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In this work, we propose a computational strategy and methods for the automated calculation of complete
loci of homogeneous azeotropy of binary mixtures and the related Pxy and Txy diagrams for models of the
equation-of-state (EOS) type. The strategy consists of first finding the system’s azeotropic end points (AEPs).
These can exist on vapor-liquid (VL) critical lines (CAEPs), on liquid-liquid-vapor (LLV) lines (HAEPs),
and on pure-compound vapor pressure lines (PAEPs). Next, for the chosen binary system, we generate one
or two azeotropic lines. Each of these lines has, as its starting point, one of the previously identified AEPs.
We calculate the azeotropic lines using a numerical continuation method that solves the nonlinear azeotropic
system of equations under a range of conditions and efficiently tracks entire azeotropic curves. We have
integrated our strategy for calculating azeotropic lines into a general algorithm for the single-run computation
of binary global phase equilibrium diagrams (GPEDs). GPEDs are defined by pure-compound, critical, LLV,
and azeotropic lines. We implemented this general algorithm in the computer program GPEC (Global Phase
Equilibrium Calculations), which makes it possible to evaluate, at a glance, the behavior of a given
model-parameter values combination, for a chosen model and binary system.

1. Introduction

In this work, we focus on the calculation of azeotropic lines
and isothermal or isobaric diagrams showing azeotropic points,
within the general context of the automated generation of phase
equilibrium diagrams for binary fluid systems, using models of
the equation-of-state (EOS) type.

Azeotropes are of practical importance in many applications,
especially in distillation. The knowledge of azeotropic behavior
is also important when considering mixtures for their use as
refrigerants.1

Equations of state (EOSs) constitute a very important type
of thermodynamic models. They can be used to model properties
of liquid, vapor, and supercritical phases. Unlike other modeling
approaches, EOSs offer a continuous description of these three
different states, as they occur in nature. This was already clear
to van der Waals, at least with respect to pure fluids, when he
published his pioneering thesis in 1873.2 One century later, with
much more experimental and theoretical knowledge available,3,4

van Konynemburg and Scott5 showed, systematically, that the
simple van der Waals equation of state, combined with simple
quadratic mixing rules, is able to qualitatively reproduce the
richly varied experimentally observed phase behavior of fluid
binary mixtures.

One of the most important applications of EOSs are phase
equilibrium calculations for fluid mixtures, which are not trivial.
They require iterative procedures that have no guarantee for
convergence; rely on often crucial initial estimates; and provide

solutions that, typically, need to be tested for stability. Moreover,
despite the increasing speed of modern computers, efficiency
is still an issue when these calculations are to be run a very
large number of times, for example, in process or reservoir
simulators. Special attention has been paid in the scientific
literature during the past several decades to the development
of calculation procedures for two-phase and multiphase flashes,
saturation points, phase envelopes, critical points, and so on.6

However, this field of study has not reached its maturity as of
yet.

Binary systems are the most studied fluid mixtures, in terms
of both experiments and calculations. Knowledge on the
behavior of binary mixtures is important to understand the
behavior of multicomponent systems. Also, thermodynamic
models are typically pairwise-additive; i.e., when modeling
multicomponent phase equilibria, binary interaction parameters
are required, and these are obtained from fittings to experimental
binary data. Therefore, it is important to have available robust
algorithms for the rapid generation of global and/or isothermal
and/or isobaric and/or isoplethic phase equilibrium diagrams
for binary fluid systems.

The number of degrees of freedom available to binary
mixtures makes possible to use two-dimensional diagrams to
represent the (experimental or calculated) global phase equi-
librium behavior of a given binary system over wide ranges of
temperature and pressure and for all possible system composi-
tions. Such global binary maps are set in terms of critical,
azeotropic, and liquid-liquid-vapor (LLV) lines, as well as
the two pure-compound saturation lines. These lines develop
in the four-dimensional pressure-temperature-composition-
density space (PTxF). [More variables such as enthalpy, entropy,
or Helmholtz energy could be added, but the four indicated
variables (PTxF) suffice to identify the different lines involved
and their phases and to clearly distinguish critical or azeotropic
end points from coincidental crossings, which are intersection
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points appearing in some projections of the phase equilibrium
hypersurfaces but not in all projections.] These are the primary
variables for models of the EOS type. Although the PT
projection can be regarded as the most important and frequent
among the different possible two-dimensional projections of this
space, it should be noted that calculated lines provide informa-
tion on the relationship among the four variables. We bear in
mind such PTxF relationships when we use the terms azeotropic,
critical, saturation, and LLV lines and/or the expression global
phase equilibrium diagram (GPED).

Tools for the automated calculation of global phase equilib-
rium diagrams are important, first, because they provide a global
view of the phase behavior that a given model and specified
parameters predict for a system over a wide range of conditions
and, second, because the intersections of these lines with lines
of constant temperature or constant pressure provide the limiting
points of isothermal (Pxy) or isobaric (Txy) phase equilibrium
diagrams. Such key points make the calculation of complete
Pxy or Txy diagrams possible, without the need for stability
analysis.7

In a previous work, Cismondi and Michelsen8 presented a
general algorithm, applicable to binary systems, for the calcula-
tion of nonazeotropic global phase equilibrium diagrams. They
also presented specific methods for calculating entire critical
and LLV lines and for detecting critical end points. Based on
such work and also on strategies for the construction of complete
Pxy and Txy diagrams,7 a software program for global phase
equilibrium calculations (GPEC) was developed.9 In this work,
we present a strategy to account for the different types of
azeotropic behavior in binary systems, and we also propose a
robust and efficient numerical continuation method for tracking
the corresponding azeotropic lines. In the present article, we
do not account for the possible presence of solids.

For some historical perspective and comments on the work
of Lecat on azeotropy in the 1920s and 1930s, which was
published in French,10 see Jaubert and Privat.11 In the cited
article, they study the relation between the existence of azeotropy
and the excess Gibbs energy function.

Already in the 1970s, Teja and Rowlinson12 tackled the
calculation of simple azeotropic lines using an equation of state.
Contemporaneously, as already mentioned, van Konynemburg
and Scott5 undertook an exhaustive study of the types of phase
behavior that could be calculated from the van der Waals EOS,
identifying several possible types of azeotropic lines.

Since then, several authors have worked on the computation
of azeotropy in different ways, focusing on calculation
methods,13-19 on the discovery and analysis of new types of
possible phase behavior using different models,20-23 or on an
exhaustive study of the conditions for the occurrence of
polyazeotropy.24,25 Nevertheless, we have not found in the
literature any attempt to develop a general algorithm for the
automated calculation of azeotropic lines as part of global phase
equilibrium diagrams and/or for the further generation of Pxy
and Txy diagrams showing azeotropic behavior.

2. Azeotropic Lines and Azeotropic End Points (AEPs)

A homogeneous azeotrope is a mixture that boils without any
change in composition. An azeotropic line in a binary system
is a curve that continuously connects the homogeneous azeo-
tropic points at different conditions, i.e., those points where the
equilibrium liquid and vapor phases have equal compositions
but different densities.

Binary critical lines end/originate at critical end points where
they meet either LLV lines or pure-compound critical points.

Analogously, azeotropic lines can end or originate at three
different types of azeotropic end points (AEPs): (1) A pure
azeotropic end point (PAEP) is a point where an azeotropic line
meets one of the two pure-compound vapor pressure curves.
At this point, one component is under conditions of infinite
dilution in the other component, as the pressure of the system
is equal to the pure-compound vapor-liquid saturation pressure
of the concentrated component at the system temperature. At a
PAEP, the distribution coefficient of the infinitely dilute
component equals unity. (2) A critical azeotropic end point
(CAEP) corresponds to an azeotropic line meeting a liquid-vapor
critical line. Here, the densities of the vapor and liquid azeotropic
phases converge to the same critical value. Notice that a CAEP
is not a critical end point; i.e., a CAEP is an end point for the
involved azeotropic line but not for the critical line. (3) A
heterogeneous azeotropic end point (HAEP) is a point on an
LLV line where the vapor-phase composition equals the
composition of one of the liquid phases. Therefore, this point
distinguishes a homogeneous from a heterogeneous azeotropic
region, and it is the origin of an azeotropic line. This point also
separates the LLV line into two parts: the heteroazeotropic
portion and the regular LLV portion.

