronuclei (PN-3) were considered to be polyspermic.

Embryo culture (in vitro culture)

Presumptive zygotes were denuded mechanically by pipetting
through a small-bore plastic pipette tip (Research Instruments,

Cornwall, UK) and cultured in groups of 15–20 in 50-mL drops of
potassium simplex optimised medium supplemented with amino
acids (KSOMaa; pH¼ 7.4, 275 mOsmol; Evolve ZEBV-100;

ZenithBiotech,Guilford,CT,USA)for9days (Biggersetal.2000).
OnDay3, 3%FBSwas added to the culturemediumcontaining the
zygotes. The culture conditions were 38.58C in a humidified
atmosphere of 5% CO2, 5% O2 and 90% N2. On Days 7 and 9,

blastocysts (BL) and hatched embryos, respectively, were
evaluated morphologically according to International Embryo
Transfer Society (Stringfellow et al. 2010) standards and recorded.

Experimental design

Experiment 1: effects of sperm motility hyperactivation
factors on in vitro embryo performance

To examine the effect of different sperm motility hyper-
activation factors on cleavage, embryo development, embryo
quality and hatching ability, frozen–thawed sex-sorted sper-

matozoa that had been centrifuged and passed through a density
gradient (as described above) were incubated for 30min in
TALP-Sperm before fertilisation in one of the following groups:

(1) 10mM caffeine (CA); (2) 5mM theophylline (TH);
(3) 10mM caffeine and 5mM theophylline (CAþTH); and
(4) untreated (Control). After incubation, samples were centri-

fuged at 300g for 5min at 22–238C. The supernatant was then
discarded and the sperm pellet was resuspended with the final
fertilisationmedium.Allmatured oocytes were fertilised using a
modified SOF-FERT (Tervit et al. 1972) for 18 h. The final

formulation of the SOF-FERT was as follows: 107.7mM NaCl,
7.16mM KCl, 1.19mM KH2PO4, 0.49mM, MgCl2, 1.17mM

CaCl2, 5.3mM sodium lactate, 25.07mM NaHCO3, 0.20mM
sodium pyruvate, 0.5mM fructose, 5 mg mL�1 gentamicin,
20 mg mL�1 heparin and 6mg mL�1 essentially fatty acid-free

BSA. Sex-sorted X chromosome-bearing spermatozoa from
three bulls were used to fertilise the COCs. Three replicates were
performed for each motility hyperactivation factor and bull.

Experiment 2: in vitro embryo production using short
versus long gamete IVF duration co-incubation time
and two different fertilisation media

After maturation, oocytes were randomly divided into four

groups according to fertilisation medium (M199-FERT and
SOF-FERT) and oocyte–sperm coincubation time (8 and
18 h). The groups, M199:8 (n¼ 1140), M199:18 (n¼ 1140),

SOF:8 (n¼ 1190) and SOF:18 (n¼ 1280), were supplemented
with the spermmotility hyperactivation factor that produced the
best results in the previous experiment. Themain components of

each fertilisation medium are given in Table 1. Sex-sorted
X chromosome-bearing sperm samples from three bulls were
used to fertilise theCOCs. Four replicates were performed for all

treatments and bulls.

Statistical analysis

Datawere analysed using a generalised linearmixed-effectsmodel
with logit-link binomial distribution in order to consider the

complete experimental design and technical constraints. InfoStat

Table 1. Components of the M199 and synthetic oviducal fluid (SOF)

in vitro fertilisation media (FERT)

BSA-FAF, fatty acid-free bovine serum albumin

Component M199-FERT (Gibco

11043–023)

SOF-FERT (Tervit

et al. 1972)

