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Abstract

We devise a maximum entropy technique to construct (approximate) time-dependent solutions to evolution equations

endowed with source terms and, consequently, not preserving normalization. In some special cases the method yields exact

solutions. It is shown that the present implementation of the maximum entropy prescription always (even in the case of

approximate solutions) preserves the exact functional relationship between the time derivative of the entropy and the time-

dependent solutions of the evolution equation. Other properties of the maximum entropy solutions and some illustrative

examples are also discussed.

r 2006 Published by Elsevier B.V.
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1. Introduction

The application of information-entropic variational principles to the study of diverse systems and processes
in physics, astronomy, biology, and other fields, has been the focus of considerable research activity in recent
years. A (by no means exhaustive) list of important examples is given in Refs. [1–12]. The roots of this
approach can be traced back (at least) to Gibbs [13] who pointed out that the canonical probability
distribution is the one maximizing the entropy under the constraints imposed by normalization and the mean
energy value. However, it was Jaynes who elevated the principle of maximum entropy to the status of a
foundational starting point for the development of statistical mechanics, and the first to recognize its relevance
as a general statistical inference principle [14–16].

A large amount of research has been devoted to the study of time-dependent maximum entropy solutions
(either exact or approximate) of diverse evolution equations, such as the Liouville equation, the Vlasov
equation, diffusion equations, and Fokker–Planck equations [17–27]. Most of these applications of the
maximum entropy method to time-dependent scenarios involved evolution equations (linear or non-linear)
e front matter r 2006 Published by Elsevier B.V.
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exhibiting the form of a continuity equation and, consequently, preserving normalization in time. Our purpose
here is to explore some aspects of the application of the maximum entropy approach to a special type of
evolution equations: those endowed with source terms and, consequently, not preserving normalization.

It is a common assumption that entropic concepts, including the maximum entropy principle, can be applied
only to probability distributions. A given function r, if it is to be interpreted as a probability distribution, has to
be non-negative and normalized to unity. However, entropic concepts can be profitably applied also to the
study of (positive) densities, which are non-negative quantities not necessarily normalized to 1. Indeed, a
(positive) density can be normalized to any positive number N. The application of the maximum entropy
principle to the study of densities allows for the analysis of a variegated family of interesting problems. For
example, densities may evolve according to non-linear evolution equations [25–27] (as contrasted to ensemble
probabilities which, strictly speaking, must evolve linearly [28]). In this regard, it is worthwhile to remember
that Boltzmann himself introduced his celebrated entropic functional in order to study the evolution of the
density of particles in the ðx; vÞ space which, by the way, obeys a non-linear transport equation. When applying
the maximum entropy principle to the evolution of a density the normalization N may even change with time
(i.e., N ¼NðtÞ). This is precisely the case with the (linear) evolution equations with source terms that we are
going to consider in the present work. There are several possible scenarios where these equations with sources
may arise. For instance, when considering the diffusion of a certain type of particles we may need to include
explicitly, in the description of the diffusion process, the sources of those particles. This situation may arise in
several problems in physics, astronomy, or biology. For example, when dealing with the transport equation of
cosmic rays [17], if we want to include the sources of cosmic rays into our model, we have to incorporate the
corresponding source-terms into the evolution equation. In spite of its possible practical applications, our
principal interest in the present contribution will be to explore the structure of the dynamical equations
connecting the (time-dependent) main characters of our maximum entropy scheme: the relevant mean values
(constituting, at an initial time t0, the available prior information), the associated Lagrange multipliers, the
partition function, and the entropy. In particular, we are going to investigate the relationships between H-
theorems verified by the exact solutions and the H-theorems verified by the maximum entropy approximate
ones.

The paper is organized as follows. In Section 2 we explain, and provide some examples, of the type of
evolution equations that we are going to consider in this work. Some properties of the exact time-dependent
solutions to this equations are derived in Section 3. A maximum entropy formalism to treat these equations is
implemented in Section 4, where some of its main features are investigated. In Section 5 some examples are
considered, in order to illustrate the results obtained in the previous sections. Finally, some conclusions are
drawn in Section 6.