Alternatively, azeotropic lines can proceed to lower temper-
atures down to 0 K, within the universe of EOS models, where
we do not account for the possible presence of solid phases.
The case of predicting a closed loop of polyazeotropy, i.e., an
azeotropic line that might appear as a circle in the T-x plane,
has also been detected (as stated by an unidentified reviewer of
the present work). In our view, such infrequent lines having no
end points would not be of significant practical interest,
especially when modeling real systems. Nevertheless, they could
be considered in future works.

The implied effects of each type of AEP on the phase
behavior will be clearly illustrated through the examples given
in section 8, which include projections of azeotropic lines, as
well as Pxy or Txy diagrams in the neighborhood of AEPs.

Notice that, when we defined the PAEPs, we excluded the
case of binary systems of optical isomers. Such systems are
always azeotropic in the fluid state, regardless of the relative
concentrations of the isomers in the system.26

Before considering the detection of AEPs and the calculation
of azeotropic lines, we discuss the different types of azeotropic
behaviors that can be found experimentally or calculated for
binary systems, in order to propose a general algorithm covering
all possible situations identified.

3. Classification of Azeotropic Behaviors in Binary
Mixtures

In their original studies with the van der Waals equation of
state, van Konynemburg and Scott5 identified four major types
of azeotropic phase behavior, namely, I-A, II-A, III-A, and V-A,
corresponding to variations of the previously identified non-
azeotropic behaviors.5,27 Type III-A implies only heterogeneous
azeotropy; i.e., the vapor-phase composition is intermediate
between those of the two liquids in the whole LLV equilibrium
region, and therefore no line of homogeneous azeotropy needs
to be considered. (Note that many water-hydrocarbon mixtures,
for example, are known to show phase behavior of type III-A
experimentally.28)

Both types I-A and V-A present an azeotropic line that, at
its upper temperature limit, meets either the critical line (CAEP)
or one of the pure-compound saturation lines (PAEP). The lower
limit can be a PAEP, or the curve can continue down to zero

Ind. Eng. Chem. Res., Vol. 47, No. 23, 2008 9729
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temperature. The azeotropic line can even show a temperature
minimum, giving rise to double azeotropy (see Figure 43 of
van Konynemburg and Scott5 for schematic temperature-
composition projections of the different possibilities correspond-
ing to type I-A systems). Type I-A systems have a continuous

critical locus, whereas, for type V-A, there are two critical loci
linked by an LLV line.

Type II-A is characterized by an azeotropic line starting from
an HAEP in the lower temperature limit and proceeding usually
to a CAEP or alternatively a PAEP.

When changing the interaction parameters in the EOS
modeling of binary systems, in order to obtain a transition
between types II-A and III-A, we detected behaviors that are
similar to those named III-Am* and III-Am** by van
Konynemburg and Scott (ref 5, Figure 39). [Note, however, that,
in some cases, for example, carbon dioxide + ethane with the
Peng-Robinson EOS, quadratic mixing rules, and kij around
0.40 (and lij ) 0), the critical line going to infinite pressure
starts not from compound 2 but from the critical point for
compound 1, in this case CO2. This is analogous to what was
found in ref28.] Types III-Am* and III-Am** contain
additional linessboth critical and LLVsand additional critical
end points not considered in our algorithm for automated
calculation of global phase equilibrium diagrams.8 Nevertheless,
it is very unlikely that the correlation of data for a system of
interest will require interaction parameters leading to these
transition behaviors. Therefore, because our goal is to develop
procedures for the automated calculation of phase behavior
occurring in real systems that might be of interest for applica-
tions, we consider the general algorithm proposed by Cismondi
and Michelsen,8 covering types I-V, as a base algorithm to
which we can add the construction of azeotropic lines.

Even though there are several possible different combinations
of AEPs for the azeotropic lines present in types I-A, II-A, and
V-A, as shown by van Konynemburg and Scott,5 one general
and very important characteristic that a general algorithm could
exploit is that, in all of those cases, there is only one line of
homogeneous azeotropy. Kolafa et al.,20 in their study of an
attractive-hard-sphere model, also detected some complex
behaviors for which the azeotropic line splits into two or three
different branches. Some of these behaviors, in particular those
presenting three branches, seem to be available only to certain
models within narrow ranges for the values of the interaction
parameters, and, to our knowledge, they have not been observed
in nature. (The exploration of the tradeoffs between enhanced
flexibility and artificiality of the different models available in
the literature is beyond the scope of the present work. The reader
should be aware of the fact that increased model flexibility does
not necessarily lead to a better model and could even make it
worse.) In our investigation of different models and systems
that tend to form azeotropes, we have found only two AEPs
per binary system in the vast majority of cases. Nevertheless,

Table 1. Homogeneous Azeotropic Behaviors Considered in the Algorithm Proposed in This Work

pair of end points connected
by an azeotropic linea number of AEPs azeotropyb possible typesc examples in this work case

0 to PAEP 1 P or N I, V 1
0 to CAEP 1 N I, V 2
PAEP to PAEP 2 P, N, or D I, II, V Figures 9 and 10/Figure 11 (kij ) -0.04) 3
PAEP to CAEP 2 P, N, or D I, II Figure 11 (kij ) -0.02) 4
HAEP to PAEP 2 P II, IV Figures 1, 7, and 8 5
HAEP to CAEP 2 P II, IV Figures 2-6 6
CAEP to CAEP 2 P or D I, II 7
PAEP(2)d to HAEP(LT)e

HAEP(HT)e to PAEP(1)d
4 P II 8

PAEP(2)d to HAEP(LT)e

HAEP(HT)e to CAEP
4 P II Figure 11 (kij ) 0.00) 9

a For example, 0 to PAEP indicates a line of homogeneous azetropy that goes from zero temperature to a PAEP. b P, positive; N, negative; D,
double. c Possible types of phase behavior are indicated based on our experience and reasoning and only to provide an orientation to the reader.
d PAEP(i) ) PAEP on the pure-compound vapor pressure curve of component i. Component 2 is the less volatile component in the (1,2) binary system.
e When two HAEPs are found, HAEP(LT) and HAEP(HT) are used to identify the HAEPs with lowest and highest temperatures, respectively.

Figure 1. Detection of a PAEP: Difference in the logarithm of the fugacity
coefficients of the infinitely dilute component, between the liquid and vapor
phases, along vapor pressure lines. This example: Carbon dioxide (1) +
hydrogen sulfide (2), SRK EOS with kij ) 0.12, as in Figure 7 below.

Figure 2. First derivative of pressure with respect to volume, at constant
temperature and composition, along the liquid-vapor critical line, for the
system carbon dioxide (1) + ethane (2) as represented by the SPHCT EOS
with kij ) 0.10 (as in Figure 3 below). The CAEP is detected as the nontrivial
point at which this derivative is zero.

9730 Ind. Eng. Chem. Res., Vol. 47, No. 23, 2008
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we observed the occurrence of four AEPs in cases where the
liquid-liquid immiscibility reaches (and therefore interrupts)
a homogeneous azeotropic line of wide composition range, either
between two PAEPs or between a PAEP and a CAEP.
Therefore, the presence of four AEPs is likely to occur in binary
systems exhibiting a Bancroft point (i.e., an intersection point
of the two pure-compound vapor pressure curves), which tend
to develop azeotropy in the whole range of composition. We
show examples of systems with four AEPs in section 8. In
summary, we consider in this work systems with a single line
of homogeneous azeotropy and also special systems having two
azeotropic lines. In other words, the algorithm we present in
this work is able to build two azeotropic lines only for the case
of an LLV locus interrupting a line of homogeneous azeotropy.
In every other case, it will build, at most, a single azeotropic
line.

4. Overall Strategy for the Automated Calculation of
Azeotropic Lines

From the discussion in the previous section, there are different
combinations of azeotropic end points (AEPs) that can be found
in the calculation of the global phase equilibrium diagram for
a specified binary system, thermodynamic model, and parameter
values. In Table 1, we list these possibilities, indicating also
the type of phase behavior to which they correspond and the
type of azeotropy involved, i.e., positive, negative, or double.

