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ABSTRACT: The purpose of this study is to evaluate the ability of two sets of global climate models (GCMs) derived from
the Coupled Model Intercomparison Projects Phase 3 (CMIP3) and Phase 5 (CMIP5) to represent the summer, winter, and
annual precipitation mean patterns in South America south of the equator and in three particular sub-regions, between years
1960 and 1999. Different metrics (relative bias, spatial correlation, RMSE, and relative errors) were calculated and compared
between both projects to determine if there has been improvement from CMIP3 to CMIP5 models in the representation of
regional rainfall. Results from this analysis indicate that for the analysed seasons, precipitation simulated by both CMIP3 and
CMIP5 models’ ensembles exhibited some differences. In DJF, the relative bias over Amazonia, central South America, eastern
Argentina, and Uruguay is reduced in CMIP5 compared with CMIP3. In JJA, the same occurs in some areas of Amazonia.
Annual precipitation is also better represented by the CMIP5 than CMIP3 GCMs as they underestimate precipitation to a
lesser extent, although in NE Brazil the overestimation values are much larger in CMIP5 than in CMIP3 analysis. In line with
previous studies, the multi-model ensembles show the best representation of the observed patterns in most seasons and regions.
Only in some cases, single GCMs [MIROC3.2(hires) — CMIP3— and MIROC4h — CMIP5] presented better results than the
ensemble. The high horizontal resolution of these models suggests that this could be a relevant issue for a more adequate

estimation of rainfall at least in the analysed regions.
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1. Introduction

Quantitative predictive information on the effect of
anthropogenic greenhouse gas emissions on the climate
is required for both regional impact assessments and for
developing tools to address adaptation to climate change.
Climate projections are elaborated using global climate
models (GCMs). Model confidence is usually based
on the evaluation of their performance at reproducing
observed features of current climate. Single models and
multi-model ensembles are evaluated by using obser-
vationally based data sets and model intercomparison
activities that contribute significantly to identify model’s
relative biases. GCMs’ ability to simulate past climate and
its variability is limited by some aspects of the modelling
procedure such as the choice of grid resolution and the
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parameterizations of processes unresolved at the grid
scale. Furthermore, limitations in the scientific under-
standing of some physical processes also affect model
performance. The GCMs used for the preparation of
the IPCC Fourth Assessment Report (AR4) (IPCC,
2007), available from the World Climate Research
Programme—Coupled Model Intercomparison Project
Phase 3 data set (WCRP-CMIP3; Meehl et al., 2007), can
simulate the large-scale mean climate conditions of the
planet and its evolution to a great extent. Nevertheless,
their ability to simulate climate features at a regional scale
is limited (Boulanger et al., 2007; Silvestri and Vera, 2008;
Sakaguchi et al., 2012; Gulizia et al., 2013). A new gen-
eration of simulations, known as CMIP Phase 5 (CMIP5;
Stouffer et al., 2011; Taylor et al., 2012), has recently
become available for analysis through the Program for
Climate Model Diagnosis and Intercomparison (PCMDI,
http://cmip-pcmdi.llnl.gov/cmip5/). Relative to CMIP3,
CMIP5 constitutes an unprecedented set of experiments
that include higher spatial resolution models and improved
model physics. However, it is necessary to evaluate the
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ability of CMIPS to simulate present climate at both
global and regional level, and to assess the improvement
of CMIP5 models, relative to those of CMIP3. To our
knowledge, only a few studies have examined the ability of
CMIP5 experiments to represent the 20th century climate
at regional scale over South America (Wilcox et al., 2012;
Yin et al., 2012; Joetzjer et al., 2013; Jones and Carvalho,
2013). Those studies were mainly focused on a particular
region as the Amazonia (Yin et al., 2012; Joetzjer et al.,
2013) or on climatic features as the South American
monsoon system (SAMS) (Jones and Carvalho, 2013) or
the austral jet (Wilcox et al., 2012). Consequently, there
is still a lack of evaluation of the CMIP5 models both at
continental scale and/or in a relevant region as southeast-
ern South America (SESA), which is the most important
area of the continent in terms of socio-economic activities
with over 100 million inhabitants. SESA also hosts La
Plata Basin with almost a hundred dams and more than
30 large hydropower plants, which contribute with 55.5%
of the total energy demand in the region (Popescu et al.,
2012). During the last decades, SESA has been subject to
climate trends that could be related to the increase in atmo-
spheric concentration of anthropogenic greenhouse gases.
Examples of changes are increased precipitation (Giorgi,
2002; Berbery et al., 2006; Haylock et al., 2006; Re and
Barros, 2009; Marengo et al., 2010), river flow variability
(Barros, 2006; Doyle and Barros, 2011), and extreme
temperatures (Rusticucci and Barrucand, 2004; Marengo
etal.,2010).

The main objective of this study is to assess the ability
of two sets of CMIP3 and CMIP5 GCMs to represent
the spatial patterns of summer, winter, and annual mean
precipitation in South America, south of the equator.
Moreover, three sub-regions are evaluated in more detail:
central South America (CSA), southeast Brazil (SEBR),
and the southern sector of SESA (SSESA). CSA coincides
with the continental core of the monsoon region during
the warm season and SEBR matches the continental area
of the South Atlantic Convergence Zone (SACZ). These
particular regions were selected as they are associated
with key climatic features of the continent (SAMS and
SACZ) or because of their strongly water-dependent
socio-economic activities (SSESA). Various statistical
analysis are presented to identify the more adequate GCMs
to represent present climate in the study region, as well as
to assess improvements in CMIP5 GCMs relative to those
of CMIP3.

