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Abstract. This work proposes the use of Information Theory for the characterization of vehicles behavior
through their velocities. Three public data sets were used: (i) Mobile Century data set collected on Highway
I-880, near Union City, California; (ii) Borlänge GPS data set collected in the Swedish city of Borlänge;
and (iii) Beijing taxicabs data set collected in Beijing, China, where each vehicle speed is stored as a time
series. The Bandt-Pompe methodology combined with the Complexity-Entropy plane were used to identify
different regimes and behaviors. The global velocity is compatible with a correlated noise with f−k Power
Spectrum with k ≥ 0. With this we identify traffic behaviors as, for instance, random velocities (k � 0)
when there is congestion, and more correlated velocities (k � 3) in the presence of free traffic flow.

1 Introduction

Vehicular Ad-hoc Networks (VANETs) are mobile ad-hoc
networks where the vehicles interact among them or with a
planned road infrastructure. In both cases, the vehicles are
able to send, receive or redirect data [1]. The analysis of
such networks requires understanding the variation of in-
dividual vehicles velocities [2], among other features. The
main motivation to study the behavior of vehicles veloci-
ties is the numerous applications that use this information
to propose, for instance, new prediction models [3], traf-
fic simulators, roads conditions estimators, and real-time
predictors of vehicles flow.

Characterizing velocity variability is a challenging task
due to its dynamic nature. Most available models intro-
duce random noise in their formulation [4]. We will provide
a better suited description, based on real-world observa-
tions, that may be used to improve both descriptions and
forecasts.

The problem addressed in this work can be stated as
follows:

“What can be inferred about the global behavior
of vehicles through the mere observation of their
velocities”.

This problem can be further assessed by answering the
following questions: (i) are the dynamics governing vehi-
cles velocities stochastic, or are they deterministic chaos?
(ii) Are a few vehicles velocities able to characterize the
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traffic globally? The latter question is related to the im-
portant problem of sampling, while the former deals with
the ability of making inferences using the data at hand.

In this work, velocities of each vehicle were analyzed
as a time series, and used to characterize the global ve-
locity behavior. Two Information Theory quantifiers were
used: the Shannon Entropy [5] and the Statistical Com-
plexity [6,7]. Each time series is mapped into a point in the
causality Complexity-Entropy plane evaluated using the
Bandt-Pompe methodology [8]. Entropy is the system de-
gree of “disorder”, and the Statistical Complexity assesses
the presence of structure in a process. This mapping al-
lows to distinguish between determinism and randomness
of vehicle velocities [9,10].

With this methodology we verify that the global be-
havior of velocities is compatible with correlated noise f−k

power spectrum, with k > 0 [10], and that the greater
traffic congestions present uncorrelated velocities, i.e., the
velocities present a random behavior. On the order hand,
free-flowing traffic presents more correlated velocities.

Three public data sets with different characteristics
were used in this study: Mobile Century data set col-
lected on Highway I-880, near Union City, California [11].
Borlänge GPS data set collected in the Swedish city
of Borlänge [12]. Beijing taxicabs data set collected in
Beijing, China [13].

It is important to highlight that we use only the in-
dividual vehicle velocities with no additional assumptions
or communication requirements. Other works, as in refer-
ence [14], characterize traffic behavior using data shared
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among vehicles. Based on this communication, vehicles are
described as forming a large network and, subsequently,
it topology is analyzed. This aspect was not considered
in our work because we are interested in using the sim-
plest data available in a VANET, i.e., the vehicle veloc-
ities. Other communication-dependent topology analyses
will be considered in future works.

Among the contributions of this work we highlight:
the use of Information Theory concepts to analyse vehic-
ular networks data; the proposition of a methodology to
characterize vehicle velocities from real data sets; and the
characterization of vehicle velocities behavior through the
causality Complexity-Entropy plane.

This work is organized as following: Section 2 presents
the related work. Section 3 explains the Information The-
ory quantifiers. Section 4 discusses the VANETs data set
used. Section 5 shows the stochastic f−k power spectrum
data. Section 6 relates the results obtained. Finally, Sec-
tion 7 concludes the manuscript.

2 Related work

Many works employed the Complexity-Entropy plane for
the characterization of time series in a diversity of appli-
cations: stock market evolution [15], brain behavior [15],
climate change [16], and vehicles velocities variation [2].

Liao and Shang [2] analyzed the traffic congestion in-
dex (TCI) of Beijing which is defined by the Beijing Mu-
nicipal Commission. The TCI is computed using informa-
tion gathered by specialized devices (in vehicles, traffic
lights, etc.), all around the city. This index indicates the
traffic state as congested or not. Using the Bandt-Pompe
methodology, the authors showed that the Complexity-
Entropy plane is the best way to classify the levels of traf-
fic congestion using the TCI as reference, when compared
to other methods: R/S analysis (Rescaled Range) [17] and
DFA method (Detrended Fluctuation Analysis) [18]. The
former is a statistical method used to evaluate the nature
and the magnitude of the variability of the data over time,
while the latter determines the behavior of data scale con-
sidering some trends, regardless their origin or shape. Dif-
ferently from our approach, reference [2] does not attempt
at characterizing the underlying dynamics of the process.

Liao and Shang present the position of each velocity
group in the plane every day of the week at two moments
(Morning and Evening), and correlate this information
with that provided by the TCI. In our work, a global char-
acterization is presented based solely on data measured
from selected vehicles. We conclude that vehicle veloci-
ties are compatible with correlated noise with f−k Power
Spectrum, k ≥ 0, so we can use this result to improve
the vehicle traffic studies, for instance, vehicle behavior
characterization or traffic simulation tools.