For instance, case 5 in Table 1 corresponds to an azeotropic
line, of a system of type II or type IV, that goes from an HAEP
to a PAEP, giving positive azeotropy (P).

Similarly to the strategy adopted for calculation of LLV lines,8

azeotropic lines should be calculated starting from previously
detected end points, i.e., from the identified AEPs. Critical end
points (CEPs) present only three possible cases (UCEP, LCEP,
K point27), all of which have to be sought along critical lines.8

In contrast, in this work, we search for azeotropic end points
on pure-compound vapor pressure lines (PAEPs), on critical
lines (CAEPs), and/or on LLV lines (HAEPs). Furthermore, all
types of combinations of pairs of azeotropic end points are
possible (Table 1). Therefore, we cannot save much testing effort
from our knowledge of the characteristics of the phase behavior,
as the construction of the global phase equilibrium diagram
progresses. This is not an important problem because, as we
discuss in the next section, the three types of tests for the

Figure 3. Pressure-temperature and temperature-composition projections
of the calculated global fluid phase equilibrium diagram for the system
carbon dioxide (1) + ethane (2). Model: SPHCT EOS with kij ) 0.10. Phase
behavior type: II-A.

Figure 4. (Top) Enlargement of the P-T projection in the range containing
the CAEP. (Bottom) Pxy diagrams at different temperatures corresponding
to the vertical dashed lines of the top plot. System and model as in Figure
3. Pxy cases (Table 3): case IV at 288 K, case VIII at 289.5 K. Other cases:
ref 7. Phase behavior type: II-A.

Table 2. Specification Functions Used in This Work for the
Calculation of Azeotropic Lines

NS g(X)

0 g(X) ) ln(VV/VL) ) ln VV - ln VL ) X4 - X3

1 g(X) ) ln T ) X1

2 g(X) ) z ) X2

3 g(X) ) ln VL ) X3

4 g(X) ) ln VV ) X4

Ind. Eng. Chem. Res., Vol. 47, No. 23, 2008 9731
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location of AEPs are simple, robust, and computationally
inexpensive compared to the location of CEPs, which involves,
first, stability analysis of critical points and then convergence
of the set of equations for a CEP.8 Therefore, we propose here
to test the complete vapor pressure and LLV lines as they are
calculated and also to test the critical line starting at the critical
point of pure compound 2, i.e., the first critical line calculated.8

(Note that component 1 is the more volatile compound of the
binary system, i.e., the one with higher vapor pressure, whereas

component 2 is the less volatile compound. In the case of a
Bancroft point, the highest-temperature region is taken into
account to label the components as 1 or 2.)

Once the complete global phase equilibrium diagram (GPED)
has been calculated, excluding the azeotropic lines, following
the algorithm of Cismondi and Michelsen,8 all azeotropic end
points will be known. The situations that can occur and the
approach applied in each case are as follows: (1) When one
AEP is detected (cases 1 and 2 of Table 1), we generate one
azeotropic line starting from a PAEP or CAEP and stop when
the temperature falls below a predefined minimum value, e.g.,
20 or 50 K. (2) When two AEPs are detected (cases 3-7 of
Table 1), we generate one azeotropic line starting from, in order
of preference, a PAEP(2), a PAEP(1), or a CAEP and ending
at the other AEP, which can be of any type. (3) When four
AEPs are detected (cases 8 and 9 of Table 1), two of them are
HAEPs: a lower temperature HAEP and a higher temperature
HAEP. In these cases we generate two azeotropic lines: The
first line starts from a PAEP(1) or CAEP and ends at the HAEP
of higher temperature [HAEP(HT)]. The second line starts from
the PAEP(2) and ends at the lower-temperature HAEP [HAE-
P(LT)].

The binary homogeneous azeotropic condition has one degree
of freedom; i.e., one specification must be made for the system
of nonlinear azeotropic conditions to have the same number of
equations and variables. For instance, we could specify a
temperature value at which we want to calculate the composi-
tion, pressure and phase densities of the homogeneous azeotrope.
The reason for preferring a PAEP or a CAEP over an HAEP as
the starting point for the calculation of an azeotropic line, is
that, in such cases, it is always clear which specification should
be made in the first step to the second point on the azeotropic
line and in which direction. When we start a line from a PAEP,
we specify, for the second point, the azeotropic composition,
and when the first point of the line is a CAEP, we specify the
relation between the volumes of the liquid and vapor azeotropic
phases.

5. Detection of Azeotropic End Points

5.1. Pure Azeotropic End Points (PAEPs). Every azeotrope,
including the limiting case of a PAEP, satisfies the condition
of equal fugacity coefficients for each component in the liquid
and vapor phases of identical composition. At every pure-
compound vapor pressure point, this equality is, by definition,
always satisfied for the pure compound, and therefore, the
corresponding equality for the other component, at infinite
dilution, is the condition that has to be tested along each vapor
pressure curve in order to detect the existence of a PAEP. In
our implementation, after convergence of each pure-compound
vapor pressure point, we compute the difference

DIFPAEP ) ln φ̂i
L(zi ) 0)- ln φ̂i

V(zi ) 0) (1)

where z stands for mole fraction and i corresponds to the
infinitely dilute component.14 Note that �̂i

L is the fugacity
coefficient of component i in the liquid phase, and �̂i

V is the
fugacity coefficient of component i in the vapor phase. A change
of sign in DIFPAEP with respect to the previous point on the
pure-compound saturation line indicates the presence of a PAEP.
We obtain its coordinates in temperature, pressure, and volumes
of the phases through linear interpolation. Note that the
calculation of DIFPAEP is explicit once the calculation of the
pure-compound saturation point of the concentrated component
has converged.14 In other words, the phase densities that enter
into eq 1 are those of the concentrated component in the pure

Table 3. Fluid-Fluid Equilibrium Regions To Be Calculated When
Generating Isothermal Pxy Diagrams with Homogeneous Azeotropic
Behavior

Table 4. Fluid-Fluid Equilibrium Regions To Be Calculated When
Generating Isobaric Txy Diagrams with Homogeneous Azeotropic
Behavior

9732 Ind. Eng. Chem. Res., Vol. 47, No. 23, 2008
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state at saturation. The typical behavior of DIFPAEP for a binary
system as a function of temperature is shown in Figure 1. In
this illustrative example (carbon dioxide + hydrogen sulfide as
described by the SRK EOS with kij ) 0.12), we observe that
DIFPAEP is never zero on the pure hydrogen sulfide saturation
line (excluding the trivial solution at the hydrogen sulfide critical
point). On the other hand, a nontrivial PAEP happens on the
pure carbon dioxide saturation line, at about 226 K. We stress
that, in this work, we do not account for the interference of
solid-fluid transitions. Note, for example, that the experimental
melting point of CO2 is about 217 K.

5.2. Critical Azeotropic End Points (CAEPs). Consider a
pressure vs density curve at constant temperature and at a
constant composition equal to the azeotropic composition,
generated using an EOS. The azeotropic point is located on such
a curve at the azeotropic pressure. This pressure value is such
that the fugacities of the mixture as a whole are equal for both
the vapor and liquid phases.14 Therefore, every azeotropic point
is also a pseudo-pure-compound vapor pressure point,14 with
vapor and liquid densities at saturation on both sides of the van
der Waals loop. In other words, a noncritical azeotrope needs
to have three density roots (in order to obtain vapor and liquid
properties that are different). As the azeotrope becomes critical,
these roots merge to a single root, which immediately gives
the following conditions for a critical point to become a CAEP,
which are the same as the conditions for a pseudocritical point29

(∂P
∂V )z,T

) 0 (2a)

(∂2P

∂V2)
z,T
) 0 (2b)

where V is the molar volume. We stress that eqs 2a and 2b are
necessary but not sufficient conditions. The CAEP conditions
consist of the general pseudocritical point conditions (eqs 2a
and 2b29) plus the criticality conditions.6,8

Because all critical points satisfy the condition of mechanical
stability, i.e., (dP/dV)z,T e 0, a CAEP is characterized not by a
change of sign in this first derivative along the critical line but by
a maximum that is exactly zero, as stated by eq 2a. We illustrate
this in Figure 2 for the system carbon dioxide + ethane as
represented by the SPHCT EOS with kij ) 0.10. Figure 2 shows
the existence of a CAEP at about 0.74 CO2 mole fraction. We
show in Appendix A that if condition 2a is fulfilled for a point
belonging to a vapor-liquid critical line, then condition 2b is also
automatically satisfied. Therefore, in our computational implemen-
tation, we compute the value of only the first derivative after
convergence of each critical point. If we denote the values for (dP/
dV)z,T corresponding to the last three calculated vapor-liquid critical
points as A, B, and C, respectively, the existence of a CAEP is
indicated by B having the smallest absolute value and this value
being zero within a given numerical tolerance. In our experience,
we found 0.01 bar mol/L to be an acceptable tolerance. The
temperature, pressure, composition, and density at the CAEP are
estimated by quadratic interpolation. Note that the zero slope of
the function [(dP/dV)z,T]critical at the CAEP in Figure 2 does not
directly correspond to condition 2b. The curve in Figure 2 is neither
isothermal nor isoplethic. Otherwise, vapor-liquid criticality is the
condition held constant for every point in such curve.