The article is structured in five sections. Data are
described in Section 2 and the evaluation of South Amer-
ican rainfall at continental scale is presented in Section
3. Section 4 includes a regional analysis focused on three
particular sub-regions and Section 5 summarizes results
and conclusions.

2. Data

This study is based on a comparison between 19 GCMs
from the WCRP-CMIP3 multi-model data set and an
equal number of models available from CMIPS5, during
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the period 1960-1999. We analysed the representa-
tion of the mean spatial patterns of the austral summer
(December, January, February — DJF), winter (June, July,
August — JJA), and annual accumulated precipitation in
South America, south of the equator by each set of models.
Observed precipitation data used for the evaluation were
obtained from the 0.5°x0.5° gridded monthly data set
TS3.10 produced by the Climate Research Unit (CRU)
using the daily data available for the period 1901-2009
(Harris et al., 2013). Table 1 shows a short description
of the analysed models from CMIP3, indicating their
resolution and the institution where they were generated.
We used 20th-century simulations known as 20C3M,
which start with pre-industrial conditions during the end
of the 19th century and end in the year 2000, including
both natural and anthropogenic forcing. CMIP5 GCMs
considered in this study are listed in Table 2. Eight of these
new-generation models belong to the same institutions
as those analysed from the CMIP3 data set (Tables 1 and
2). The CMIP5 versions include changes in the spatial
resolutions and physical process descriptions as well as
new model components. Although a detailed analysis of
the major improvements in each single model is out of the
scope of this study, it is important to highlight that most of
them exhibit increases in the horizontal resolution and/or
in the number of vertical levels and also shifts of the
top grid to higher levels (Flato ez al., 2013). In addition,
some of them also include new physical parameterizations
(cumulus convection scheme or a high accuracy radiation
scheme) (Dufresne et al., 2013), new land models (Del-
worth et al., 2006; Watanabe et al., 2011), and aerosol
effects on clouds (Bellouin et al., 2007; Dufresne et al.,
2013).

The analysed simulations include natural and anthro-
pogenic forcing and are part of the historical experiment
that starts in the year 1850 and ends in 2005. In
this study, only one run of each model — identified
as runl and rlilpl for CMIP3 and CMIPS5, respec-
tively — was considered. Multi-model ensemble means
were computed for both sets of 19 GCMs as well as
for the subset of 8§ models that belong to the same
institutions in both generations in order to evaluate pos-
sible improvements in the representation of regional
rainfall.

In addition to the evaluation analysis over South Amer-
ica, three sub-regions were considered (Figure 1). The
CSA sub-region is encompassed between 50°W-60°W
and 10°S-20°S; the SEBR sub-region is limited
by 40°W-50°W and 15°S-25°S; and the SSESA
sub-region corresponds to the southern sector of SESA,
between 50°W-60°W and 22.5°S-35°S. The three
sub-region boundaries concur with those defined by
different authors (Gan et al., 2006; Seth et al., 2010).
We transformed the observed and GCM-generated
data to a common grid of 2.5°x2.5° using the
Kriging interpolation method, and then compared
the mean spatial patterns of seasonal and annual
precipitation.

Int. J. Climatol. 35: 583-595 (2015)
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Table 1. CMIP3 models analysed in this study.

Model ID, Vintage Sponsor(s), country

Lon X lat levels,
atmospheric resolution

CGCM3.1(T47), 2005

CGCM3.1(T63), 2005 (*)
CNRM-CM3, 2004
CSIRO-MK3.0, 2001

Canadian Centre for Climate
Modelling and Analysis, Canada

Metéo-France/Centre National de Recherches Météorologiques, France
Commonwealth Scientific and Industrial Research Organisation

96 x48,L32

128 x 64, L31
128 x 64, L45
128 x 64, L18

(CSIRO) Atmospheric Research, Australia

ECHAMS/MPI-OM, 2005
GFDL-CM2.0, 2005 (¥)

Max Planck Institute for Meteorology, Germany
U.S. Department of Commerce/National Oceanic and Atmospheric

128 x 64, L31
144 %90, L24

GFDL-CM2.1, 2005
GISS-AOM, 2004

Administration (NOAA)/Geophysical Fluid Dynamics Laboratory
(GFDL), USA

National Aeronautics and Space Administration (NASA)/Goddard

144 %90, L24
90x 60, L12

GISS-EH, 2004

GISS-ER, 2004 (*)
INGV-SXG, 2005
INM-CM3.0, 2004 (*)
IPSL-CM4, 2005 (*)
MIROC3.2(hires), 2004 (*)

Institute for Space Studies (GISS), USA

Instituto Nazionale di Geofisica e Vulcanologia, Italy

Institute for Numerical Mathematics, Russia

Institut Pierre Simon Laplace, France

Center for Climate System Research (University of Tokyo), National

72 %46, L20
72x46,L20
320x 160, L19
72x 46, L21
96x72,L19
320 160, L56

Institute for Enviromental Studies, and Frontier Research Center for

MIROC3.2(medres), 2004 ~ Global Change JAMSTEC), Japan

MRI-CGCM2.3.2, 2003 (*)
NCAR-PCM1, 1998
UKMO-HadCM3, 1997
UKMO-HadGEM1, 2004 (*)