Other approaches used to characterize the vehicles ve-
locities are:

– Shang et al. [19] use the fractal dimension to analyze
vehicles velocities in the Beijing Yuquanying highway

data set collected by Highway Performance Measure-
ment Project, in Beijing, China. The data were col-
lected by using sensors on the roads which sampled
the velocities in intervals of 20 s. Results showed that
the traffic, in the scenarios considered, have multifrac-
tal characteristics and the degree of fractality increases
proportionally to traffic congestion. Moreover, the lo-
cal Hölder exponent (or roughness) [20] was used to
predict heavy traffic. This exponent can be used to
measure the local rate of fractality.

– Pappalardo et al. [3] compared human and vehicle mo-
bility patterns, trying to apply models of the former to
the latter. The results were twofold: (i) known models
of human mobility can be refined to treat the vehicles
mobility; and (ii) they proved that the GPS data are
an adequate representation of vehicles mobility. The
data set used was collected in Italy with information
about 150 000 vehicles and approximately 10 million
trajectories.

– Tang et al. [21] characterized time series of vehi-
cle velocities using Complex Networks. They trans-
formed the time series into a new series based on
the reconstruction of the phase space. Then, complex
networks of traffic flow were built and analyzed con-
sidering the degree distribution, density, and cluster-
ing coefficient. The results detected that the networks
present communities structures, i.e., the nodes of the
networks are grouped so that each group is highly con-
nected. The data set used was collected in the city of
Harbin, China, during one complete day with sampling
at 2 min, resulting in 720 samples.

We use data sets where the vehicles themselves register
their GPS location allowing the extraction of velocities
information. On the one hand, data collected by GPS are
more susceptible to errors, require a more accurate treat-
ment and, hence, more robust methods for their analy-
sis. On the other hand, they are the least demanding in
terms of new infrastructure requirements. We use Informa-
tion Theory concepts, specifically, the Shannon Entropy,
the Statistical Complexity evaluated using Bandt-Pompe
symbolization method and the causal Complexity-Entropy
plane to characterize the vehicles velocities. With this,
we provide a more detailed analysis of the global vehicles
velocities dynamics by identifying if the velocities have
chaotic or stochastic behavior. This allows us to compare
the velocities behavior with colored noises, just observing
their location on the causal Complexity-Entropy plane.

3 Time series and information theory
based quantifiers

3.1 Shannon entropy and statistical complexity

Information Theory quantifiers are measures able to char-
acterize properties of the probability distribution function
(PDF) associated with an observable or measurable quan-
tity. Entropy, regarded as a measure of uncertainty, is
the most paradigmatic example [5]. Kolmogorov and Sinai
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converted Shannon’s Information Theory into a powerful
tool for the study of dynamical systems [22].

Let x be a discrete random variable with N < ∞ pos-
sible values X = {xj : j = 1, . . . , N} whose distribution
is characterized by the probability function P = {pi : i =
1, . . . , N}. The widely known Shannon logarithmic infor-
mation measure [5] is

S[P ] = −
N∑

i=1

pi ln pi, (1)

where a ln a = 0 if a = 0 by definition. The Shannon
entropy is related to the information associated with the
physical process described by P . If S[P ] = 0 the knowl-
edge about the underlying process described by P is max-
imal and the possible outcomes can be predicted with
complete certainty. On the other hand, our knowledge is
minimal for a uniform distribution Pe = {pi = 1/N, ∀i}
since every outcome exhibits the same probability of oc-
currence. It is well-known, however, that the degree of
structure present in a process is not quantified by ran-
domness measures and, consequently, measures of statis-
tical or structural complexity are necessary for a better
understanding of chaotic time series [23].

There is no universally accepted definition of com-
plexity. Intuitively, complexity should be related to the
amount of structure or the number of patterns present in
a system. One would like to have some functional C[P ]
able to capture the “structuredness” in the same way as
Shannon’s entropy [5] captures randomness.

The perfect crystal and the isolated ideal gas are two
typical examples of systems with minimum and maximum
entropy, respectively. However, they are also examples of
simple models and therefore of systems with zero com-
plexity, as the structure of the perfect crystal is completely
described by minimal information (i.e., distances and sym-
metries that define the elementary cell) and the probabil-
ity distribution for the accessible states is centered around
a prevailing state of perfect symmetry. On the other hand,
all the accessible states of the ideal gas occur with the
same probability and can be described by a “simple” uni-
form distribution. According to López-Ruiz et al. [6], and
using a tautology, an object, a procedure, or system is said
to be complex when it does not exhibit patterns regarded
as simple. It follows that a suitable complexity measure
should vanish both for completely ordered and for com-
pletely random systems and cannot only rely on the con-
cept of information (which is maximal and minimal for
the above mentioned systems).

A suitable measure of complexity can not be made in
terms of just “disorder” or “information”. It seems rea-
sonable to propose a measure of “statistical complexity”
by adopting some kind of distance to a reference probabil-
ity distribution, in particular to the uniform distribution
Pe [6,7]. This motivates introducing, as a special distance-
form, the so-called “disequilibrium-distance” Q[P, Pe]. In
this respect, Lamberti et al. [7] introduced an effective sta-
tistical complexity measure that is able to detect essential
details of important dynamics. This statistical complexity

measure is defined following the functional product pro-
posed by López-Ruiz et al. [6]:

CJS [P ] = HS [P ]QJS [P, Pe] (2)

where
HS [P ] = S[P ]/Smax (3)

is the normalized Shannon entropy HS ∈ [0, 1] with
Smax = S[Pe] = lnN , and the disequilibrium QJS is de-
fined in terms of the extensive (in the thermodynamical
sense) Jensen-Shannon divergence. Namely,

QJS [P, Pe] = Q0 JS [P, Pe]

= Q0

{
S

[
P + Pe

2

]
− 1

2
S[P ] − 1

2
S[Pe]

}
,

(4)

and Q0 is a normalization constant equal to the inverse of
the maximum possible value of JS [P, Pe] so that QJS ∈
[0, 1]. Q0 is obtained when one of the probabilities of P is
equal to one and the remaining are equal to zero.