5.3. Heterogeneous Azeotropic End Points. The test for the
detection of an HAEP is the simplest of the three. A change of
sign in the composition difference between the vapor and the closest
liquid phase along the LLV line is sufficient to determine the
presence of an HAEP. Temperature, pressure, composition and
densities are estimated through linear interpolation.

6. Calculation Procedure for Azeotropic Lines

Our goal in this work is to develop a general procedure for
efficient calculation of homogeneous azeotropy lines. The
procedure should be applicable to the full spectrum of equations
of state and mixing rules, which spans from the simplest EOSs
coupled to one-fluid mixing rules to the more complex EOSs
with mixing rules that are not of the one-fluid type, as is the
case for PC-SAFT30 or the GC-EOS.31 Because the method is
to be used not for single azeotropic points but for the calculation
of entire azeotropic lines, it should be able, after convergence
of a given point of the line, to properly choose the variable to
be specified for calculating the next point; to set a suitable value
for such variable; and to generate good initial estimates for all
remaining variables of the azeotropic system of equations, based
on the knowledge of the previous converged point. In other
words, our method for generating entire azeotropic lines should
have the features of a good numerical path-following method.32

For these reasons, our approach here is similar to that followed
for calculations of critical lines and three-phase lines.8

Defining z, for simplicity, as the component 1 molar fraction
of both the liquid and vapor azeotropic phases, we set the system
of azeotropic equations, for the calculation of each point along
the binary azeotropic line, as follows

Figure 5. Pressure-temperature and temperature-composition projections
of the calculated global fluid phase equilibrium diagram for the system
hydrogen sulfide (1) + propane (2). Model: Peng-Robinson EOS with kij

) 0.05. Pressures indicated by dashed horizontal lines correspond to the
isobaric Txy diagrams in Figure 6. Phase behavior type: II-A.
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F) [ln PL(z,T,VL)- ln PV(z,T,VV)

ln f̂ 1
L(z,T,VL)- ln f̂ 1

V(z,T,VV)

ln f̂ 2
L(z,T,VL)- ln f̂ 2

V(z,T,VV)
g(X)- S

] ) 0 (3a)

where the vector of system variables is

X) [ ln T
z

ln VL

ln VV ] (3b)

(Note that, for numerical reasons, we scale the variables T, VL,
and VV using logarithms. Using ln z as the independent variable
instead of z is convenient, for example, in the calculation of
LLV lines,8 where one molar fraction usually decreases
exponentially along the line. This is not the case for azeotropic
lines, which, in turn, can end abruptly at pure-compound end
points. Therefore, the linear scale is preferred for composition;
i.e., a given step in z means the same in regions rich in either
compound 1 or compound 2.)

We define the variables in eqs 3a and 3b as follows: T is the
absolute temperature. VL and VV are the molar volumes of the
liquid and vapor phases, respectively. f̂i

L and f̂i
V are the fugacities

of component i in the liquid and vapor phases, respectively.
g(X) is the specification function, and S is its specified value.

Note that P(z,T,V) and f̂i(z,T,V) are, respectively, the pressure-
volume-temperature-composition and fugacity-volume-
temperature-composition relationships corresponding to the
chosen EOS model. It should be noted that using volumes
instead of pressure as independent variables not only saves
solving the pressure equation a large number of times along
the calculation of an azeotropic line. It also facilitates the
numerical convergence for points close to a CAEP, where the
solution for volume roots degenerates.

The system in eq 3a is solved for each point using a full
multidimensional Newton method. The sensitivity values con-
tained in vector dX/dS are used to generate initial estimates for
each new point, as is described by Michelsen for the calculation
of phase envelopes33 or by Cismondi and Michelsen for the
calculation of critical lines.8 We also use vector dX/dS to choose
the most convenient expression for the specification function
g(X) from the list given in Table 2, where we use the index NS
to label the different options for g(X).

Appendix B provides additional details on system of eqs 3a
and 3b and on the corresponding continuation method. The
Jacobian matrix of the vector function F (eq 3a) is given in
Appendix C.

7. Pxy and Txy Diagrams with Azeotropic Points

In a previous work,7 we presented strategies and methods
for the construction of complete isothermal (Pxy) and isobaric

Figure 6. Txy diagrams for different pressures indicated as dashed lines in Figure 5. System and model as in Figure 5. Phase behavior type: II-A. Txy cases
(Table 4): case VI at 0.166 bar (but very close to case XIII), case VI at 0.3 bar, and case III at 55 bar. See ref 7 for the case at 0.1 bar.
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(Txy) binary fluid phase equilibrium diagrams and provided
tables indicating the different two-phase regions to be calculated,
depending on the number of previouly detected critical, LLV,
and pure saturation points at the specified temperature or
pressure. Those tables did not consider homogeneous azeotropic
behavior. These cases are now presented in Tables 3 and 4.
Table 3 corresponds to isothermal Pxy fluid phase equilibrium
diagrams. It establishes the number and nature of two-phase
regions to be calculated, as a function of the number of LLV
(NLLV), azeotropic (NAZ), critical (NCRI), and pure-compound
saturation (NSAT) points detected. The nature of a given region
is defined by the nature of its limiting points, which can be
critical points (e.g., C, CA1, CA2, CB), azeotropic points (e.g.,
A, A1, A2), pure-compound vapor-liquid saturation points (i.e.,
S1 or S2), liquid-liquid points at LLV conditions (i.e., LL),
and liquid-vapor points at LLV conditions (i.e, LIV, LIIV).
Also, a region can extend to indefinitely high pressures. We
identify such regions as open (O) regions. To fix ideas, consider
the Pxy case IV in Table 3, whose regions are (S1|A) and (S2|A).
This corresponds to a vapor-liquid region (S1|A) extending
from the vapor-liquid saturation point of component 1 (S1) to
the only dectected azetrope (A) and to a second vapor-liquid
region (S2|A) whose limiting points are the azeotrope (A) and
the vapor-liquid saturation point for component 2 (S2). Pxy
case XIII corresponds to a more complex situation with regions

(VLII|S1), (VLI|A1), (S2|A2), (A1|A2), and (LL|O). Thus, there
are three regions stemming from the LLV point [(VLII|S1),
(VLI|A1), and (LL|O)]: the (VLII|S1) region ends at S1, the
(VLI|A1) region ends at one of the two detected azeotropes,
and the (LL|O) is an open liquid-liquid region. The region
(S2|A2) goes from the pure-compound point S2 to the second
detected azeotrope A2, whereas the region (A1|A2) connects
the two azeotropes (A1 and A2). The variety of cases that Tables
3 and 4 cover are based on our knowledge and experience. There
might be other cases not included in Tables 3 and 4. However,
Tables 3 and 4 definitely account for most of the cases of
practical interest and even some rare ones. Cases not considered
so far could be incorporated in the future into our algorithm
without much effort, and thus Tables 3 and 4 could be extended.