Meteorological Research Institute, Japan
National Center for Atmospheric Research, USA
Hadley Centre for Climate Prediction and Research/Met Office, UK

128 x 64, L20
128 x 64, L30
128 x 64, L26
96x72,L19
192 x 144, L38

Also listed are the respective sponsoring institutions and the number of points in the latitude by number of points in the longitude. Vertical resolution
(L) is the number of vertical levels. GCMs indicated with (*) correspond to those which were considered for the eight GCMs’ subset.

3. Rainfall evaluation at continental scale

South American precipitation has a well-defined annual
cycle determined by the yearly variations of the atmo-
spheric circulation over the continent and the adjacent
oceans. Figure 2 shows the summer, winter, and annual
mean precipitation in South America, south of 0°. The
spatial distribution of summer rainfall north of 20°S is
above 400 mm, except over NE Brazil (Figure 2(a)). More-
over, east of 60°W comparable rainfall values extend to
30°S. In Uruguay and the north-central part of Argentina,
east of the Andes Mountains, the accumulated rainfall is
between 200 and 400 mm, whereas south of 40°S in the
Andes precipitation is minimal during this season, with
values below 100 mm. During winter, the highest rainfall
values are observed in SSESA and north of 5°S, exceeding
200 mm in some regions (Figure 2(b)). Along the south-
ern Andes, the maximum precipitation occurs also dur-
ing this season, mainly produced by frontal systems. The
annual rainfall pattern shows a maximum over NW South
America, exceeding 2000 mm and a secondary maximum
above 1000 mm over SSESA (Figure 2(c)). In western
Argentina and part of the Andes, annual precipitation is
below 200 mm, except west of 70°W between 40°S and
50°S, where values are above 1000 mm. This maximum
precipitation is due to the enhanced uplift over the Andes
western slopes (Lenters and Cook, 1995), which produces
dry conditions leeward.

In order to evaluate the accuracy of the CMIP3 and
CMIP5 GCMs in describing the seasonal variability and
the main climatic features of rainfall over South America

© 2014 Royal Meteorological Society

presented in Figure 2(a)—(c), the relative biases between
the ensemble means of the selected 19 GCMs from each
intercomparison project and the observations were com-
puted. These biases were calculated considering the per-
centages of annual and seasonal observed rainfall that are
represented by each ensemble mean and for each grid point
using the following expression:

Precipitationgeyy

x 100 —-100 (1)

Relative bias = ——
Precipitationcgy

Figure 2 shows the spatial patterns of CMIP3
(Figure 2(d)—(f)) and CMIP5 (Figure 2(g)—(i)) GCMs’
relative biases for summer, winter, and annual rainfall.
For the analysed seasons, precipitation simulated by
both models” ensembles exhibited some differences.
In DIJF, the relative bias over Amazonia, central South
America, eastern Argentina, and Uruguay is reduced in
CMIP5 compared with CMIP3. In JJA, the same occurs
in some areas of Amazonia. The magnitude and spatial
distribution of overestimation (positive relative biases)
and underestimation (negative relative biases) patterns
relative to observations were comparable in both models.
The largest relative biases include excessive precipitation
over northeastern Brazil, and the southern sector of the
continent, and precipitation deficit over the Amazonia and
central and SESA. On the other hand, the underestima-
tion over the Amazonia and the SEBR sub-region could
not be completely associated with a poor representation
of convection by the GCMs’ parameterizations as the
lowest relative biases were found during summer when
convection is more intense. In these regions, the largest

Int. J. Climatol. 35: 583-595 (2015)
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Table 2. CMIPS models analysed in this study.

Model ID, Vintage Sponsor(s), country

Lon X lat levels, atmospheric resolution

BCC-CSM1.1, 2011 Beijing Climate Center, China

128 x 64, L26

Meteorological Administration, China

CanESM2, 2010 (*)
Canada
GFDL-CM3, 2011 (#)
GFDL-ESM2G, 2011(#)
GFDL-ESM2M, 2011 (*)
GISS-E2-H, 2004
GISS-E2-R, 2011 (*)
HadCM3, 1998
HadGEM2-CC, 2010
HadGEM2-ES, 2009 (*)
INMCM4, 2009 (*)
IPSL-CM5A-LR, 2010 (*)
IPSL-CM5A-MR, 2009
MIROC4h, 2009

Canadian Centre for Climate Modelling and Analysis,

Geophysical Fluid Dynamics Laboratory (GFDL), USA

NASA Goddard Institute for Space Studies, USA
UK Met Office Hadley Centre, UK

Russian Institute for Numerical Mathematics, Russia
Institut Pierre Simon Laplace, France

University of Tokyo, National Institute for Environmental

128 x 64, L35

~200km, L48
2°%2.5° L24
144 %90, L24
144 %90, L40
144 x 90, L40
96x72,L19
192 x 144, L60
192 x 144, L38
180120, L21
96x95,L39
144 x 143, L39
128 x 64, L8O