The Jensen-Shannon divergence quantifies the differ-
ence between probability distributions, and is well-suited
to compare the symbol composition between different se-
quences [24]. The statistical complexity of a system is null
in the opposite extreme situations of perfect knowledge
(perfect crystal), and maximal randomness (ideal gas),
whereas a wide range of possible degrees of physical struc-
ture does exist between these extreme configurations.

The statistical complexity in equation (2) is not a triv-
ial function of the entropy because it measures the inter-
play between the information stored by the system and the
distance from equipartition (measure of a probabilistic hi-
erarchy between the observed parts) of the probability dis-
tribution of its accessible states [6]. Furthermore, a range
of possible statistical complexity values does exist for any
non-null HS value [25], that is Cmin

JS ≤ HS ≤ Cmax
JS , mean-

ing that additional information related to the dependence
structure between the components of the system and the
emergence of nontrivial collective behavior is provided by
evaluating the statistical complexity.

Moreover, it should be noted that statistical complex-
ity fulfills two additional properties required for a suitable
definition of complexity [26]: (1) the quantifier must be
measurable in different physical systems; and (2) it should
allow for physical interpretation and comparison between
two measurements. Indeed, the definition of complexity in
equation (2) also depends on the scale. For a given system
at each scale of observation, a new set of accessible states
appears with its corresponding probability distribution, so
that complexity changes and therefore different values for
HS and CJS are obtained.

3.2 Bandt-Pompe symbolization method

The evaluation of HS and CJS requires the definition of a
probability distribution P associated with the time series.
Bandt and Pompe [8] introduced a simple method to de-
fine this probability distribution taking into account the
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time causality of the process. This approach is based on
the symbol sequences that arise naturally from the time
series, replacing the observed series with a sequence of
ranks.

Given a time series X (t) = {xt : t = 1, . . . , M}, an
embedding dimension D ≥ 2 (D ∈ N), and an embedding
delay time τ ∈ N, the ordinal pattern of order D (pattern
length) generated by

(s) �→ (
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
, (5)

is considered. For each time instant s, we assign a D di-
mensional vector that results from the evaluation of the
time series at times s− (D − 1)τ, . . . , s− τ, s. Clearly, the
higher the value of D, the more information about the past
is incorporated into the ensuing vectors. By the ordinal
pattern of order D related to the time instant s we mean
the permutation π = {r0, r1, . . . , rD−1} of {0, 1, . . . , D−1}
defined by:

xs−rD−1τ ≤ xs−rD−2τ ≤ . . . ≤ xs−r1τ ≤ xs−r0τ . (6)

In this way the vector defined by equation (5) is converted
into a unique symbol π. In order to get a unique result
we set ri < ri−1 if xs−ri = xs−ri−1 . Equal values have
probability zero if the values of xt follow a continuous
distribution.

Thus, for all the D! possible permutations π of order
D, their associated relative frequencies can be naturally
computed by the number of times this particular order
sequence is found in the time series divided by the total
number of sequences. The probability distribution P ≡
{p(π)} is defined by

p(π) =
#{s of type π : s ≤ M − (D − 1)τ}

M − (D − 1)τ
, (7)

where # is the cardinality of the set. This probability dis-
tribution is linked to the sequences of ranks resulting from
the comparison of consecutive (τ = 1) or non-consecutive
(τ > 1) points, allowing for the empirical reconstruction
of the underlying phase space [8].

It is worth noting that the method is rank-based, and
the ordinal pattern probability distribution is invariant
with respect to monotonic transformations. Thus, non-
linear drifts or scaling artificially introduced by a mea-
surement device do not modify the quantifier estimations.
This property is highly desired for the analysis of exper-
imental data and natural time series analysis [16]. Nev-
ertheless, the rank-based description unavoidably results
in loss of information, which is however common to every
nonparametric rank based statistical method. Additional
advantages of the method reside in (i) its simplicity (few
parameters are needed: the pattern length/embedding di-
mension D, and the embedding delay τ ; and (ii) the ex-
tremely fast nature of the calculation process [27].

The Bandt-Pompe methodology can be applied not
only to time series representative of low dimensional dy-
namical systems but also to any type of time series (regu-
lar, chaotic, noisy, experimentally obtained or artificially
generated). In fact, the existence of an attractor in the

D-dimensional phase space is not assumed. The only con-
dition for the applicability of the Bandt-Pompe method-
ology is a very weak stationary assumption, that is, for
k = D, the probability for xt < xt+k should not depend
on t [8].

The probability distribution P is obtained once we
fix the embedding dimension D and the embedding delay
time τ . The former parameter plays an important role for
the evaluation of the appropriate probability distribution,
since D determines the number of accessible states D!,
therefore the length N of the time series must satisfy
the condition N 
 D! in order to obtain reliable statis-
tics. Bandt and Pompe [8] considered an embedding delay
τ = 1. Nevertheless, other values of τ might provide ad-
ditional information. Zunino et al. [28] showed that this
parameter is strongly related, when it is relevant, to the
intrinsic time scales of the system under analysis.

In this work we evaluate the normalized Shannon
entropy HS and the statistical complexity CJS using
the permutation probability distribution P ≡ {p(π)}
(the PDF-Bandt-Pompe), so that the former quantifier
is called permutation entropy and the latter permutation
statistical complexity.