Tables 3 and 4 follow the notation used in ref 7. When two
or more critical points need to be distinguished in the specifica-
tion of limiting points, the type of critical line (according to
the classification in ref 8) is indicated as a subscript for each
point (e.g., for Txy case III in Table 4, CA and CB). The types
of critical lines considered in ref8 are A-E. If more than one
critical point from a given line are present, they are numbered
according to their position in the line, starting at the critical
point of component 2 for lines of type A or E (e.g., Pxy case I
in Table 3: CA1 and CA2; and Txy case I in Table 4: CE1 and
CE2). In the case of double azeotropy, A1 and A2 refer to the
azeotropic points closer in composition to compounds 1 and 2
respectively (e.g., for Pxy case V in Table 3, A1 and A2). Some
cases corresponding to the same specification (NLLV, NSAT,
NCRI, NAZ) are distinguished depending on the relation
between the compositions of some points present: zA, zC, and
zV denote the azeotropic composition (A), critical composition
(C), and vapor composition at an LLV point (V), respectively,
in terms of the mole fraction of component 1. Cases with same
specification are, for instance, cases X and XI in Table 3 and
cases XV and XVI in Table 4.

The numerical procedures described in ref 7 apply here for
the construction of each Pxy or Txy region, including prescrip-
tions about which specification should be made when starting
from a saturation, critical, or LLV point. Nevertheless, azeotropy
was not considered in that work. The case of regions of type
(A1|A2), i.e., of regions extending between two different
azeotropes, is special because we cannot avoid using an
azeotropic point as the starting point when building such regions.
We describe how we deal with this problem in Appendix D.

8. Illustration of the Proposed Methods

Figures 3-11 illustrate what can be obtained when using the
methods proposed in this work, through different types of
diagrams and with different systems and models. Although we
chose real systems to illustrate the implementation of our
proposed algorithm and, in some cases, used interaction
parameter values that predict the proper qualitative behavior,
we emphasize that quantitative comparisons to experimental data
are not within the scope of the present work.

Figure 3 shows the global fluid-phase equilbrium diagram
(GPED) for the system carbon dioxide + ethane as described
by the SPHCT EOS34 with kij ) 0.10. The top part is the
pressure-temperature projection of the GPED, and the bottom
part is the temperature-composition projection. We observe that
the two pure-compound vapor-liquid saturation curves (SAT-
Eth and SAT-CO2) have an intersection point (Bancroft point).
Also present are a liquid-vapor critical line (CRI-LV); a
liquid-liquid critical line (CRI-LL) that meets a liquid-liquid-
vapor line (LLV) at an upper critical end point (UCEP); and,

Figure 7. Pressure-temperature and temperature-composition projections
of the calculated global fluid phase equilibrium diagram for the system
carbon dioxide (1) + hydrogen sulfide (2). Model: SRK EOS with kij )
0.12. Temperatures indicated by dashed lines correspond to Pxy diagrams
in Figure 8. Phase behavior type: II-A.
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finally, a line of homogeneous azeotropy (AZE). The AZE line
goes from a CAEP to an HAEP. The temperature of the HAEP
is lower than the UCEP temperature.

Aslam and Sunol17 applied a homotopy continuation approach
for calculating azeotropes for binary and multicomponent
mixtures. Their method is based on distorting the nonlinear
azeotropic equilibrium equations through a homotopy parameter.
As this parameter is changed from zero to unity, the solution
of the nonlinear system progresses from the solution of a simple
equilibrium model to that of the more complex model of interest.
Every single solution obtained for this last model requires the
tracking of a complete curve. Therefore, using homotopy
continuation to obtain an azeotropic line with the same level of
detail as, e.g., that in Figure 3 of the present work requires the
tracking of a large number of curves, i.e., one for each set
temperature (or pressure) value. On the other hand, the method
we propose here obtains a complete azeotropic line by tracking
only one curve. For the time being, a version of the present
method applicable to ternary or multicomponent azeotropes is
not available. The homotopy continuation approach can be used
in such cases, in specific regions of phase space, and in problems
such as the modeling of multicomponent distillation processes.

Figure 4 shows an enlargement of the P-T diagram from
Figure 3 in the region where the azeotropic line meets the critical
line on a critical azeotropic end point (CAEP), as well as Pxy
diagrams corresponding to four different temperatures in this
range. This progression aids in understanding the significance
of a CAEP, which is an azeotrope and a critical point at the

same time, and how it affects the phase behavior at its
surroundings. Note that only the two higher temperatures provide
qualitatively equivalent diagrams, which would correspond to
the Pxy case VIII in Table 3 except for the absence of azeotropic
points. (Actually, because there is no azeotropic point, this case
can be found in Table 1 in ref 7.) Diagrams for 289.5 and 288.0
K are identified with lines (0, 2, 2, 1) (Pxy case VIII) and (0, 2,
0, 1) (Pxy case IV), respectively, in Table 3. The progression
is such that, at 288.0 K, there is an azeotrope and no critical
points; at 289.5, there are two critical points and still an
azeotrope; and at 291.4, there are also two critical points but
no azeotropes, as is the case at 293.0 K. Figure 3 corresponds
to a type II-A system in the classification of Scott and van
Konynemburg.5 The SPHCT pure-compound parameters were
set to reproduce the experimental critical temperature and
pressure of the pure constituents.35 The important remark to
make here is that relatively complex figures such as Figure 3
are automatically generated after the user defines the system
components, identifies the model, and sets the values for the
interaction parameters. Similarly, the only additional information
that the user must provide to generate figures such as Figure 4
is the set of temperature values of the isotherms. Each different
line in Figure 3 is the result of a specific continuation method.
Such continuation methods were defined in a previous work8

for SAT, CRI, and LLV lines and in the present work for AZE
lines.

Figures 5, 7, and 9 show additional calculated global phase
equilibrium diagrams for three other systems using three

Figure 8. Pxy diagrams at different temperatures near the HAEP, indicated as dashed lines in Figure 7. System and model as in Figure 7. Phase behavior
type: II-A. Pxy cases (Table 3): case X at 160.0 and 175.0 K. Other cases: ref 7.
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different equations of state: PR,36 SRK,37 and PC-SAFT.30 As
was the case for the SPHCT EOS in Figure 3, parameters
reproducing the experimental critical temperature and pressure
of the constituent pure compounds were used for the PC-SAFT
EOS.35 Figures 5 and 7 are calculated diagrams that correspond
to type II-A in the classification of Scott and van Konynemburg,5

whereas the system of Figure 9 is type I-A. However, from the
cases of Figures 3, 5, 7, and 9, an interesting diversity of
situations and azeotropic behavior can be observed, for example
in terms of the following aspects: (1) distance between UCEP
and HAEP (note, for example, the proximity between the HAEP
and the UCEP in Figures 3 and 5, whereas an important
separation is present in Figure 7); (2) separation between the
azeotropic line (AZE) and the nearest saturation line in the P-T
plane (this separation is clear in Figure 3 but essentially
negligible in Figure 7 and parts of Figures 5 and 9); and (3)
crossing between pure saturation lines, known as Bancroft point.
Such a crossing is observed in Figures 3 and 9 but not in Figures
5 and 7, which still show azeotropy. It is interesting to observe
that the existence of Bancroft points in two different systems,
such as those of Figures 3 and 9, does not imply a similar shape
for the azeotropic lines: whereas the azeotropic line is monotonic
in both projections of Figure 3, the azeotropic line of Figure 9
is not. The pressure-temperature projection of the azeotropic
line in Figure 9, which is better seen in the top left diagram of
Figure 10, is highly curved. Therefore, such an azeotropic line

would have been hard to track without using a path-following
method, as the one we propose here, that is able to adapt the
specification function to the shape of the tracked curve as the
calculation progresses.

Figure 7 in this work corresponds exactly to Figure 3 in ref
8, now including the azeotropic line, which was not considered
in that work. Regarding Figures 9 and 10, we stress again that
comparisons to experimental phase behavior are not within the
scope of the present work. Readers interested in studying the
ability of the PC-SAFT or any other particular EOS to describe
cases of experimentally observed polyazeotropy are directed to
refs24 and 25.