Studies, and Japan Agency for Marine-Earth Science and

Technology, Japan
MIROCS, 2010
MIROC-ESM, 2010 (*)
MIROC-ESM-CHEM, 2010
MRI-CGCM3, 2011 (*)
NorESM1-M, 2011

Meteorological Research Institute, Japan
Norwegian Climate Centre, Norway

128 x 64, L80
640 % 320, L56
256 x 128, L40
320x 160, L48

144 %96, L26

Also listed are the respective sponsoring institutions and the number of points in the latitude by number of points in the longitude. Vertical resolution
(L) is the number of vertical levels. GCMs indicated with (¥) correspond to those which were considered for the eight GCMs’ subset. (#) GCMs’

horizontal resolution indicated in different units as available in literature.
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Figure 1. Study area and sub-regions (central South America — CSA,
southeastern Brazil — SEBR, and southern sector of southeastern South
America — SSESA) considered.

relative biases occurred during the dry season when
observed rainfall is very low. The large overestimation in
precipitation over the Andes was also identified by differ-
ent authors considering both global and regional models,

© 2014 Royal Meteorological Society

probably due to their inadequacies in the representation
of complex topography and the associated circulation and
moisture transport (Alves and Marengo, 2010; Insel et al.,
2010). The same reasons could explain the overestimation
of precipitation in the area to the south of 40°S, where the
Andes block the transport of humid air by the westerlies
producing dry conditions in the Argentinean region, east
of the Andes (Prohaska, 1976). Nevertheless, the results
described previously are to some extent conditioned by
the low quality of the observational data set in the Andean
mountainous area and the southern tip of the continent,
due to the limited number of gauging stations in these
areas.

Our comparison between the two GCMs’ ensembles rel-
ative biases shows that CMIP5 exhibits an improved sim-
ulation of summer precipitation, especially over the Ama-
zon region and SSESA. CMIP5 also showed a better winter
rainfall estimation over parts of the Amazonia relative to
CMIP3. However, both ensembles produced similar rela-
tive biases in their representations of precipitation in north-
eastern Brazil, the regions over and near the Andes, and the
southern tip of the continent south of 40°S, in particular for
the winter spatial pattern, showing overestimations larger
than 300%.

The linear spatial correlation coefficients (R) between
the observed and GCMs’ ensemble rainfall for the
region delimited by 80°W-35°W and 2.5°S-52.5°S
are also indicated in Figure 2. In all cases, these coef-
ficients are statistically significant at the 95% level.
The CMIPS representation of winter precipitation in
parts of the Amazonia showed higher spatial correlation

Int. J. Climatol. 35: 583-595 (2015)
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Figure 2. Accumulated mean precipitation derived from the CRU data set for (a) summer, (b) winter (mmseason~!), and (c) annual mean

(mm year™!). Biases (%) of summer, winter, and annual precipitation for the CMIP3 [(d), (e), and (f), respectively] and CMIP5 [(g), (h), and (i),

respectively] 19 GCMs’ ensemble. The linear spatial correlation coefficient (R) between the observations (CRU data set) and each of the GCMs’
ensembles is also included.

than in the CMIP3 case. The individual performance of
each GCM considered in both ensembles presented in
Figure 3 was analysed by computing the linear spatial
correlation coefficients between the observed and sim-
ulated seasonal and annual rainfall patterns. Four of the
CMIP3 models (ECHAMS/MPI-OM, UKMO-HadCM3,
UKMO-HadGEMI1, and MRI-CGCM2.3.2) and the
ensemble mean of 19 GCMs showed statistically signif-
icant linear correlation coefficients at the 95% level
(R>0.60) for both seasons and the annual mean
precipitation (Figure 3(a)). Furthermore, only the
MRI-CGCM2.3.2 model shows higher correlation coeffi-
cients than the ensemble in all cases, and the GISS-AOM

© 2014 Royal Meteorological Society

model has the lowest linear correlation coefficients indi-
cating the largest deficiencies in representing the seasonal
and annual mean precipitation fields.

In the case of CMIPS, three individual models
(HadCM3, HadGEM2-CC, and HadGEM2-ES) and
the ensemble means of both the 8 and 19 GCMs are able
to represent reasonably well (R > 0.60) the summer, win-
ter, and annual precipitation in South America, south of 0°
(Figure 3(b)). In this case, only the HadGEM2-ES model
shows higher correlation coefficients than the ensemble
means in all cases.

We also compared the ability of CMIP3 and CMIP5 indi-
vidual GCMs and ensemble mean to simulate seasonal

Int. J. Climatol. 35: 583-595 (2015)
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Figure 3. Linear spatial correlation coefficients (R) between the observed and simulated rainfall from individual GCMs for summer, winter, and
annual mean values for (a) CMIP3 and (b) CMIP5 models for South America, south of the equator. R coefficients corresponding to the 19 and 8
GCMs’ ensemble means are also included.

and annual precipitation in South America by comput-
ing the root-mean-square error normalized by the range
of observed data (nRMSE) in each case. This statistical
measure has been used by different authors (e.g. Gleckler
et al., 2008; Pincus et al., 2008; Su et al., 2013) to evalu-
ate simulated precipitation against observations both at the
global and regional scales. As there are some discrepancies
regarding the best metrics to evaluate climate simulations
(Willmott and Matsuura, 2005; Schaller et al., 2011), we
used a set of different statistical measures (relative bias,
spatial correlation, nRMSE, and relative errors). Figure 4
shows the nRMSE and the median errors. We did not use
mean errors to minimize the influence of models with large
errors (outliers). The median nRMSEs of the 19 CMIP5
models are higher for summer, winter, and the annual mean
than for the CMIP3 models. However, the errors of the
ensemble mean are lower for CMIP5 models for the win-
ter and annual cases. The same results were observed when
considering the subset of eight GCMs.