3.3 The causality entropy-complexity plane

In statistical mechanics one is often interested in isolated
systems characterized by an initial, arbitrary, and discrete
probability distribution. Evolution towards equilibrium is
to be described, as the overriding goal. At equilibrium,
we can think, without loss of generality, that this state is
given by the uniform distribution Pe. The temporal evolu-
tion of the Shannon entropy and the statistical complexity
measure can be analyzed using the two-dimensional dia-
gram of HS and CJS versus time t. However, it is well-
known that the second law of thermodynamics states that
entropy grows monotonically with time (dHS/dt ≥ 0) in
isolated systems [29]. This implies that HS can be re-
garded to as an arrow of time, so that an equivalent way
of studying the temporal evolution of the statistical com-
plexity is through the analysis of CJS versus HS . In this
way, the normalized entropy-axis replaces the time-axis.
Furthermore, as we mention previously, it has been shown
that for a given value of HS , the range of possible sta-
tistical complexity values varies between a minimum Cmin

JS
and a maximum Cmax

JS , restricting the possible values of
the statistical complexity in this plane [25].

The entropy-complexity causality plane is defined as
the two-dimensional diagram obtained by plotting permu-
tation statistical complexity (vertical axis) versus the per-
mutation entropy (horizontal axis) for a given system [10].
The term “causality” reminds the fact that temporal cor-
relations between successive samples are taken into ac-
count through the PDF-Bandt-Pompe used to estimate
both Information Theory quantifiers.

This diagnostic tool was shown to be particularly effi-
cient at distinguishing between the deterministic chaotic
and stochastic nature of time series, since the permu-
tation quantifiers have distinctive behaviors for different
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types of dynamics. According to the findings obtained by
Rosso et al. [10], chaotic maps have intermediate HS val-
ues, while CJS reaches larger values, close to those of the
limit Cmax

JS . For regular processes, both quantifiers have
small values, close to HS = 0 and CJS = 0. Finally, totally
uncorrelated stochastic processes are in the planar loca-
tion associated with HS ≈ 1 and CJS ≈ 0, respectively.

Rosso et al. [30] also found that f−k power spectrum
correlated stochastic processes with 0 < k ≤ 3 are charac-
terized by intermediate permutation entropy and interme-
diate statistical complexity values between Cmin

JS and Cmax
JS .

Similar planar localization were also found for fractional
Brownian motion (fBm) and fractional Gaussian noise
(fGn) dynamics [9,10,30].

The planar localization for chaotic noise dynamics was
also studied by Rosso et al. [31,32]. It was shown that
the localization in the entropy-complexity causality plane
of the logistic map (fully developed chaos) contaminated
with uncorrelated or correlated additive noise of different
amplitude, changes from the original location towards the
location of pure noise as the noise amplitude increases,
but following quite close to the curve of maximum com-
plexity Cmax)

JS . This allows an easy identification of chaotic-
noise behavior.

3.4 On the time sample and causality H × C-plane

Dynamical systems may present different types of behav-
ior depending on the time scale. Therefore, the scale and
those system parameters values at which any study is
made must be specified. The study of dynamical systems
throughout the use of observed data, usually time series,
is quite frequent.

On the one hand, when the independent variable, usu-
ally the time, is discrete, the dynamical process under
study is an iterated map that generates the correspond-
ing time series. In this case, each time step is the natural
sampling time. For continuous time, dynamical processes
characterized by differential equations produce data in a
continuous fashion, a type of process also known as a dy-
namical flow. Dynamical flows are often the result of a sys-
tem described by ordinary differential equations (ODEs),
and their outcome can be obtained by integrating these
ODEs. Such resolution must be performed at specified in-
tegration times and, as a consequence, there is a natural or
ideal sampling time at which the type of dynamics under
study can be clearly identified.

The Causal Statistical Complexity, CJS , is obtained by
first computing the Band and Pompe probability distri-
bution function (PDF) associated to the time series [8],
and then computing Information Theory quantifiers: en-
tropy, HS and disequilibrium Q [6,7]. This PDF is not a
dynamical system invariant, but under mild conditions it
exhibits little variation with respect to the total length
N of the time series. The condition for this stability is
that N 
 D!, where D is the pattern length under anal-
ysis. Besides the Causal Statistical Complexity, the Nor-
malized Permutation Entropy (Normalized Shannon En-
tropy), HS , is another useful quantifier based on the Bandt

and Pompe PDF. With these elements, Rosso and collab-
orators introduced the causal Entropy-Complexity plane
H × C [10]. This plane is bounded between the curves of
minimal and maximal complexity for each value of en-
tropy [25]. These curves are solely defined by the dimen-
sion of the PDF.

Again, a dynamic produces a time series that is turned
into a PDF that, in turn, becomes a point in the H × C-
plane. The position of such point is related to the type of
(unobserved) dynamics under study. The relationship be-
tween this localization and the sampling time is, therefore,
indirect, as the Bandt and Pompe PDF is the central link
between the dynamics and the point in the H× C-plane.

The signal with which the PDF is built may be
smoother than the original one, if the sampling time is
much lower than the optimal, and in consequence its time
extension is not enough for revealing the real generat-
ing dynamics. This may lead to a characterization in the
H × C-plane suggesting a signal correlation much higher
than the true one, e.g., a regular dynamic. Contrarily, if
the signal is oversampled, the characterization may corre-
spond to a signal with a smaller correlation (or even null
correlation) than the true generating dynamics, i.e., to a
noisier system.

Rosso and collaborators analysed the problem of opti-
mal time sampling, and proposed using the one that maxi-
mizes the causality statistical complexity [28,33]. This can
be easily obtained in two cases, namely when the data is
obtained integrating ODEs, and when the original signal
is oversampled. The last situation corresponds to experi-
mental setups for which there is control over the measuring
device and over the process under study.

When the analyst receives the signal already measured,
the usual course of action is assuming that it was optimally
sampled, as this is the only available information. At most,
small changes in the sample time are allowed, but no new
information can be produced by finer sampling times; this
could produce the change to another time scale and, as
a consequence, to a different dynamical behavior. Exper-
imental setups, therefore, lead to rather stable points in
the causality H× C-plane (for a given N and D), as they
are characteristic of the available information about the
underlying dynamics which generates the corresponding
time series under analysis. Bearing this in mind, one is
able to compare such points and infer about the unob-
served dynamics through the information available to the
analyst, even when the time series are obtained at different
sampling times.