NaCl (mM) 117.24 107.7

KCl (mM) 5.33 7.16

KH2PO4 (mM) – 1.19

NaH2PO4 (mM) 1.01 –

MgCl26H2O (mM) – 0.49

MgSO47H2O (mM) 0.814 –

CaCl22H2O (mM) 1.8 1.17

NaHCO3 (mM) 26.19 25.0

Glutathione (mM) 0.000163 –

Sodium lactate (mM) – 5.3

L-Ascorbic acid (mM) 0.000284 –

L-Glutamine (mM) 0.685 –

Glucose (mM) 5.6 –

Amino acids (present) Yes No

Vitamin (present) Yes No

Gentamicin (mg mL�1) 5 5

Na-pyruvate (mM) 0.2 0.2

Fructose (mM) 0.5 0.5

Heparin (mg mL�1) 20 20

BSA-FAF (mg mL�1) 6 6

pH (adjusted) 7.4 7.4

Osmolality (mOsmol) 290–300 280–290

Sexed spermatozoa motility and IVF duration Reproduction, Fertility and Development C



software version 2011 (Di Rienzo et al. 2011) and R
(R Development Core Team 2014) packages were used for model

estimation starting from the maximal linear predictor (Z) for each
output variable of interest (cleavage, blastocyst total and grade,
hatching and polyspermy) according to the experimental setting:

Zijkl ¼ mþ ti þ bj þ dk ðExperiment 1Þ

Zmnkl ¼ mþ am þ bn þ am � bn þ ð1þ am þ bn þ am � bnÞ � dk

ðExperiment 2Þ

where the linear predictor Zijkl models an overall mean (m) and
the contribution of the ith motility enhancer treatment (ti) as
fixed effects, whereas the random intercept effects consider the

jth bull bj,N(0, sb
2) and day dk,N(0, sd

2) for the lth replicate
for Experiment 1. In contrast, the linear predictor Zmnkl of
Experiment 2 was modelled using as fixed effects an overall

mean (m), the mth fertilisation medium (am), the nth oocyte–
sperm coincubation time (bn) and the interaction term (am�
bn), whereas the randomeffects consider the kth day dk,N(0,S)
jointly estimated for the intercept, double and triple interactions
(1þ amþbnþ am�bn)� dk, respectively.

Fixed effectsmodel assessmentwas undertaken using Type III
analysis of variance (ANOVA) sum of squares using P, 0.05

and a likelihood ratio test approach formodel selection, following
a parsimony criterion (i.e. obtain the simplest model that copes
with the data). Final model assumptions were validated using

quantile–quantile and deviance versus predicted value plots.
Fixed effects model results for each output variable are

reported as the mean proportion� s.e.m. for sperm motility

enhancers (Experiment 1), time, fertilisation medium and

time � fertilisation medium interaction term (Experiment 2).
Only significant terms were used to report the results (i.e. in

somemodels the treatment results were similar). For example, if
in Experiment 1 there was no contribution of motility enhancer
treatment, only the overall mean would remain thus the propor-

tion would be exactly the same no matter what enhancer was
used. However, if significant terms were present, a posteriori

proportion differences were determined using Fisher’s least

significant difference (l.s.d.) test with Bonferroni correction.
Differences were considered significant at the 95% confidence
level (P, 0.05) or a tendency at the 90% level (P, 0.1).

Results

In all, 3273 IVM bovine oocytes were fertilised with sex-sorted

spermatozoa supplemented with different motility hyper-
activation factors. The cleavage, blastocyst development,
blastocyst quality and hatching rates of bovine oocytes coin-

cubated for 16–18 h with sex-sorted spermatozoa are given in
Table 2 (Experiment 1). The respective fixed-effects model
results for sperm motility hyperactivation factors on oocyte

cleavage, embryo development, embryo quality and hatching
ability after oocyte fertilisation using sex-sorted spermatozoa
are given in Table 3. There was a tendency for a difference in

cleavage rates between theCAþTHand control groups (P, 0.1),
whereas blastocyst formation was significantly higher in the
CAþTH versus control group (P, 0.05). According to model
results, blastocyst grades and embryo hatching rates (Table 3) did

not differ significantly among different sperm motility hyper-
activation factors.