2. Evolution equations with source terms

In Refs. [17–24] the maximum entropy principle has been used with reference to the study of equations of

evolution exhibiting the form of continuity equations. We may mention, for instance, the Liouville equation, the
Fokker–Planck equation, diffusion equations, the Von Neumann’s equation in quantum mechanics, etc. The
evolution equations that we are going to investigate here comprise a continuity-like equation plus an extra

term K describing a source or a sink. Let us consider a classical system described by a time-dependent density
distribution F ðz; tÞ evolving according to the partial differential equation

qF

qt
þ r � J ¼ K , (1)

where z denotes a point in the relevant N-dimensional phase space, J is the flux vector, and K represents a
source-term (J and K may depend on the distribution F). As examples we have:
�
 The one-dimensional diffusion equation with a source term,

qF

qt
�Q

q2F
qx2
¼ K , (2)
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where Q denotes the diffusion coefficient, and the flux is given by

J ¼ �Q
qF

qx
. (3)
�
 The general Liouville equation with a source term K

qF

qt
þ r � ðFwÞ ¼ K , (4)

with flux

J ¼ Fw. (5)

If K ¼ 0 we recover the standard (general) Liouville equation [28,30,31]. The Liouville equation describes
the evolution of an ensemble of classical, deterministic dynamical systems evolving according to the
equations of motion

dz

dt
¼ wðzÞ, (6)

where z denotes a point in the concomitant N-dimensional phase space.

�
 Hamiltonian ensemble dynamics with sources, a particular instance of the Liouville equations (6). For
Hamiltonian systems with n degrees of freedom we have
1. N ¼ 2n;
2. z ¼ ðq1; . . . ; qn; p1; . . . ; pnÞ;
3. wi ¼ qH=qpi; ði ¼ 1; . . . ; nÞ; and
4. wiþn ¼ �qH=qqi; ði ¼ 1; . . . ; nÞ;
where the qi and the pi stand for generalized coordinates and momenta, respectively.

With reference to the last item note that Hamiltonian dynamics exhibits the important feature of being
divergenceless

r � w ¼ 0. (7)

For it the Liouville equation simplifies to

qF

qt
þ w � =F ¼ K , (8)

which is equivalent to a relationship obeyed by the total time derivative

dF

dt
¼ K, (9)

that is computed along an individual phase-space’s orbit.
As mentioned in the Introduction, there are several problems in physics, astronomy, and biology where the

evolution equations with sources arise naturally. When studying diffusion problems we can include explicitly,
in the description of the diffusion process, the sources of the diffusing particles. In that case, the most natural
kind of source term Kðz; tÞ is given by a positive function of z and t (if the source is time dependent) not
depending on F itself. Another type of situation leading naturally to a source term is given by the diffusion of
particles that undergo a certain decay process. In such a case, the changes in the evolving density F ðz; tÞ have
two different origins. On the one hand, the diffusion process itself. On the other one, the decay process. This
last factor gives rise to a negative source-like term (that is, a sink-like term) proportional to F ðz; tÞ itself,

K ¼ �qF , (10)

where the (negative) constant q is related to the mean life t of the decaying particles.
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3. Evolution of the entropy and the relevant mean values

In order to implement the maximum entropy method, we need to re-formulate our problem in terms of a
density f ðz; tÞ that is normalized to unity and therefore can be regarded as a probability density. Consequently,
it will prove convenient to re-cast the density distribution F ðz; tÞ under the guise,

F ðz; tÞ ¼NðtÞf ðz; tÞ, (11)

with Z
F ðz; tÞdNz ¼NðtÞ, (12)

and Z
f ðz; tÞdNz ¼ 1. (13)

The evolution equations for N and f are, respectively,

dN

dt
¼

Z
K dNz (14)

and

qf

qt
þ r � j ¼ k �

_N

N
f , (15)

where we have introduced the abbreviations

j ¼
J

N
(16)

and

k ¼
K

N
. (17)
3.1. Evolution of the entropy

Since the density f is properly normalized, we can consider its (time-dependent) Shannon entropy

S½f � ¼ �

Z
f ln f dNz, (18)

whose time derivative is given by (cf. Eq. (15))

dS

dt
¼

Z _N

N
f þ r � j� k

� �
ln f dNz

¼ �
_N

N
S þ

Z
½r � j� k� ln f dNz. ð19Þ

The following alternative (but equivalent) expression for the time derivative of the entropy is also useful:

dS

dt
¼ �

_N

N
S �

Z
k ln f dNzþ r �

j

f

� �� �
. (20)