4 VANETs data processing

4.1 Data sets description

As mentioned, three real data set were used to character-
ize the velocities behavior. Figure 1 illustrates the road
structure of each data set, as formed by the collection of
all GPS positions of each registered vehicle.
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(a) Mobile Century (b) Borlänge (c) Beijing

Fig. 1. All GPS position of each vehicle registered in each data set.

– Mobile Century data set collected on Highway I-880,
near Union City, California, between Winton Ave. to
the North and Stevenson Blvd. to the South [11]. This
data set (Fig. 1a) covers part of a highway with a re-
duced number of crossroads, and the information de-
scribes little traffic congestion.

– Borlänge GPS data set collected in the Swedish city of
Borlänge [12]. This data set (Fig. 1b) covers a central
business district with many avenues with some sec-
ondary streets, and describes a moderate occurrence
of traffic congestion.

– Beijing taxicabs data set collected in Beijing,
China [13]. This data set (Fig. 1c) covers a central
business area with a high density of vehicles, and de-
scribes a greater occurrence of traffic congestion.

In order to use these data sets in our characterization, it
was necessary to extract or calculate the vehicles velocities
in m s−1. This action is described in the following sections.

4.1.1 Mobile Century data set

The Mobile Century data set contains 77 individual GPS
logs, i.e. 77 vehicles monitored, extracted from Nokia
N95 mobile devices. They were collected in February 8,
2008, on Interstate 880, California, between 10:00 AM and
6:00 PM. The information available for each vehicle, col-
lected approximately at each 3 s, are time, latitude, lon-
gitude and velocity in miles per hour [11].

Listing 1 presents the information of a single vehi-
cle. The first column shows the Unix time in millisec-
onds (ms). The Unix time is a system to describe time
instants, which is defined as the number of seconds that
have elapsed since January 1, 1970 [34]. The second and
third columns present the latitude and longitude coordi-
nates, respectively. The last column shows the vehicle ve-
locity in mi/h, which was later converted to m s−1.

Listing 1. Part of mobile century data set.

. . .
1202497202837 , 37 .6004328519 , −122 .0637571325 , 0 .009
1202497206836 , 37 .6004329358 , −122 .0637568810 , 0 .010
1202497209837 , 37 .6004329358 , −122 .0637566295 , 0 .013
1202497212837 , 37 .6004329358 , −122 .0637563781 , 0 .015
1202497216826 , 37 .6004330196 , −122 .0637560428 , 0 .016
1202497220826 , 37 .6004331872 , −122 .0637556237 , 0 .017
. . .

4.1.2 Borlänge GPS data set

The Borlänge GPS data set contains 3077 intersection
connected by 7459 roads. Data were collected during two
years and involved 200 vehicles. Vehicles were equipped
with a GPS and monitored in a radius of 25 km from
the center of the city. Their positions were recorded at
intervals of, approximately, 20 s. Only 24 vehicles and
their 420 814 GPS observations [12] were used.

Each entry is distributed in three different files:
mobility, nodes and nodepos. mobility registers the in-
stants of each GPS observation, as illustrated in Listing 2.
The first column identifies the vehicle, in this sample the
vehicle is 4. The second column relates the information re-
garding the day of observation of the vehicle, in this sam-
ple it is the first one. Specifically to vehicle 4, the data
set registered 150 more days. The third column shows the
trip number of the vehicle; in this sample, it is the second
trip vehicle 4 in the first day. The last two columns are,
respectively, the start and end time of each GPS interval
observation; this will be used to estimate the velocities.

Listing 2. Part of mobility file of Borlänge GPS data set.

. . .
4 , 1 , 2 , 2000 −11 −10 14:24:11 , 2000 −11 −10 14:24:19
4 , 1 , 2 , 2000 −11 −10 14:24:19 , 2000 −11 −10 14:24:33
4 , 1 , 2 , 2000 −11 −10 14:24:33 , 2000 −11 −10 14:24:59
4 , 1 , 2 , 2000 −11 −10 14:24:59 , 2000 −11 −10 14:25:18
4 , 1 , 2 , 2000 −11 −10 14:25:18 , 2000 −11 −10 14:25:23
4 , 1 , 2 , 2000 −11 −10 14:25:23 , 2000 −11 −10 14:26:17
4 , 1 , 2 , 2000 −11 −10 14:26:17 , 2000 −11 −10 14:26:32
4 , 1 , 2 , 2000 −11 −10 14:26:32 , 2000 −11 −10 14:26:32
4 , 1 , 2 , 2000 −11 −10 14:26:32 , 2000 −11 −10 14:26:36
. . .

http://www.epj.org
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The nodes file (Listing 3) has the same number of
rows of the mobility one. Each line has two values used
to identify the initial and final position considering the
times presented in the correspondent line in mobility file.

Listing 3. Part of nodes file of Borlänge GPS data set.

. . .
316 1076
1076 316
316 792
792 2611
2611 321
321 1823
1823 318
. . .

The nodepos file (Listing 4) presents the real latitude
and longitude coordinates of each identifier in the nodes
file. The first column shows the position identifier. The last
two columns are the latitude and longitude coordinates.

Listing 4. Part of nodepos file of Borlänge GPS data set.

. . .
316 15 .443687 , 60 .476045
1076 15 .445492 , 60 .474991
792 15 .442580 , 60 .475656
2611 15 .440816 , 60 .477419
321 15 .440701 , 60 .477410
1823 15 .438019 , 60 .476698
318 15 .441260 , 60 .475159
. . .