Cleavage, blastocyst rates, blastocyst quality and hatching

rates of bovine oocytes coincubated for different periods of time

Table 2. Effects of spermmotility hyperactivation factors on oocyte cleavage, embryo development, embryoquality andhatching ability after oocyte

fertilisation using sex-sorted spermatozoa

Data are the mean� s.d. CA, caffeine (10mM); TH, theophylline (5mM)

Motility enhancers Oocytes (n) Cleavage (%) Blastocysts (%) Hatching (%) (Day 9)

Total (Day 7) Grade I Grade II Grade III

CA 842 55.36� 16.25 17.64� 6.05 9.55� 3.01 4.09� 1.51 4.00� 2.10 10.73� 3.13

TH 887 52.36� 16.66 15.91� 4.21 9.82� 2.68 3.45� 1.04 2.64� 1.12 10.91� 2.39

THþCA 779 53.55� 17.37 18.36� 3.78 10.91� 2.34 4.36� 1.43 3.09� 1.14 12.45� 2.88

Control 765 57.36� 17.03 16.45� 4.30 8.73� 2.45 4.36� 1.63 3.36� 1.29 10.36� 3.23

Table 3. Fixed-effects model results (Experiment 1) for sperm motility hyperactivation factors on oocyte cleavage, embryo development, embryo

quality and hatching ability after oocyte fertilisation using sex-sorted spermatozoa

Data adjusted by model are expressed as the mean proportion� s.e.m.� 100. Within columns, values with different superscript lowercase letters differ

significantly (P, 0.05); valueswith different uppercase letters exhibited a tendency to differ (P, 0.1). Statistical analyseswere performed using Fisher’s least

significant difference tests with Bonferroni correction. CA, caffeine (10mM); TH, theophylline (5mM)

Motility enhancers Oocytes (n) Cleavage (%) Blastocysts (%) Hatching (%) (Day 9)

Total (Day 7) Grade I Grade II Grade III

CA 842 72.36� 1.79AB 23.94� 3.01ab 57.06� 1.84 23.80� 1.55 19.06� 1.57 65.02� 1.73

TH 887 74.02� 1.80AB 23.43� 3.01ab

THþCA 779 77.13� 1.71A 27.26� 3.28a

Control 765 71.12� 1.79B 20.94� 2.75b
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with sex-sorted spermatozoa (Experiment 2) are presented in
Table 4. The respective fixed-effects model results for gamete

coincubation time, medium and time� fertilisation medium
interaction term (Experiment 2) on IVF performance and poly-
spermy after oocyte fertilisation with sex-sorted spermatozoa

are given in Table 5. Based on model results, blastocyst
grades and hatching rates were not significantly affected by
sperm motility enhancers. Similar results were seen for gamete

coincubation times (8 vs 18 h; Table 5), whereby total blasto-
cyst, blastocysts Grades I and III and hatching rates were not
significantly different between the two coincubation times.
Furthermore, the blastocyst Grade II rate remained constant,

showing no variation regardless of the coincubation time or
fertilisation medium used. The cleavage rates in oocytes coin-
cubated with sex-sorted spermatozoa were significantly lower

(P, 0.05) with the shortest fertilisation time (8 h), M199-FERT
andM199:8 h compared with the longer fertilisation time (18 h),
SOF-FERT and the other coincubation groups, respectively.

SOF:8 resulted in the highest cleavage rates and blastocyst
formation. SOF-FERT produced the highest embryo quality
and hatching rates compared with M199. Motility enhancers
(Experiment 1; Table 6) did not affect polyspermy, whereas in

Experiment 2 polyspermy rates were increased when fertilisa-
tion was extended to 18 h and in M199-FERT (Table 7). The
lowest polyspermy rate was found in SOF-FERT with the

shortest fertilisation time.