If the source kðzÞ has a definite sign we can introduce the function

gðz; tÞ ¼
N
_N

kðzÞ, (21)
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which verifies,

gðz; tÞX0,Z
gðz; tÞdNz ¼ 1, (22)

and can thus be interpreted as a probability density function associated with the source term. Now, adding
and subtracting from (20) the integral,Z

k ln
Nk

_N

� �
dNz, (23)

one can re-cast (20) in the form

dS

dt
¼

_N

N
fS½g� � S½f � � I ½g; f �g þ r �

j

f

� �� �
, (24)

where

I ½g; f � ¼

Z
g lnðf =gÞdNz (25)

denotes the Kullback distance [29] between the probability densities g and f.
An interesting particular instance of Eq. (24) obtains when we have a source term proportional to F itself,

K ¼ qF , (26)

with q constant. If qo0 we can interpret this source term as describing the flow of particles that undergo a
decay process. With a term like (26) we have g ¼ f and

dS

dt
¼ r �

j

f

� �� �
. (27)

In the particular case of Liouville equation with a source like (26) we get

dS

dt
¼ hr � wi, (28)

which coincides with the expression for the time derivative of the entropy for the standard, norm preserving
Liouville equation [31,32].

3.2. Evolution of the relevant mean values

Another important ingredient of the maximum entropy approach is given by the set of mean values

hAii ¼

Z
AiF dNz (29)

of M relevant quantities Ai; ði ¼ 1; . . . ;MÞ. These M quantities are going to play the role of the prior
information used to construct the maximum entropy ansatz. We are going to assume that these M mean values
are known at an initial time t0 (more on this later).

The time derivatives of the relevant mean values (29) are

d

dt
hAii ¼

Z
½�Air � Jþ AiK �d

Nz ði ¼ 1; . . .MÞ. (30)

Integrating by parts and making the usual assumption that J! 0 rapidly enough as jzj ! 1, surface terms
vanish (they do in 99:9% of physics problems!) and we finally obtain

d

dt
hAii ¼

Z
½J � =Ai þ AiK �d

Nz ði ¼ 1; . . . ;MÞ. (31)
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We are also going to need, and thus introduce now, the ‘‘re-scaled’’ mean values,

ai ¼
1

N
hAii. (32)

4. MaxEnt ansatz for the evolution equation

4.1. Preliminaries

A central point for our present discussion is that of considering a specially important ansatz for solving the
evolution equation (1), namely, the MaxEnt one,

F ðz; tÞ ¼Nf MEðz; tÞ ¼
N

Z
exp �

XM
i¼1

liAi

" #
, (33)

where the AiðzÞ are M appropriate quantities that are functions of the phase space location z. The partition
function Z is given by

Z ¼

Z
exp �

XM
i¼1

liAi

" #
dNz. (34)

The probability distribution f ME appearing in (33) is the one that maximizes the entropy S½f � under the
constraints imposed by normalization and the relevant mean values hAii (or the ai ¼ hAii=N). The re-scaled
relevant mean values ai and the associated Lagrange multipliers li are related by the celebrated Jaynes’
relations [15]

li ¼
qS

qai

, (35)

ai ¼
hAii

N
¼ �

q
qli

ðlnZÞ, (36)

S ¼ lnZ þ
X

i

liai, (37)

and

qli

qaj

¼
q2S
qaiqaj

¼
qlj

qai

. (38)

It is not possible to exagerate the importance of Jaynes’ relations (35)–(38). Within Jaynes’ information-
theoretical approach to statistical mechanics, the aforementioned relations constitute the basis of the connection
between statistical mechanics and thermodynamics. All the basic equations of equilibrium thermodynamics are
particular instances of (35)–(38), or can be derived from special instances of (35)–(38). This fact alone provides

already a strong motivation for studying in detail the interplay between the various quantities appearing in Jaynes’
relations, when applying the maximum entropy principle to diverse physical scenarios. Indeed, a special instance
of this line of enquiry constitutes one of our main focuses of attention here.