© 2014 Royal Meteorological Society

Arelative error (E! ) for a given model m and time period
t (season/year) is computed according to Gleckler et al.
(2008) as

2

where E,, is the RMSE of the model m at the time period
t and E, is the median of the RMSE of the N GCMs con-
sidered (N = 8 or 19 for each intercomparison project) and
represents the typical model error at the same time . E!
is a metric which indicates how well a given model (rela-
tive to CRU precipitation) compares with the typical model
error. Negative (positive) values indicate that the model’s
nRMSE is lower (higher) than the typical error. Figure 5
shows the seasonal and annual models’ relative errors for
CMIP3 and CMIP5 GCMs. For both cases, the models’
ensembles agree with observations better than the corre-
sponding typical model. In addition, the MRI-CGCM?2.3.2
model in the CMIP3 analysis (Figure 5(a)) exhibits a better

Int. J. Climatol. 35: 583-595 (2015)
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performance than the multi-model ensemble, while there is
no individual model in the set of CMIP5 GCMs analysed
showing better agreement to observations than the ensem-
ble (Figure 5(b)).

4. Evaluation of rainfall in the CSA, SEBR, and
SSESA sub-regions

This section presents the correlation analysis for the three
relevant climatic sub-regions defined in Section 2 (CSA,
SEBR, and SSESA). The results obtained for the CSA
region must be taken with caution as the number of gaug-
ing stations available in this area is much more limited than
in the SEBR and SSESA sub-regions, where observational
data is more abundant and reliable.

In CSA (Figure 6(a)), 14 out of 19 CMIP3 GCMs, as well
as the multi-model ensembles, represented adequately the
summer precipitation spatial pattern, showing statistically
significant linear correlation coefficients exceeding 0.60.
Winter precipitation spatial pattern was also represented
considerably well as ten GCMs, as well as the 19 mod-
els ensemble, showed significant linear correlation coef-
ficient. Likewise, 13 GCMs were able to represent rea-
sonably well the annual rainfall pattern (R > 0.60) in this
region, with the highest linear coefficient corresponding to
the ensembles of the 8 and 19 GCMs (R = 0.96).

During both summer and winter seasons, 14 CMIP3
GCMs showed R coefficient above 0.60 in SEBR
(Figure 6(b)). Moreover, 12 models represented ade-
quately the annual precipitation pattern, CCCMA-
CGCM3.1, MIROC3.2(hires), and UKMO-HadCM3
showing the best performance (R >0.80). The highest
correlation coefficient was found for the ensemble of the
set of eight GCMs (R =0.86).

© 2014 Royal Meteorological Society

In SSESA, 17 CMIP3 GCMs showed R above 0.60 dur-
ing summer, while there were 12 models during winter
(Figure 6(c)). Furthermore, ten GCMs had linear correla-
tion coefficients greater than 0.60 for the annual pattern,
and ECHAMS/MPI-OM and MIROC3.2(hires) showed
the best rainfall representation, with correlation coeffi-
cients of 0.77 and 0.88, respectively. In this case, the
ensemble means were lower than those for the CSA and
SEBR regions.

The same computations were conducted for the CMIP5
GCMs (Figure 6(d)—(f)). The multi-model ensembles
showed an adequate representation (R > (0.75) of summer,
winter, and annual precipitation in the three regions. For
CSA, the two ensembles showed the highest correlation
coefficients for both the summer and annual precipita-
tion (Figure 6(d)). The same was observed for SEBR,
with R values above 0.90 (Figure 6(e)). For SSESA, the
ensemble showed the highest correlation values for win-
ter (Figure 6(f)). Finally, in most seasons and regions, the
amount of GCMs with statistically significant linear corre-
lation coefficients in the spatial representation of precipi-
tation was larger for the analysed CMIP5 models than for
the CMIP3 ones. The only exception was the SEBR region
during winter.

Area averages for the three analysed sub-regions of
observed summer, winter, and annual precipitation, along
with the median and the first and third quartile derived
from the simulated precipitation by CMIP3 and CMIP5
models, are shown in Figure 7. Outlier models with
extreme values (lower than the 10th percentile and greater
than the 90th percentile) are also included in this Figure 7.
We show the median of the simulated precipitation because
it is a robust measure of the central tendency, and it is
less affected by outliers than the mean. The interquartile

Int. J. Climatol. 35: 583-595 (2015)



590

(a) 1.00

0.80

0.60

0.40 .
0.20
0.00
-0.20
-0.40
-0.60
-0.80
-1.00

[ ]
o0
L ]

E'

i
oe

«0
*0

]
e

CNRM-CM3
CSIRO-MK3.0
GFDL-CM2.0
GFDL-CM2.1
GISS-AOM
GISS-EH

ECHAMS/MPI-OM

CCCMA-CGCM3.1(t47)
CCCMA-CGCM3.1(t63)