Discussion

The results of the present study demonstrate that the addition of
TH and CA to sex-sorted spermatozoa before fertilisation can

have a beneficial effect on embryo development and hatching
ability. Sperm capacitation has been recognised as the necessary
physiological changes that sperm must undergo to acquire
fertilising capability (Parrish et al. 1988; Yanagimachi 1989;

Yanagimachi 1994b; Yanagimachi 1994a; Bailey 2010; Aitken
and Nixon 2013; Parrish 2014). Furthermore, the length of
exposure of oocytes to spermatozoa and fertilisation medium

also affect cleavage, embryo development, embryo quality and
hatching ability.

The sperm capacitation mechanism is still poorly understood,
but the process includes biochemical and ultrastructural changes

that lead to the removal of adherents on the sperm membrane,
changing the lipid composition of the spermmembrane, increased
permeability to Ca2þ, changing internal pH and increasing cell

permeability and metabolism (Fraser 1998; Visconti et al. 1998;
Aitken and Nixon 2013). Motility plays a key role in the fertilisa-
tion process and is consequently considered an important func-

tional parameter during pre- and post-freezing evaluation of
spermatozoa. Motility is essential for successful cumulus cell
and ZP penetration (Gordon 2003; Suarez and Ho 2003; Florman
and Ducibella 2006), with the exception being ARTs like intra-

cytoplasmic sperm injection. Increased spermmotility pattern and
speed, called hypermotility, results as a consequence of the
redistribution of membrane components during capacitation

(Kay and Robertson 1998). Calcium and cAMP are the most
important factors regulating hyperactivation of mammalian sper-
matozoa (Yanagimachi 1994b; Ho and Suarez 2001b). Ca2þ is a

critical element in the signalling pathway to convert from the
symmetrical to asymmetrical bending that is characteristic of
hyperactivation (Suarez et al. 1991, 1993; Yanagimachi 1994b;
Ho and Suarez 2001b;Marquez and Suarez 2007). TH and CA are

methylxanthines that can cause intracellular accumulation of
cAMP or activate Ca2þ-permeable cation channels in the sperm
plasmamembrane, and have been widely used in ART as motility

stimulants (Niwa and Ohgoda 1988; Park et al. 1989; Loughlin
and Agarwal 1992; Takahashi and First 1993; Ho and Suarez
2001a; Henkel and Schill 2003; Mortimer et al. 2013). Even

though heparin alone can achieve similar cleavage and embryo
development rates comparedwith previously published data using
sex-sorted spermatozoa (Lu et al. 1999; Lu and Seidel 2004), the

addition of CA and TH improved the results. The synergistic
effects of xanthines have been reported in other studies (Niwa and
Ohgoda 1988; Numabe et al. 2001; Kang et al. 2015). A higher
concentration of CA (.2.5mM) was shown to have adverse

effects on embryo performance in Bovidae (Bird et al. 1989;
Momozawa and Fukuda 2003). Therefore, in the present study we
used a short incubation time (30min) before fertilisation to avoid

any potential toxic effect that xanthines can generate, especially
after long fertilisation times (.16 h). In the present study, the

Table 4. Effects of gamete coincubation time and medium on IVF performance after oocyte fertilisation using sex-sorted spermatozoa

Data are the mean� s.d. SOF, synthetic oviducal fluid

Time (h) Fertilisation medium Fertilisation medium� time

8 (n¼ 2330) 18 (n¼ 2420) SOF (n¼ 2470) M199

(n¼ 2280)

SOF:8

(n¼ 1190)

SOF:18

(n¼ 1280)

M199:8

(n¼ 1140)

M199:18

(n¼ 1140)

Cleavage (%) 54.92� 24.22 65.50� 20.33 71.13� 18.48 49.29� 21.64 71.00� 16.18 71.25� 21.26 38.83� 20.01 59.75� 18.43

Blastocysts (%)