Examples of Txy diagrams are given in Figure 6, for the
system hydrogen sulfide + propane as described by the
Peng-Robinson EOS with kij ) 0.05. The pressure values of
the isobars are indicated as dashed horizontal lines on the P-T
projection in Figure 5. Here, the behavior around a heteroge-
neous azeotropic end point (HAEP) is illustrated through the
first three low-pressure diagrams. At pressures below the HAEP,
such as 0.10 bar, heterogeneous azeotropy is observed. The
second pressure, 0.166 bar, is slightly above the UCEP pressure
(0.165 bar) and above, but still close, to the HAEP pres-
sure (0.154 bar). From 0.166 bar to higher pressures, no three-
phase equilibrium is observed; i.e., the liquid-liquid region does
not interfere with the liquid-vapor regions, and only homoge-
neous azeotropy can appear. This is more evident at the third
pressure value in Figure 6 (i.e., 0.30 bar). The last Txy diagram
corresponds to a much higher pressure, i.e., 55 bar. It shows
only the liquid-vapor region and includes one critical point,
one azeotropic point, and one saturation point. At 55 bar, there
is also a liquid-liquid region that ends at a liquid-liquid critical
point (Figure 5). The temperature range of this region is outside
the temperature range of the 55.0 bar isobar of Figure 6.

Another example of the evolution of the phase behavior
through an HAEP, this time in terms of Pxy diagrams, is shown
in Figure 8 for the system carbon dioxide + hydrogen sulfide
as described by the SRK EOS with kij ) 0.12. The temperature
values corresponding to these isotherms are indicated as
horizontal dashed lines on the T-x projection in Figure 7. Once
again, it is clear how an HAEP shapes the transition from
heterogeneous to homogeneous azeotropy. In all four isothermal
diagrams in Figure 8, there is interference of the liquid-liquid
region with the vapor-liquid regions.

The last type of azeotropic end point left for graphic
illustration in the progression of phase diagrams is the PAEP.
This is done in Figure 10, for the system ethanol + n-hexane
as described by the PC-SAFT EOS (kij ) 0.047). Figure 10
includes an enlargement of the P-T projection of the GPED
of Figure 9 around the Bancroft point. This enlargement covers
the whole azeotropic line that goes through a maximum
temperature where the azeotropic pressure is also maximum.
Such a highly curved line of homogeneous azeotropy is difficult
to visualize in Figure 9. The Pxy diagrams in Figure 10 illustrate
not only a transition through a PAEP but also the calculation
of double azeotropy. At 377.0 K, there is only one homogeneous
azeotrope with relatively low ethanol concentration. At 379.6
K, a second azeotrope appears, at conditions of infinite dilution
of n-hexane in ethanol. This azeotrope is an end point of the
locus of homogeneous azeotropy, i.e., a PAEP. At 381.5 K, the
second azeotrope has become more concentrated in n-hexane.
At 389.0 K, both azetropes are quite far from the infinite dilution
condition. The size of the interazeotropic region continues to
decrease with further increases in temperature to the point of
maximum temperature of the azeotropic line, as inferred from

Figure 9. Pressure-temperature and temperature-composition projections
of the calculated global fluid phase equilibrium diagram for the system
ethanol (1) + n-hexane (2). Model: PC-SAFT EOS with kij ) 0.047.
Temperatures indicated by dashed lines correspond to Pxy diagrams in
Figure 10. Phase behavior type: I-A.
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the enlargement in Figure 10 and as clearly shown in the
temperature-concentration projection of Figure 9. Notice that
a switchback in the P-T projection for the azeotropic line is a
sufficient but not a necessary condition of double or polyazeot-
ropy. The fact that it is not a necessary condition is illustrated
in Figure 4 of ref 15 where single, double, or triple azeotropy
occurs, depending on the pressure range. The aforementioned
figure shows three azeotropic lines that never meet: they all
end at different points of the binary critical line.

9. Comments on Bancroft Points and Azeotropy

As stated by van Konynemburg and Scott,5 the existence of
a Bancroft point always implies azeotropy. Elliott and Rain-
water38 considered a database of 1350 pure compounds and
found 64 103 binary systems presenting a Bancroft point. In
such cases, the composition of the azeotrope is expected to
change significantly along the azeotropic line, from a region
rich in component 1 to one rich in component 2. This is the
case shown in the temperature-concentration projection of
Figure 9, where we find a line of homogeneous azeotropy
connecting both infinite dilution ends. As a natural consequence
of the existence of an azeotropic line with a wide composition
range, in a system characterized by a Bancroft point, the
azeotropic line can be interrupted if liquid-liquid phase
separation occurs up to temperatures in the range of homoge-
neous azeotropy. Such interruption leads to a split of the
homogeneous azeotropy locus into two different branches,

separated by a heterogeneous azeotropy region. We can improve
our understanding of such complex phenomena by applying the
algorithm proposed in this work for the automated generation
of phase diagrams accounting for homogeneous azeotropy. This
is exemplified by the diagrams calculated using the RK-PR
EOS39 for ethanol + n-hexane in Figure 11. In this case (kij )
0.00, bottom diagrams in Figure 11), the low-temperature
homogeneous azeotropy line starts from the vapor pressure line
of pure n-hexane and ends at a low-temperature HAEP, whereas
the high-temperature line goes from the second (high-temper-
ature) HAEP to a CAEP. Another important observation is that
azeotropic lines in systems with Bancroft points are very
sensitive to interaction parameters, especially in composition.
This can be seen explicitly in Figure 11, and it is also the case
for Figure 9, where double azeotropy can be obtained only for
a very narrow range of kij values, approximately from 0.020 to
0.053. (Note that this is valid of course for the PC-SAFT EOS,
which was used to generate Figures 9 and 10. Double azeotropy
could not be obtained for this system with the other models
used in this work.) Actually, double azeotropy is generally
associated with a Bancroft point, both in models and in
experiments.

10. Remarks and Conclusions

In this work, we have proposed a numerical continuation
method for the efficient generation of lines of homogeneous
azeotropy for binary mixtures described by models of the

Figure 10. Enlargement of the pressure-temperature diagram of Figure 9 in the range containing the azeotropic line (top left) and Pxy diagrams at different
temperatures near the higher-temperature PAEP, indicated as dashed lines in Figure 9 and in the top left plot of this figure. System and model as in Figure
9. Phase behavior type: I-A. Pxy cases (Table 3): Case IV at 377.0 K, case V at 381.5 and 389.0 K, transition between cases IV and V at 379.6 K.
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equation-of-state type. The efficiency requirement relates not
only to the need for low computation times but also to the ability
of the method to track highly curved azeotropic lines, as is the
case shown in Figures 9 and 10. The key to properly following
the path of highly curved lines is to allow changes in the nature
of the specified variable as the building of the line progresses.
Our algorithm first identifies the end points of the azeotropic
lines, which can occur on critical lines and/or on liquid-liquid-
vapor lines and/or on pure-compound saturation lines. The
present method for generating azeotropic lines avoids performing
stability analysis due to such in advance location of AEPs.

We described in the present work how our algorithm for
construction of entire azeotropic lines is integrated into a more

general algorithm that also generates critical lines, liquid-liquid-
vapor lines, and pure-compound vapor-liquid saturation lines.
The result is a procedure that requires the definition of the binary
system and the values of the model interaction parameters as
the only input information to generate a global phase equilibrium
diagram. We also described how complete binary isothermal
or isobaric fluid phase equilibrium diagrams can be generated
in a single run, by detecting, as first step, all critical, liquid-
liquid-vapor, and azeotropic points, as well as all pure-
compound vapor-liquid saturation points, at the set temperature
or pressure. In general, the algorithm does not miss any of the
possible liquid-liquid or liquid-vapor regions that exist for
the model at the set temperature or pressure, in spite of the fact

Figure 11. Pressure-temperature and temperature-composition projections of the calculated global fluid phase equilibrium diagrams for the system ethanol
(1) + n-hexane (2) using the RK-PR EOS with three different kij values: -0.04, -0.02, and 0.00. Phase behavior type: II-A in all cases.