(b) 1.00
0.80
0.60
0.40 °
s 020 —
= 000 g
-0.20
-0.40
-0.60
-0.80
-1.00

0
00
L
®
*
o

o 2

BBC-CSM1.1
CanESM2
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M
GISS-E2-H
GISS-E2-R
HadCMm3
HadGEM2-CC
HadGEM2-ES

* DJF

C. GULIZIA AND I. CAMILLONI

e e0
(=X 1)

ase
L]

miIP3

GISS-ER

INGV-SXG
INMCM3.0
IPSL-CM4
MIROC3.2(hires)
MIROC3.2{medres)
MRI-CGCM2.3.2
NCAR-PCM1
UKMO-HadCMm3
UKMO-HadGEM1
19 GCMs Ensemble
8 GCMs Ensemble

*
38 ]
(]
*

[« 2]
X
[ 1]
®0
-

CMIP5

INMCM4
MIROCS

MIROC-ESM

MIROC4h
MIROC-ESM-CHEM

IPSL-CM5A-LR
IPSL-CM5A-MR
MRI-CGCM3
NorESM1-M

19 GCMs Ensemble
8 GCMs Ensemble

o JIA e ANNUAL

Figure 5. Seasonal and annual relative error (E:n ) for individual (a) CMIP3 and (b) CMIP5 GCMs. The E' corresponding to the 19 and 8 GCMs’
ensemble means are also included.

interval (25-75%) is an adequate measure to evaluate the
model’s dispersion, as it excludes the values exceeding that
range and it specifies the range of the central value of 50%
thereof (Wilks, 1995).

Figure 7(a)—(c) shows that the distance between the
CMIP3 GCMs’ median and the mean observed pre-
cipitation differs in the three studied sub-regions and
between seasons. In general, the median is always below
observations, highlighting that all GCMs underestimate
precipitation in the three sub-regions. This is consistent
with the results of Figure 2. During summer, the median
of the GCMs considerably approaches the observed
precipitation (Figure 7(a)), especially in the SEBR and
SSESA sub-regions, while the discrepancy between
the median and the mean observations is greater in the
CSA sub-region. However, even though the observed
rainfall averages were within the interquartile range in
all the sub-regions, these values were underestimated.
For the winter (Figure 7(b)) and annual (Figure 7(c))
cases, observations were always above the third quartile
and sometimes close to the extreme simulated values
(outliers), indicating that most GCMs underestimated
precipitation. Consequently, a model standing as an
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mt

outlier does not necessarily imply a misrepresentation
of the observed precipitation but instead shows signifi-
cantly different regional simulated rainfall amounts than
most of the analysed GCMs. Some examples are the
CCCMA-CGCM3.1(t63) model for the annual simulated
precipitation in SSESA, and the MRI-CGCM2.3.2 in the
CSA region during winter.

Figure 7(d)—(f) shows a similar analysis for CMIP5
GCMs. The results indicated some improvements in the
representation of both summer and annual precipitation
in CMIPS. During summer (Figure 7(d)), the area mean
of observations is within the interquartile range (as in the
CMIP3 analysis), but the median of the simulations con-
siderably approaches the average observations in the CSA
and SEBR sub-regions and even more so in SSESA. Dur-
ing winter (Figure 7(e)), there were still difficulties in
the estimation of precipitation in all regions, mostly in
SSESA, with large underestimations consistent with the
results of Figure 2. For the CMIP5 annual analysis, the
median was closer (albeit lower) to the observations than
for the CMIP3 GCMs. This result indicates that, even
though CMIP5 models underestimate precipitation in the
three regions, they do so to a lesser extent than in CMIP3.

Int. J. Climatol. 35: 583-595 (2015)



CMIP3

(a) 1.00

© 2014 Royal Meteorological Society

*0

o+ 0

@ %0

0.80
0.60
0.40
0.20

= 0.00

0.80
0.60
0.40
0.20

e 0.00

COMPARATIVE ANALYSIS OF THE ABILITY OF A SET OF CMIP3 AND CMIP5 MODELS

-0.20
-0.40
-0.60
-0.80
-1.00

CSA

CSA

0.60
0.40
0.20

< 0.00

0.60
0.40
0.20

e 0.00

o

-0.20
-0.40
-0.60
-0.80
-1.00

-0.20
-0.40
-0.60
-0.80
-1.00

SEBR

SEBR

e O

(c) 100
0.80

0.60

0.40

0.20

= 0.00

-0.20
-0.40
-0.60
-0.80
-1.00

o 0.00

oe

-0.20
-0.40
-0.60
-0.80
-1.00

SSESA

SSESA

9|quiasul SINDD 8
d|quiasul SNDY 6T
W-TINS3ION
ENDDD-IN
W3HI-INS3-D04IN
NS3-20HIN
SO0HIN
YrJ0dIN
dN-YSIND-1SdI
41-VSIND-15dI
PINDINI
$3-TIN3OPEH
J2-TINIOPEH
ENDPEH
4-73-5S19
H-23-SS19
WZNS3-1049
DTINSI-1049
END-1049
CINS3UE)