Combining all files (as presented in Listings 2, 3,
and 4), we infer that vehicle 4 traveled from point 316
([latitude, longitude] = [60.476045, 15.443687]) to 1076
([latitude, longitude] = [60.474991, 15.445492]), leaving
at 14 h 24 min 11 s in 10 November 2000 and arriving
at 14 h 24 min 19 s, the same day, on its second trip, first
day of recording.

This data set has not explicitly the velocity informa-
tion. To use this information in our characterization, we
calculate the average speed of each vehicle by using the
time and position of each vehicles in each trip.

4.1.3 Beijing taxicabs data set

The Beijing taxicabs data set contains routes information
of 28.000 taxis, approximately 42% of all taxis in Beijing,
China, at the time of the data collection. This data set
was available until December 2013 by Complex Engineered
Systems Lab1. Data collection was carried out during a
month sampling, on average, every 60 s. The data set is
divided in 30 binary files, each for one day of collection.

Listing 5 presents the information of all vehicles. The
first column is the vehicle identifier. The second column
presents the Coordinated Universal Time UTC [35]. The
third and fourth columns contain the latitude and lon-
gitude coordinates, respectively. The last column is the
velocity, however the unit of measure is not indicated, so
it was ignored. We obtained the average speed of each
vehicle using its time and position in each trip.

1 http://sensor.ee.tsinghua.edu.cn/datasets.html.

Velocities
Extraction

Discard 
Outliers

Standardization of
Measurement

Are there
Outliers?

Discard of 
NaNs e Infs

Yes

No

Fig. 2. Methodology for data processing.

Listing 5. Part of Beijing taxicabs data set.

. . .
156 , 1241107200 , 4000311 , 11630912 , 411
157 , 1241107200 , 3999001 , 11648450 , 1039
158 , 1241107200 , 3997923 , 11644893 , 771
159 , 1241107200 , 3993850 , 11642839 , 1034
160 , 1241107200 , 3989621 , 11647153 , 481
161 , 1241107200 , 3997600 , 11641126 , 370
162 , 1241107200 , 3992247 , 11629478 , 668
. . .

4.2 Data set processing

Data sets were previously processed in order to analyze
the vehicle velocities through the causality Complexity-
Entropy plane. The purpose is to extract the correct vehi-
cle velocities information minimizing the presence of errors
and outliers. The methodology is presented in Figure 2.

The first phase consists of extracting or calculating
the velocities, if they are available in the data set or not,
respectively. In the second phase NaNs and Infs are dis-
carded. NaNs mostly appear when there is a division by
zero, for instance when the GPS registers two different
positions occurring at the same time (instantaneous dis-
placement). Infs mostly appear when the GPS registers
extremely large displacements in a very short time span.

Outliers are identified in the third phase, as those ob-
servations which are discrepant from the majority and
present unreal velocities, for instance some velocities are
bigger than 200 km h−1. If there are outliers the Dis-
card outliers is used to discard them, otherwise we pass
directly to Standardization of Measures. In order to com-
pare all data sets we include this last step to standardize
the data in the same unit, in our case m s−1.

The first data set used, Mobile Century, includes ve-
locities in mi/h, and since neither wrong nor discrepant
observations were found, only conversion to m s−1 was
required.

The second data set used, Borlänge GPS, required a
thorough processing. Considering that all GPS samples
are correct, in phase one, the velocities v of each vehicle
in each trip were calculated as the ratio of the vehicle dis-
placement Δs to the elapsed time Δt, i.e., v = Δs/Δt.
The value of Δs in m was computed as the shortest dis-
tance between two points (latitude, longitude) using the
R platform [36] which implements the Meeus [37] method.

All files (mobility, nodes and nodepos) were used to
calculate the velocities. Table 1 shows the time, displace-
ments and velocities values of the example presented in
Section 4.1.2.

http://www.epj.org
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Table 1. Time, displacements and velocities values of some
samples, Borlänge GPS data set.

File
Time Displacement Velocity
line (m) (m s−1)

1 14 229.53 16.39
2 26 129.41 04.97
3 19 271.84 14.30
4 05 12.76 02.55
5 54 306.45 05.67
6 15 394.83 26.32
7 00 300.00 NaN
8 04 306.45 76.61
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Fig. 3. Boxplot of all individual velocities of all vehicles.

Wrong samples were removed in phase two. Inconsis-
tencies in the data set can be identified in Table 1. For
instance, line 7 would lead to a division by zero; all simi-
lar samples were discarded.

Outliers were identified and discarded in phase three
using a majority rule and common sense. For instance,
line 8 on Table 1, we observe that the vehicle a velocity
close to 76 m s−1 (273 km h−1). To identify the outliers
samples we use the Boxplot of all velocities of all vehicles
(Fig. 3).

Figure 3 shows the presence of velocities unfeasible for
taxis (6000 m −1 or 21 600 km −1). To avoid an arbitrary
discarding of velocities we analyze the data set in detail.
Each trip is characterized by the mean velocity, and the
lower and upper quartiles per trip were computed, and
trips outside the interquartile range were discarded. The
collection of all remaining trips is now analyzed, and ob-
servations above the upper quartile are considered out-
liers and discarded. The fourth phase was not necessary
because the velocities are already in m s−1.

The last data set used, Beijing taxicabs, needs some
processing. In phase one, the data set (30 days log) had
to be converted from binary to text. Many zero velocities
were identified. This occurs because taxis are not always
in motion. Therefore, in analogy with Borlänge GPS data
set, in phase two, we organized the information by trips.
Each trip starts when the velocity changes from zero to
any other value and ends when the velocity returns to
zero. In phase three the velocities that are distant from the

v1
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v14
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v29
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Fig. 4. Boxplot of velocities in Beijing database before the
treatment.
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Fig. 5. Interpolation process to sample of Borlänge GPS data
set.

majority were identified. After that, they are discarded in
the intermediate phase (Discard of outliers). To identify
the outliers samples we use the Boxplot of all velocities of
all vehicles (Fig. 4). All velocities above the upper quartile
were discarded. Phase four was not necessary because the
velocities already in m s−1.