Total (%) (Day 7) 21.13� 14.40 21.63� 11.07 27.21� 12.16 15.54� 10.54 29.67� 14.27 24.75� 9.61 12.58� 8.40 18.50� 11.94

Grade I 10.46� 9.85 10.04� 8.57 14.67� 9.21 5.83� 6.70 15.83� 10.46 13.50� 8.06 5.08� 5.50 6.58� 7.90

Grade II 5.92� 4.68 5.96� 2.63 7.67� 3.47 4.21� 3.24 8.67� 4.36 6.67� 2.02 3.17� 3.21 5.25� 3.05

Grade III 4.75� 2.29 5.63� 3.35 4.88� 2.31 5.50� 3.36 5.17� 2.92 4.58� 1.56 4.33� 1.44 6.67� 4.31

Hatching (%) (Day 9) 13.42� 11.96 12.50� 9.61 18.42� 10.83 7.50� 7.50 20.92� 12.24 15.92� 9.06 5.92� 5.16 9.08� 9.25
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addition of CA and TH did not significantly increase the poly-
spermy rate (Table 6). In other studies, normal PN-2 rates were

achieved using TH and a D-penicillamine, hypotaurine and
adrenaline mixture, as well as increased cleavage rates and
embryo development (Kang et al. 2015). In the present study,

CA and TH may have enhanced sex-sorted spermatozoa pene-
tration by shortening the fertilisation time through increased
oocyte–sperm binding. The aforementioned effect may have

more relevance in cases where low sperm concentration (e.g.
sex-sorted spermatozoa vs conventional spermatozoa) and
decreased motility are determinant factors during fertilisation.

Time of exposure during oocyte–sperm coincubation and the

type of fertilisation medium used affect cleavage, polyspermy,
embryo development, embryo quality and hatching rates.
Usually, fertilising bovine COCs with conventional unsorted

spermatozoa takes between 18 and 24 h at concentrations of
1–1.5� 106 spermatozoa mL�1 (Rehman et al. 1994; Ward
et al. 2002; Kochhar et al. 2003). This method has been widely

used until now mainly because of the experimental practicality
of leaving the oocyte–sperm coincubations overnight. However,
shortening the sperm–oocyte coincubation to 9–10 h could also

produce satisfactory results in terms of fertilisation rate and
blastocyst development (Ward et al. 2002; Kochhar et al. 2003).
Such flexibility with the duration of fertilisation could make
embryo culture conditions more practical for commercial

laboratory operations. Other fertilisation protocols reduced
coincubation time even further (,6 h) and increased spermato-

zoa concentration up to 6� 106 spermatozoa mL�1 (Brackett
and Oliphant 1975; Nedambale et al. 2006). Both scenarios (i.e.
high sperm concentration or extended coincubation time) may

result in ROS release because of an increase in dead spermato-
zoa, which may induce ZP hardening and compromise the
fertilisation rate and embryo developmental capacity (Guérin

et al. 2001; Kattera and Chen 2003; Baker and Aitken 2004;
Dalvit et al. 2005; Agarwal et al. 2006; Enkhmaa et al. 2009;
Lopes et al. 2010; Tsunoda et al. 2014). The results of the
present study revealed that prolonged coincubation time

resulted in a significantly higher cleavage rate but did not
significantly affect embryo development, blastocyst quality
and hatching ability compared with the shorter fertilisation time

(Table 5). This observation is in agreementwith previous reports
in which cleavage increased with oocyte-sperm exposure time
and embryo development was not affected (Rehman et al. 1994;

Ward et al. 2002; Barceló-Fimbres et al. 2011). However, other
studies reported different findings than those of the present study.
For example, shortening fertilisation time has been reported to

increase both blastocyst rate (Kochhar et al. 2003; Nedambale
et al. 2006) and quality, as measured by the ratio of total cell
number : inner cell mass (Nedambale et al. 2006; Berland et al.
2011). This could be explained by the fact that we used a lower

concentration (1� 106 mL�1) of sex-sorted spermatozoa
instead of conventional semen, which may behave differently
during fertilisation, oocyte interaction and subsequent fusion.