T TINSD-O8d

3|quIasul SNDD 8
3|quiasu3 SINDD 6T
TINIDPEH-OMN
EINDPEH-ONIN
TINDd-4VON
TETNDDD-HIN
(sa1paw)z’ €D0HIN
(sa11y)z° 201N
FIND-1SdI

0ENDIANI

OXS-ADNI

¥3-5S19

H3-SS19

INOY-SSI9
T'TND-1049
0'ZND-1049
INO-IdIN/SINVHD3

0" EAN-0YISD
EIND-INYND
(€91)T"EWIDD-VINDDD
(LFV) T EWIDD-VINDIDD

o DJF oJJA <« ANNUAL

591

Figure 6. Linear spatial correlation coefficients (R) between the observed and simulated rainfall from individual GCMs for summer, winter, and annual mean values for the three sub-regions considered: (a) CSA,
(b) SEBR, and (c) SSESA in CMIP3 analysis; (d) CSA, (e) SEBR, and (f) SSESA for the CMIP5 GCMs.
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Figure 7. Areal averages (for the three analysed sub-regions) of observed summer, winter (mm season™') and annual (mm year™') precipitation,

together with the median and the first and third quartile derived from the simulated precipitation derived from CMIP3 [(a), (b), and (c), respectively]

and CMIP5 [(d), (e), and (f), respectively]. The outliers of the models which present extreme values lower than 10th percentile and greater than 90th
percentile are also included.

In particular, the area average of annual observed precipita-
tion in the SEBR region fell within the interquartile range,
which suggests a reasonably good representation. More-
over, in the SSESA region, the interquartile range was
reduced relative to the CMIP3 analysis, which indicates
a lower dispersion between the CMIPS5 versus the CMIP3
models. The opposite situation was found for the SEBR
region with higher dispersion among CMIP5 than CMIP3
simulations.

5. Summary and conclusions

The nature of the projected changes in precipitation show-
ing areas of increase in the tropics and high latitudes and
decrease in the subtropics (Knutti and Sedlacek, 2013)
suggests a need for a model evaluation at the regional
scale. The aim of this study was to assess the ability of
two sets of GCMs to represent summer, winter, and annual
precipitation in South America, south of the equator, and
in three sub-regions (CSA, SEBR, and SSESA) between
years 1960 and 1999. Monthly precipitation simulations
corresponding to the 20th century derived from 19 GCMs
from CMIP3 multi-model data set and an equal number
of GCMs from CMIP5 data set were analysed. A subset
of eight GCMs from each intercomparison projects was
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considered for the comparative analysis between the two
generations of climate models.

The areas where GCMs represent adequate precipitation,
as well as the ones where they under- or overestimate it,
were identified by calculating the relative bias as the per-
centage of observed precipitation which is simulated by
each GCMs’ ensemble. Results from this analysis indicate
that summer precipitation is adequately represented by
both CMIP3 and CMIPS5 models’ ensembles particularly in
CSA and in parts of the SSESA and SEBR regions. How-
ever, both ensembles display some differences. In DJF,
the relative bias over Amazonia, central South America,
eastern Argentina, and Uruguay is reduced in CMIP5 com-
pared with CMIP3. In JJA, the same occurs in some areas
of Amazonia. Annual precipitation was also better repre-
sented by the CMIP5 GCMs as they underestimate pre-
cipitation to a lesser extent than CMIP3, although CMIP5
overestimation values in NE Brazil were much larger than
those in the CMIP3 analysis.

The individual GCM performance was evaluated by
a spatial correlation analysis between the seasonal and
annual precipitation patterns from the observed gridded
data set and those derived from the simulations. As there
was not a single optimal model that accurately represented
the South American summer, winter, and annual rainfall,
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Table 3. CMIP3 GCMs with the highest linear spatial correlation coefficients between the observed and simulated precipitation for
different regions and seasons.

Season

Region

South America CSA

SEBR SSESA

DJF Ensemble 19 (R=0.73)

Ensemble 8 (R=0.75)

Ensemble 19 (R=0.92)
Ensemble 8 (R=0.96)

Ensemble 19 (R=0.92)
Ensemble 8 (R=0.91)

Ensemble 19 (R=0.88)
Ensemble 8 (R=0.89)

MRI-CGCM2.3.2 (R=0.79) MIROC3.2(hires) (R=0.94) MIROC3.2(hires) (R =0.94) MIROC3.28(hires) (R =0.93)

JIA Ensemble 19 (R=0.63) Ensemble 19 (R=0.67)
Ensemble 8 (R=0.74) Ensemble 8 (R=0.76)

UKMO-HadGEMI1 (R=0.80) GFDL-CM2.0 (R=0.85)

Annual Ensemble 19 (R=0.64) Ensemble 19 (R =0.96)

Ensemble 8 (R=0.67)

Ensemble 8 (R=0.95)

Ensemble 19 (R=0.75) Ensemble 19 (R=0.87)
Ensemble 8 (R=0.81) Ensemble 8 (R=10.89)
MRI-CGCM2.3.2 (R=0.83) MRI-CGCM2.3.2 (R=0.95)
Ensemble 19 (R=0.83) Ensemble 19 (R =0.70)
Ensemble 8 (R=0.63) Ensemble 8 (R=0.75)

MRI-CGCM2.3.2 (R=0.80) MRI-CGCM2.3.2 (R=0.93) MIROC3.2(hires) (R=0.84) MIROC3.2(hires) (R = 0.80)

The correlations with the 19 and 8 multi-model ensembles are also indicated.