4.3 Velocities as time series

Once velocities are computed and validated, the next step
is to normalize all data sets as time series. The time series
are the concatenation of the velocities from all interpo-
lated trips for each vehicle, discarding stopped vehicles.
Observations must be equally sampled in order to facil-
itate the Information Theory quantifiers comparison, so
Piecewise Cubic Hermite Interpolating Polynomials were
used [38].

Figure 5a presents the interpolation of the velocities
values from Table 1 after processing. The new velocities
were obtained sampling at a constant intervals TS = 14 s,
as shown in Figure 5b. This interval value was based on
the average time interval considering all valid trips.

The same interpolation processing was used to Mobile
Century and Beijing taxicabs data set. We use, respec-
tively, intervals TS = 3 s and TS = 60 s. Figure 6 presents
the velocities after interpolation.

http://www.epj.org
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Fig. 6. Result of interpolation process to samples of Mobile
Century and Beijing taxicabs data sets.

(a) White (k = 0) (b) Pink (k = 1)

(c) Brown (k = 2) (d) Black (k > 2)

Fig. 7. Examples of colored noises.

The initial time series sizes are 1795, 1191, and 3463 for
the Borlänge GPS, Mobile Century and Beijing taxicabs
data sets, respectively. After interpolation, the resulting
time series sizes are 19 456, 8200, and 14 461. Different
time series sizes are considered because each real data set
presented different number of samples, so we consider all
of them without compromising the results and analysis
presented. In all cases, the size of time series M is much
greater than the embedding dimensions (pattern length)
D = 4, respecting the constraint of the method wherein
(M 
 D!), as presented in Section 3.

5 Stochastic f−k power spectrum data

Schroeder [39] ranked noises, observing their Power Spec-
tral densities and assuming that they can be described by
a frequency function f−k. He identified four groups: white,
pink, brown, and black noise, as depicted in Figure 7.

– In the white noise (k = 0, Fig. 7a), the power spectrum
is independent of the frequency, i.e., is constant. Its
name comes from the analogy with white light, which
possess all frequencies of the visible spectrum.

– Pink noise (k = 1, Fig. 7b) is known as 1/f noise and
can be found in various physical processes. It is com-
monly used in music and arts, for example, as input in

research on hearing and acoustics [40]. It is similar to
natural noises, as the rain or waterfall sounds [41].

– The brown noise (k = 2, Fig. 7c) can be generated by
the integration of white noise over time. Example of
this noise is the Random Way, i.e., a random choice is
taken to determine the direction of a movement [42].

– The black noise (k > 2, Fig. 7d) is known as silent
noise, and can be used to model natural disasters such
as floods, droughts, electrical failures etc. Negligible
powers predominate in its frequency spectrum, except
for a few narrow bands.

In order to compare VANETs data with the stochastic
ones, we generate the noises with f−k as in reference [10]:
(a) a function of the statistical software R [36] is used to
produce pseudo random numbers in the interval [−0.5, 0.5]
with an (i) almost flat power spectrum; (ii) uniform prob-
ability distribution function; and (iii) zero mean value.
(b) Then, the fast Fourier transform (FFT) y1

k is obtained
and multiplied by f−k/2, yielding y2

k. (c) Now, y2
k is sym-

metrized so as to obtain a real function and then the per-
tinent inverse FFT xj is obtained, after discarding the
small imaginary components produced by numerical ap-
proximations. The ensuing time series xj has the desired
power spectrum.

6 Results and discussions

In this proposal, we associate a probability distribution
function to time series by Bandt-Pompe symbolization
(see Sect. 3). This method considers a temporal causality,
by comparing the current values with their neighbours in
the time series. Bandt and Pompe [8] suggest to use an
embedding dimensions between 3 and 7. Thus, we use the
number of embedded dimensions (D) equal to 4, and the
embedding delay time equal to 1.

Figure 8 presents the probability distribution functions
of patterns from Mobile Century, Borlänge GPS and Bei-
jing taxicabs data sets. For instance, the pattern 0123
means that the vehicle velocity in 4 samples increased,
for instance, t0 → v = 5 m s−1, t1 → v = 10 m s−1,
t2 → v = 15 m s−1, and t3 → v = 20 m s−1. Figure 8b
shows that the probability of this pattern is close to 15%,
in the Borlänge GPS data set.

Observing the probabilities functions in Figure 8 it is
possible to identify differences among the data sets. Specif-
ically, Figure 8a with Mobile Century data set presents
high values associated to patterns 0123 and 3210. This
occurs because the samples were collected in a highway,
so the velocities do not present erratic variations as the
vehicles always increase or decrease their velocities. In the
same way, but in a smaller proportion, Figure 8b shows
that the Borlänge GPS data set also presents high values
in patterns 0123 and 3210. In this case, this occurs because
the samples were collected in a region with highways and
city roads. Finally, Figure 8c, Beijing taxicabs data set,
presents a uniform variation in the probabilities of veloc-
ities patterns. This occurs because the samples were col-
lected in a central business region with high traffic jams

http://www.epj.org
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Fig. 8. Examples of probability distribution functions from the patterns of the three data sets.
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Fig. 9. Complexity-Entropy plane. (a) View of all data sets.
(b) Zoom of Borlänge and Beijing data sets.

and consequently more velocities variation. Traffic behav-
ior can be further analyzed using these distributions to
compute the permutation Normalized Shannon Entropy
and permutation Statistical Complexity.

Figure 9 shows the causality Complexity-Entropy
plane with embedded dimensions D = 4. The informa-
tion from the three vehicles data sets (77 circle points from
Mobile Century), 12 cross points from Borlänge GPS, and
20 times points from Beijing taxicabs) is presented along
with colored noise f−k, k = {0, 0.5, 1, 1.5, 2, 2.5, 3} (trian-
gle points). The dashed line was used to clarify the data
visualization.