Ind. Eng. Chem. Res., Vol. 47, No. 23, 2008 9739

D
ow

nl
oa

de
d 

by
 C

O
N

SE
JO

 N
A

C
 D

E
 I

N
V

E
ST

 C
IE

N
T

 Y
 T

E
C

N
IC

A
S 

C
O

N
IC

E
T

 o
n 

A
ug

us
t 2

7,
 2

00
9 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 N
ov

em
be

r 
4,

 2
00

8 
| d

oi
: 1

0.
10

21
/ie

80
02

91
4

http://pubs.acs.org/action/showImage?doi=10.1021/ie8002914&iName=master.img-012.jpg&w=467&h=528


that the corresponding isothermal or isobaric phase diagram can
have a significant degree of complexity, as illustrated in Figure
11.

An important conclusion we reached while developing this
work is that conventional mixing rules describe double azeotropy
only in narrow ranges of the values of the parameters. With
such mixing rules, one obtains at most a qualitative description
of double azeotropy. A quantitative description would require
more flexible mixing rules. The problem of polyazeotropy and
the mathematical or modeling conditions for its occurrence are
discussed in more detail in refs 24 and 25.
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Nomenclature

AEP ) azeotropic end point
AZE ) azeotropic
CAEP ) AEP on a vapor-liquid critical line
CRI ) critical
CX ) critical point corresponding to a critical line of type X
EOS ) equation of state
HAEP ) AEP on an LLV line
K point ) vapor-liquid critical end point
LCEP ) lower critical end point
LIIV ) light liquid phase and vapor phase at the LLV point
LIV ) heavy liquid phase and vapor phase at the LLV point
LL ) liquid-liquid or liquid phases at the LLV point
LLV ) liquid-liquid-vapor
LV ) liquid-vapor
NAZ ) number of azeotropes at a set temperature (or pressure)
NCRI ) number of critical points at a set temperature (or pressure)
NLLV ) number of LLV points at a set temperature (or pressure)
NSAT ) number of pure-compound LV saturation points at a set

temperature (or pressure)
O ) open
P ) absolute pressure
PAEP ) AEP on a pure-compound vapor-liquid line
Pxy ) isothermal phase equilibrium diagram
S1, S2 ) liquid-vapor saturation points of components 1 and 2,

respectively, at a set temperature (or pressure) (Component 1 is
the most volatile compound of the binary system, i.e., the one
with higher vapor pressure, and component 2 is the less volatile
compound. For binary systems presenting a Bancroft point, the
highest temperature region is taken into account.)

SAT ) LV saturation state for a pure compound
T ) absolute temperature
Txy ) isobaric phase equilibrium diagram
UCEP ) upper critical end point
z ) component 1 mole fraction

Appendix A: Minimization of the Computational Effort
When Searching for a CAEP along a Stable Critical Line

If the condition of eq 2a is fulfilled for a liquid-vapor critical
point, there are in principle three possibilities for this critical
phase, regarding its location on a (constant-temperature and
constant-composition) pressure-density curve: (1) It is located

on a relative maximum pressure point. (2) It is located on a
relative minimum pressure point. (3) Its temperature is equal
to the pseudocritical temperature for the composition of the
critical phase, and the critical phase is located exactly on the
pseudopure critical point.

Possibilities 1 and 2 must be discarded because they cor-
respond to points inside the pseudo-pure-compound saturation
bell and are therefore unstable. In other words, for any point
inside the pseudosaturation bell, there will be a different possible
phase with equal composition, temperature, and pressure, but
different density and lower Gibbs energy.

In conclusion, when a stable vapor-liquid critical point
satisfies condition 2a (first derivative), then condition 2b (second
derivative) will also automatically be satisfied because the
critical point will simultaneously be a pseudopure critical point.
Therefore, the fulfillment of condition 2a is enough to conclude
that a stable vapor-liquid critical point is a critical azeotropic
end point (CAEP).

Appendix B: Details on the Azeotropic System of
Equations and on the Continuation Method for
Calculation of Azeotropic Lines

Consider eqs 3a and 3b. As an example, we could set g(X) )
ln T and S ) ln(280). Thus, in such a case, we would calculate
the azeotropic composition, pressure, and phase densities at a
temperature of 280 K. Another possibility would be setting g(X)
) z and S ) 0.85, which corresponds to the calculation of the
azeotropic temperature, pressure, and phase densities when the
composition of the azetrope is z ) 0.85. In both examples,
specifying g(X) and setting a value for S is equivalent to
specifying the value of one of the variables of vector X. It is
also possible, and often convenient, to define g(X) as a
combination of the variables of vector X, e.g., g(X) ) ln(VV/
VL).

Once we define g(X) and assign a numerical value to the
variable S, we make the number of unknowns in system 3a
become equal to the number of equations and, thus, solve system
3a. By changing the value of S and solving system 3a for each
new value of S, we track a curve in a four-dimensional space
relating variables T, z, VL, and VV; i.e., we generate a locus of
homogeneous azeotropy. The solution vector X for system 3a
is a function of S. We define the sensitivity vector dX/dS as

dX
dS

) [ d(ln T)/dS
dz/dS

d(ln VL)/dS

d(ln VV)/dS
]

homogeneous azeotropy

(B1)

The sensitivity vector dX/dS provides information on how
the solution vector X changes as a function of the value S set
equal to g(X). Once we have a solution for system 3a, we
compute the sensitivity vector dX/dS by solving the following
system of equations

J(F)
dX
dS

+ ∂F
∂S

) 0 (B2)

where J(F) is the Jacobian matrix of the vector function F (given
in Appendix C) and

∂F
∂S

) [ 0
0
0
-1

] (B3)

We obtain eq B2 by differentiating eq 3a with respect to
parameter S. The left-hand side of eq B2 is the total derivative
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of the vector function F with respect to parameter S. The first
term accounts for indirect dependencies of the vector function
F on parameter S, whereas the vector δF/δS accounts for the
direct dependency of F on parameter S.

Notice also that variable S is a parameter of system 3a but
not one of its variables, which are those of vector X (eq 3b).
The Jacobian matrix, J(F), involves partial derivatives of the
vector function F with respect to the variables of vector X but
not with respect to parameter S. Finally, note that elements of
the sensitivity vector dX/dS are total rather than partial
derivatives.

As indicated in section 5, we start the calculation of an
azeotropic line either from a PAEP or from a CAEP. In the
first case, composition is initially specified, for example, z )
0.005 or z ) 0.995, i.e., NS ) 2 in Table 2, g(X) ) z and S )
0.005 or S ) 0.995.

When starting from a CAEP, the best choice for the
specification function is the relation between VV and VL, which
avoids the possibility of converging to a trivial solution where
VV ) VL. This specification is conveniently identified as NS )
0 in Table 2 to distinguish it from specification functions
corresponding to the natural variables in the vector X (eq 3b)
(NS ) 1-4 in Table 2). If we use g(X) ) X4 - X3 ) ln(VV/VL),
then the last row of the Jacobian J(F) becomes [∂F4/∂X1 ∂F4/∂X2-
∂F4/∂X3 ∂F4/∂X4] ) [0 0 -1 1], and the residual F(4) will remain
as exactly zero as the iterations proceed. (This is not the case,
for example, if the difference VV - VL is specified.) For the
first point departing from a CAEP, we used 0.99VC and 1.01VC

as initial estimates for VL and VV, respectively, and consistently
made the specification S ) ln(1.01/0.99). We also initialized T
and z, setting them equal to the corresponding CAEP values
for T and z. Note that VC is the volume of the CAEP.

As Table 2 shows, we set the specification function equal to
either a natural variable (X1, X2, X3, or X4) or the difference X4

- X3. Vector dX/dS, which we know from solving system B2
after convergence of an azeotropic point, provides the sensitivity
of only the natural variables with respect to parameter S. We
obtain the sensitivity of g0 ) ln(VV/VL) ) X4 - X3 with respect
to parameter S simply by differentiation, which results in dg0/
dS ) dX4/dS - dX3/dS. When tracking the locus of homoge-
neous azeotropy, we eventually need to switch from one
specification function to another. This is done based on the
values of the elements of the augmented sensitivity vector
[dg0/dS dX1/dS dX2/dS dX3/dS dX4/dS]. The specification function
we use for calculating the next azeotropic point is the one with
highest sensitivity, i.e., the function corresponding to the element
of the augmented vector having maximum absolute value. A
specification function switch typically happens at some point
when a CAEP is approached, where the specification function
is changed from NS * 0 to NS ) 0. In this case, the augmented
sensitivity vector has to be recalculated as dX/dSnew )
[(dg0/dS)/(dg0/dS) (dX1/dS)/(dg0/dS) (dX2/dS)/(dg0/dS) (dX3/dS)/
(dg0/dS) (dX4/dS)/(dg0/dS)], similarly to what is done when
switching from the specification function of a natural variable
to another.