Table 4. CMIP5 GCMs with the highest linear spatial correlation coefficients between the observed and simulated precipitation for
different regions and seasons.

Season Region
South America CSA SEBR SSESA

DJF Ensemble 19 (R=0.73) Ensemble 19 (R =0.96) Ensemble 19 (R=0.93) Ensemble 19 (R=0.87)
Ensemble 8 (R=0.72) Ensemble 8 (R =0.96) Ensemble 8 (R=0.91) Ensemble 8 (R=0.88)
HadCM3 HadGEM2-ES (R=0.77) MRI-CGCM3 (R=0.88) MIROC4h (R=0.93) MIROC4h (R=0.92)

JJIA Ensemble 19 (R=0.71) Ensemble 19 (R=0.77) Ensemble 19 (R=0.83) Ensemble 19 (R=0.94)
Ensemble 8 (R=0.73) Ensemble 8 (R=0.74) Ensemble 8 (R =0.86) Ensemble 8 (R=0.95)

HadGEM2-CC (R=0.84) MIROC4h (R=0.90) MRI-CGCM3 (R=0.95) MRI-CGCM3 (R=0.93)

Annual Ensemble 19 (R=0.67) Ensemble 19 (R =0.96) Ensemble 19 (R =0.90) Ensemble 19 (R=0.76)

Ensemble 8 (R =0.66)
HadGEM2-ES (R=0.79)

Ensemble 8 (R=0.94)
INMCM4 (R=0.94)

Ensemble 8 (R =0.86)
MIROC4h (R=0.86)

Ensemble 8 (R=0.79)
NorESM1-M (R =0.87)

The correlations with the 19 and 8 multi-model ensembles are also indicated.

the best models in each season and region are summa-
rized in Tables 3 (CMIP3) and 4 (CMIP5). These tables
also include the results for the multi-model ensembles
for the 19 GCMs considered from each intercomparison
project. In order to make a fair comparison to evaluate
whether there have been any improvement in the regional
representation of rainfall in CMIPS5, results for the sub-
set of eight GCMs that belong to the same institutions
are also included (Tables 1 and 2). MIROC3.2 (hires)
showed the best representation of summer precipitation
in the three sub-regions considering the CMIP3 models,
whereas MIROC4h, from the same institution, was the
best in the SEBR and SSESA regions among the CMIP5
simulations. In both cases, these models are among those
with highest spatial resolution suggesting that this could
be a relevant issue for an adequate estimation of rainfall
in the analysed regions. Moreover, most of the precipi-
tation in these regions are associated with heavy rainfall
events (Re and Barros, 2009) and extreme precipitation
is dependent on resolution (Randall et al., 2007) . In the
CSA region, the ensembles of the 19 CMIP5 GCMs, as
well as the 8 GCMs’ subset, followed by the MRI-CGCM3
model, showed the highest correlation coefficients. Dur-
ing winter, precipitation in the SEBR region was more
adequately represented by the MRI-CGCM?2.3.2 (CMIP3)
and MRI-CGCM3 (CMIP5) models, both belonging to the
same institution. The ensembles of the eight CMIP3 mod-
els (Table 3) did not stand as those with best representation
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of rainfall in any of the three sub-regions, with the excep-
tion of summer precipitation in the CSA region. For the
new generation of GCMs (Table 4), the ensemble of eight
CMIP5 models represented more adequately the winter
rainfall in SSESA.

Analysis of area averages of GCMs for each of the
sub-regions showed that the highest dispersion between
models was found in SSESA in all the analysed seasons,
indicating the difficulties of most models to represent the
processes leading to precipitation in this region. Models
represented summer precipitation patterns more ade-
quately than for other seasons. However, though CMIP5
GCMs still underestimated precipitation, they did so to
a lesser extent than those of CMIP3, and the dispersion
among CMIP5 models was smaller than in the CMIP3
case. The comparative analysis of relative errors for the
eight climate models belonging to the same institutions
showed that the models’ ensembles agree with observa-
tions better than the corresponding typical model. Only
the MRI-CGCM2.3.2 model of CMIP3 exhibited a better
performance than the multi-model ensemble while there
was no individual GCM in the CMIP5 set showing the
same result.

The median nRMSE of CMIP5 models was higher for
summer, winter, and the annual mean than for the CMIP3
models. However, the errors of the ensemble means
were lower for CMIP5 models for the winter and annual
cases.
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The analysis carried out in this study diagnosed the errors
in the representation of South American rainfall in two
generations of climate models. Our results are in line with
previous studies showing that the multi-model ensemble
is the most robust tool to represent observed spatial pat-
terns. Only in some regions and seasons, single GCMs
[MIROC3.2(hires) — CMIP3 — and MIROC4h — CMIP5]
presented better results than the ensemble. Finally, it is
important to highlight that although it was possible to iden-
tify some improvements in the rainfall representation in
particular regions and seasons, the diagnostic analysis pre-
sented in this study does not allow attributing them to spe-
cific changes between CMIP3 and CMIP5 versions of the
evaluated models.
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