Prolonged oocyte–sperm gamete coincubation (.18 h) has been
reported to increase the rate of polyspermy (Long et al. 1994;
Nedambale et al. 2006; Barceló-Fimbres et al. 2011), in agree-

ment with the results of the present study (Table 7).
Koyama et al. (2014) demonstrated that bovine oocytes

acquire their highest developmental competence at around
12 h after achieving nuclear maturation, or 30 h after the initia-

tion of maturation. This finding would support the argument for
coincubating oocytes for 8 h to achieve acceptable cleavage
results. The results of the present study partially confirm this,

but only cleavage differed significantly between the 8 h and 18 h
fertilisation times, although a slight increase was noted between

Table 5. Fixed-effectsmodel results for gamete coincubation time,mediumand time3 fertilisationmedium interaction term (Experiment 2) on IVF

performance and polyspermy after oocyte fertilisation using sex-sorted spermatozoa

Data adjusted by model are expressed as the mean proportion� s.e.m.� 100. Within rows, values with different superscript lowercase letters differ

significantly (P, 0.05), as determined by Fisher’s least significant difference test with Bonferroni correction. SOF, synthetic oviducal fluid

Time (h) Fertilisation medium Fertilisation medium� time

8 (n¼ 2330) 18 (n¼ 2420) SOF (n¼ 2470) M199

(n¼ 2280)

SOF:8

(n¼ 1190)

SOF:18

(n¼ 1280)

M199:8

(n¼ 1140)

M199:18

(n¼ 1140)

Cleavage (%) 58.42� 3.09b 67.39� 3.73a 71.30� 3.29a 53.89� 3.72b 73.54� 2.96a 68.95� 4.20a 41.53� 5.43b 65.79� 3.88a

Blastocysts (%)

Total (%) (Day 7) 18.21� 2.80 25.89� 3.64a 15.00� 2.13b 29.28� 4.82a 22.77� 2.90ab 12.27� 2.27c 18.21� 2.80bc

Grade I 35.04� 7.43 49.76� 5.33a 25.45� 8.60b 49.64� 5.45a 49.89� 6.36a 28.50� 10.01ab 22.62� 8.28b

Grade II 27.78� 1.40

Grade III 28.41� 4.67 18.43� 2.80b 38.38� 5.98a 17.78� 3.23b 19.09� 3.34b 36.76� 5.68a 40.03� 7.73a

Hatching (%) (Day 9) 55.69� 4.34 65.56� 3.81a 45.34� 4.37b 65.56� 3.81a 45.34� 4.37b

Table 6. Effect of motility enhancers on polyspermy rates after oocyte

fertilisation using sex-sorted spermatozoa

Data adjusted by model are expressed as the mean proportion� s.e.m.

� 100. There were no significant differences among treatment groups in

the rate of polyspermy, as determined by Fisher’s least significant difference

tests with Bonferroni correction. CA, caffeine (10mM); TH, theophylline

(5mM)

Motility enhancers Oocytes (n) Polyspermy (%)

CA 145 4.83� 1.78a

TH 145 6.21� 2.00a

THþCA 145 6.90� 2.10a

CONTROL 145 2.76� 1.36a
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cleavage and blastocyst formation with SOF:8 and SOF:18;
whereas cleavage and embryo development decreased with

M199:8 and M199:18 (Tables 4, 5).
In the case of regular human oocyte fertilisation, the current

preference is for a shorter exposure time with spermatozoa in
contrast with the traditional overnight protocol (Lin et al. 2000;

Kattera and Chen 2003). However, it is common practice to
leave a couple of layers of cumulus cells after a brief wash and
before culture when short fertilisation protocols are used. This is

primarily because mechanical removal of cumulus cells by
repeated pipetting or vortexing is difficult when oocytes are at
the early stages of fertilisation. Thus, it is probable that sperma-

tozoa remain lodged or attached to the cumulus mass and
penetrate the oocyte later. In the present study, the oocytes
(and even the 8-h fertilised zygotes) were completely denuded
by a specially designed small-bore plastic pipette tipwith a 155-mm
diameter, which ensured complete cumulus removal.