Appendix C: Jacobian Matrix of the Homogeneous
Azeotropy Vector Function F

It is important to note that our independent variable for
composition (eq 3b) is the molar fraction z, whereas the
derivatives provided by thermodynamic subroutines are usually,
and conveniently, with respect to mole numbers.6 Following
the formalism n1 ) z and n2 ) 1 - z, the derivative of any
function U (which can be the logarithm of the pressure or the

logarithm of the fugacity of a given component) with respect
to z can be calculated from the expression

(∂U
∂z )T,V

) (∂U
∂n1

)
T,V,n2

- (∂U
∂n2

)
T,V,n1

(C1)

The Jacobian matrix J [Jlm ) (∂Fl/∂Xm)Xn*m] corresponding
to the vectors of eqs 3a and variables specified in 3b is therefore
calculated as follows, where the dependence of the pressure and
fugacities on temperature, volume, and composition is not
declared for the sake of simplicity [e.g., in the following
equations, we denote PL(z,T,VL) simply as PL]

J11 ) T[ 1

PL(∂PL

∂T )
n,VL

- 1

PV(∂PV

∂T )
n,VV] (C2)

J12 )
1

PL[(∂PL

∂n1
)

T,VL,n2

- (∂PL

∂n2
)

T,VL,n1
] - 1

PV[(∂PV

∂n1
)

T,VV,n2

-

(∂PV

∂n2
)

T,VV,n1
] (C3)

J13 )
VL

PL(∂PL

∂VL)
n,T

J14 )-VV

PV(∂PV

∂VV)
n,T

(C4)

J21 ) T[(∂ ln f̂ 1
L

∂T )
n,VL

- (∂ ln f̂ 1
V

∂T )
n,VV

] (C5)

J22 ) (∂ ln f̂ 1
L

∂n1
)

T,VL,n2

- (∂ ln f̂ 1
L

∂n2
)

T,VL,n1

- [(∂ ln f̂ 1
V

∂n1
)

T,VV,n2

-

(∂ ln f̂ 1
V

∂n2
)

T,VV,n1
] (C6)

J23 )VL(∂ ln f̂ 1
L

∂VL )
n,T

J24 )-VV(∂ ln f̂ 1
V

∂VV )
n,T

(C7)

J31 ) T[(∂ ln f̂ 2
L

∂T )
n,VL

- (∂ ln f̂ 2
V

∂T )
n,VV

] (C8)

J32 ) (∂ ln f̂ 2
L

∂n1
)

T,VL,n2

- (∂ ln f̂ 2
L

∂n2
)

T,VL,n1

- [(∂ ln f̂ 2
V

∂n1
)

T,VV,n2

-

(∂ ln f̂ 2
V

∂n2
)

T,VV,n1
] (C9)

J33 )VL(∂ ln f̂ 2
L

∂VL )
n,T

J34 )-VV(∂ ln f̂ 2
V

∂VV )
n,T

(C10)

When the specification function g(X) is chosen as equal to
one of the independent variables (NS ) 1-4 in Table 2), the
last line in the Jacobian matrix becomes J4,NS ) 1 and J4,i ) 0
for i * NS. When g(X) is instead chosen as g(X) ) ln(VV) -
ln(VL) (i.e., NS ) 0 in Table 2), then J41 ) J42 ) 0, J43 ) -1,
and J44 ) 1.

The derivatives of fugacities can be obtained from derivatives
of the residual Helmholtz energy as follows

(∂ ln f̂i

∂V )
n,T

)- 1
RT(∂P

∂ni
)

T,V,nj

) 1
RT( ∂

2Ar

∂V ∂ ni
)

T,nj

- 1
V

(C11)

(∂ ln f̂i

∂T )
n,V

) 1
RT[( ∂

2Ar

∂T ∂ ni
)

V,nj

- 1
T(∂Ar

∂ni
)

T,V,nj
] + 1

T
(C12)

(∂ ln f̂i

∂nj
)

T,V
)

δij

ni
+ 1

RT( ∂
2Ar

∂ni ∂ nj
)

T,V
(C13)
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where δij is the Kronecker delta function, i.e, 0 for i * j and 1
for i ) j. (Note that, in eqs C11-C13, we obtained the
expressions by combining other related derivatives in ref 6.)

Appendix D: Calculation of Vapor-Liquid Equilibrium
Regions That Develop between Two Azetropes

For (A1|A2) regions extending between two different azeotropes,
i.e., from x1

az,start to x1
az,end, we calculate the first nonazeotropic

point of the region specifying a value for the composition
difference (s ) x1 - y1) between the equilibrium phases. This
is also the case when starting from a critical point or from a
saturation point. For the (A1|A2) case, the initial value of the
vapor-phase composition for the first nonazeotropic point is
estimated from the relation

y1 ) x1
az,start +

( ∂ f̂1

∂x1
)

T,P

( ∂ f̂1

∂y1
)

T,P

(x1 - x1
az,start) (D1)

where the derivatives of fugacity with respect to composition
are calculated at the temperature, pressure, and composition of
the azeotrope. Equation D1 assumes a negligible change in
pressure (or temperature), and therefore a negligible change in
the derivatives values, when moving from the azeotropic to the
first nonazeotropic point. A linear dependence of the fugacity
of component 1 with respect to composition is the fundamental
assumption for using eq D1. This assumption is based on the
fact that, as illustrated in Figure D1, the fugacity curves
corresponding to the liquid and vapor phases are approximately
straight lines with different slopes, crossing at the azeotropic
point. Therefore, for conditions close to the azeotropic point,
eq D1 relates compositions for the two nonazeotropic phases
such that the fugacity of component 1 is the same in both, and
this condition, together with the solution of the pressure
equations for both phase volumes (at the azeotropic temperature
and pressure), provides very good starting values for the
calculation of the first nonazeotropic point. Still, eq D1 requires
first x1 be chosen in order to then estimate y1 and, from that, fix
the distance s. We found the following relation, in terms of the
distance between the two extreme azeotropic points, as a
reasonable and well-working criterion

x1 ) x1
az,start -

x1
az,start - x1

az,end

100
(D2)

It is important to note that, following the convention proposed
in ref 7, y denotes the composition of the phase that is richer in
component 1, not necessarily the vapor phase.

Fugacity Derivatives in Equation D1

Derivatives with respect to molar fractions can be obtained
from those with respect to mole numbers, as indicated in eq
C1. If derivatives at constant T and V are available (see eq C13),
then those at constant T and P can be obtained as follows

(∂ ln f̂i

∂nj
)

T,P
) (∂ ln f̂i

∂nj
)

T,V
+ 1

RT

(∂P
∂ni

)
T,V,nj

(∂P
∂nj

)
T,V,ni

(∂P
∂V)T,n

(D3)

When, in turn, derivatives of the logarithm of fugacity
coefficients at constant T and P are already coded, the
corresponding derivatives for fugacities are computed as follows

(∂ ln f̂i

∂nj
)

T,P
) (∂ ln �̂i

∂nj
)

T,P
+

δij

ni
- 1

n
(D4)

These equations can be derived from expressions in Chapter
1 of the book by Michelsen and Mollerup,6 and we have
followed their notation.
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Figure D1. Fugacity curve behavior around the azeotropic composition, at
constant temperature and pressure. Example corresponding to the system
ethanol (1) + n-hexane (2), PC-SAFT with kij ) 0.047, for T ) 389 K and
Paz ) 3.6435 bar (see Figure 10). In this example, the liquid is the stable
phase, whereas the vapor is unstable, except in the azeotrope, at xaz )
0.29835, which is a maximum-pressure azeotrope (Figure 10).
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