It is noticeable that vehicles cluster, and that each data
set is closer to a different colored noise. This is an impor-
tant result because all inference about colored noise can
be used to traffic behavior. Specifically, the Mobile Cen-
tury vehicles (Fig. 9a) range in the interval 2.5 ≤ k ≤ 3,
that is, between the brown and black noises. In this case,
we can infer that the velocities in highways are highly cor-
related. Additionally, we can associate this range with a
persistent Fractional Brownian Motion (2 < k < 3), i.e.,
a long memory processes [10].

Figure 9b is a zoom over the Borlänge GPS observa-
tions, which lie close to the brown noise. We observe that
there are some regions with high concentration of vehicles
and others free of them. In this kind of scenario, the veloc-
ities are less correlated when compared with the previous
one. This behavior can be associated with a antipersistent
Fractional Brownian Motion (0.5 < k < 2), i.e., a short
memory processes [10].

Finally, Figure 9b shows a zoom of the Beijing taxi-
cabs observations, which lie close to the Pink Noise. We
can identify that the velocities in a busy city downtown,
i.e., with heavy traffic, are highly variable and poorly cor-
related. This behavior can be associated with a antiper-
sistent Fractional Brownian Motion or with a Fractional
Gaussian Noise (0.5 < k < 2) [10].

This is an important result because, in general, any
traffic behavior is simulated as random walk, i.e., a
stochastic process (white noise k = 0). However, as pre-
sented, this assumption is far from what is observed in
practice. Thus, traffic behavior simulation should be sim-
ulated with correlated noise f−k with 0.5 < k < 3, and
this study provides different values for different plausible
situations.

Based on the discussion of Section 3.4, we exemplify
that behavior for Mobile Century data set when the time
sampling TS = 3 s was increased three times (T ′

S = 9 s).
For TS = 3 s the points are located in the plane in the
range 0.64 ≤ H ≤ 0.73 and 0.21 ≤ C ≤ 0.24, which is
compatible with k-noise �2.87. In the case of T ′

S = 9 s
we have 0.75 ≤ H ≤ 0.85 and 0.15 ≤ C ≤ 0.20, which
is compatible with k-noise �2.68. The same analysis was
performed with the Borlänge GPS data set. The original
time sampling TS = 14 s was increased to T ′

S = 30 s.
For TS = 14 s the points are located in the plane in the
range 0.85 ≤ H ≤ 0.95 and 0.05 ≤ C ≤ 0.12, which is
compatible with k-noise �1.7. In the case of T ′

S = 30 s
we have 0.93 ≤ H ≤ 0.99 and 0.01 ≤ C ≤ 0.06, which is
compatible with k-noise � 1.3. These examples illustrate
how changes in the sampling rate may affect the observed
dynamics.

http://www.epj.org
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The Borlänge GPS data correlation is lost when sam-
pled at 60 s. This indicates that too much data is lost
in this case, and that such timescale is too far from the
optimal.

7 Conclusion

This work proposed a study to characterize the veloci-
ties behavior. This characterization is needed for a bet-
ter understanding of the underlying dynamics govern-
ing this process, and to improve the design of VANETs
applications. This characterization, differently from pre-
vious works, identifies the underlying global dynamics,
using velocities as the only source of information. We
used the Bandt-Pompe methodology to assign a prob-
ability distribution function (PDF) to time series that
describe the vehicles velocities. The characterization was
performed using two Information Theory concepts: En-
tropy and Complexity.

The data from vehicles were extracted from three data
sets: Mobile Century, Borlänge GPS and Beijing taxicabs.
These data sets were subjected to a number of transforma-
tions and imputations in order to have comparable data
as free of contaminated observations as possible. As we
have no control over the sampling rates, we rely on us-
ing the same interpolation technique on all data sets. This
sampling allows the characterization of the underlying dy-
namics, and they agree with the kind of process induced
by the physical topology and characteristics of each data
set. We, thus, consider this time as a good approximation
to the “optimal” time-sample in the sense that it cap-
tures the velocity time series representative of the correct
dynamics associated with the vehicle velocities set under
study. Clearly, different velocities data sets will have differ-
ent “optimal” time-sampling characteristics, lead to rather
stable points in the causality entropy-complexity plane, as
they are characteristic of the available information about
the underlying dynamics which generates the correspond-
ing time series under analysis, and, therefore, the points
can be compared.

We plotted the permutation entropy and permutation
statistical complexity from Bandt-Pompe probability dis-
tributions of vehicles velocities. We observe that the be-
havior of the velocities is similar to colored noise with k
ranging in the interval 0.5 ≤ k ≤ 3. Therefore we can in-
fer that the global behavior of velocities is compatible to
this noise. This is an important result because, in general,
any traffic behavior is simulated as random walk, i.e., a
stochastic process (white noise k = 0). This hypothesis
has been rendered inadequate, in real scenarios, by this
study.

The VANETs time series here analyzed allow to con-
clude that the data are generated by complex dynami-
cal systems with different global behavior at distinct time
scales; In particular, the correlation is lost in the Borlänge
GPS data set when the sampling rate is increased to 60 s.
This result is a clear indication that the sampling rate
plays a central role in the modeling of vehicles velocities:
as colored noise at short timescales, and as white noise at

long timescales. As white noise has no information, this
result highlights the importance of sampling the data at
optimal rates, which are typically high. Otherwise, the un-
derlying behavioral structure will be lost and the system
will not be characterized or identified.

Our next step consists in applying the proposed char-
acterization to other data sets. We intend to apply this
methodology to characterize the vehicle positions instead
velocities. Another work direction is the use of colored
noise to improve the trajectories prediction systems. Our
approach will be used to analyze different cycles along the
day, as in reference [2], provided more data are available.
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