The fertilisationmediumplayed a key role in overall cleavage,
blastocyst development, embryo quality, hatching ability and

polyspermy. In a previous study, when a short oocyte–sperm
coincubation fertilisation medium, such as Bracket–Oliphant
(BO), was extended from 6 to 18 h, blastocyst formation

decreased markedly and polyspermy increased in a proportional
manner (Nedambale et al. 2006). In addition, a different fertilisa-
tionmedium (IVF-M199) showed no adverse effects on cleavage

and embryo development rates after prolonging fertilisation
coincubation to 18 h (Nedambale et al. 2006). Even though we
reached the same conclusion regarding the effects of fertilisation
medium, M199-FERT exhibited a poor performance in the case

of all indicators assayed (cleavage, polyspermy, blastocyst,
embryo quality and hatching rates) compared with SOF-FERT.

Nedambale et al. (2006) found that M199-FERT performed

better than other traditional fertilisation media such as BO,
KSOM-FERT or TALP, not only in cleavage rate (2-cell
division), but also in advanced cell number stage at 48 h after

fertilisation (8-cell stage), polyspermy, blastocyst formation,
total cell number, hatching rate and post-thaw survival after
vitrification. In a recent study using sex-sorted spermatozoa,
SOF and TALP showed a significant improvement over M199

as fertilisation medium in terms of cleavage rate, blastocyst
development, Grade 1 blastocysts, hatching rates and the number
of inner cell mass and trophectoderm cells (Ferré et al. 2015).

It is interesting that M199-FERT did not perform as well as
SOF-FERT in the present study, because M199 contains anti-
oxidants such as glutathione and L-ascorbic acid, which are

missing from theTALPandSOFmedia formulations (Nedambale
et al. 2006). Antioxidants are important in mitigating the

accumulation of ROS, which can generate oxidative stress and
damage normal physiological sperm function (Bansal and

Bilaspuri 2011; Aitken et al. 2012), impair sperm motility,
affect membrane integrity and decrease oocyte penetration
capacity (Chatterjee and Gagnon 2001; Aitken and Henkel
2011; Bansal and Bilaspuri 2011; Tsunoda et al. 2014). Anti-

oxidants also contribute to sperm defence mechanisms, com-
promised by the freeze–thawing process, against hydrogen
peroxides (Agarwal et al. 2006; Bansal and Bilaspuri 2011).

Nevertheless, M199 also contains glucose and, as reported by
Parrish et al. (1989), glucose may interfere with sperm capacita-
tion, sperm–oocyte binding and ZP penetration, thus affecting

early zygote division and subsequent embryo development. The
assumption in the present study was that because M199 contains
antioxidants, vitamins, amino acids and other cell-protective
agents, the performance of sexed spermatozoa (having undergone

a more rigorous treatment compared with conventional unsorted
spermatozoa) may be improved to a point at which such benefits
could outweigh any potentially negative effects from glucose;

however, this was not the case.
We conclude that adding the sperm motility enhancers CA

and TH can improve cleavage and embryo development rates

without increasing polyspermy. In addition, shortening
oocyte–sperm coincubation resulted in similar overall embryo
performance rates compared with the prolonged (18 h)

interval, facilitating the decision of choosing one particular
protocol over another. Furthermore, the data from the present
study suggest that SOF-FERT increases cleavage, blastocyst
formation, embryo quality and hatching rates over M199-

FERT.
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