All the time dependence of the maximum entropy distribution f ME appearing in the ansatz (33) is contained
in the Lagrange multipliers liðtÞ, which are assumed to be time dependent. The Lagrange multipliers (and the
normalization factor N) change in time in order to accommodate to the evolving mean values hAii (and the
evolving norm of F ðz; tÞ). We assume that the mean values of the M relevant quantities Ai at an initial time t0,

fhA1it0 ; . . . ; hAMit0g, (39)

as well as the initial value Nt0 , are known. They constitute our prior information. On the basis of these initial
data we determine the initial values of the Lagrange multipliers li and the partition function Z. Then, on the
basis of an appropriate set of equations of motion for the relevant mean values (constructed using the evolving
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maximum entropy ansatz) we determine the (approximate) time evolution of the hAii. Now, in general, the
time derivatives of the aforementioned mean values are given by Eq. (31), that is re-written here for
convenience,

d

dt
hAii ¼

Z
½J � =Ai þ AiK �d

Nz ði ¼ 1; . . . ;MÞ. (40)

The integrals appearing in the right-hand sides of these equations generally involve, unfortunately, new mean
values not included in the original set hAiiði ¼ 1; . . . ;MÞ (remember that the flux J depends on the distribution
f). One way to implement the maximum entropy approach to solve the evolution equation (1) is to evaluate, at
each instant of time, the right-hand sides of (40) using the maximum entropy ansatz (33). In this way, the
system of equations (40) can be translated into a closed system of motion for the Lagrange multipliers li. This
(time-dependent self-consistent) approach will yield either exact solutions, or only approximate solutions,
depending on the specific form of the evolution equation (1) (such is also the case, of course, in the case of
continuity equations. See [19–23] and references therein).

4.2. Time evolution

We discuss now specific details of the temporal evolution, beginning with that of the Lagrange multipliers.
Regarding the set of quantities ai; ði ¼ 1; . . . ;MÞ as the set of independent parameters characterizing f ME, we get

dli

dt
¼
XM
j¼1

qlj

qai

� �
dai

dt

� �

¼
q
qai

XM
j¼1

lj

daj

dt

� � !
�
XM
j¼1

lj

q
qai

daj

dt

� �
. ð41Þ

Now, since hAii ¼Nai, we have

dai

dt
¼

1

N

dhAii

dt
� ai

d ln N

dt

¼
1

N

Z
½J � =Ai þ AiK � _NfAi�d

Nz, ð42Þ

and, as a consequence,

XM
i¼1

li

dai

dt

� �
¼

1

N

Z
J � =

X
i

liAi þ K
X

i

liAi � _Nf
X

i

liAi

 !
dNz. (43)

Substituting now the MaxEnt ansatz (33) for f (remember that we have defined j ¼ J=N) one gets

XM
i¼1

li

dai

dt

� �
¼

Z
f = � ðj=f ÞdNzþ

1

N

Z
½ _Nf � K �½lnðfZÞ�dNz

¼
1

N
h= � ðj=f Þi þ

Z
½ _Nf � K �½lnðfZÞ�dNz

� �

¼
1

N
ðh= � ðj=f Þi þ

Z
½ _Nf � K � ln f dNzÞ, ð44Þ

where the fact has been used that (14) implies
R
½ _Nf � K�½lnðZÞ�dNz ¼ 0. Finally,

dli

dt
¼

q
qai

Z
f = �

j

f

� �
þ

_N

N
f � k

� �
ln f

� �
dNz

�
XM
j¼1

lj

q
qai

Z
j � =Aj þ Ajk �

_N

N
fAj

� �
dNz. ð45Þ
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4.3. Evolution of the entropy

Now we are going to consider the time derivative of the entropy evaluated on the maximum entropy
solution: S½f ME �. From Eqs. (36) and (37) we have

d

dt
S½f ME � ¼

d

dt
ðlnZÞ þ

d

dt

XM
i¼1

liai

 !

¼
X

i

dli

dt

q
qli

ðlnZÞ þ
X

i

dli

dt
ai þ

X
i

li

dai

dt

¼
X

i

li

dai

dt
, ð46Þ

and, using now (43), the important relation

d

dt
S½f ME � ¼

1

N

Z
J � =

X
i

liAi þ K
X

i

liAi � _Nf ME

X
i

liAi

" #
dNz

¼

Z
�ð= � jÞ

X
i

liAi

 !
þ k

X
i

liAi �
_N

N
f ME

X
i

liAi

" #
dNz

¼

Z
ð= � jÞðlnZ þ ln f MEÞ þ

_N

N
f ME � k

� �
ðlnZ þ ln f MEÞ

� �
dNz

¼

Z
= � jþ

_N

N
f ME � k

� �
ln f ME dNz

¼ �
_N

N
S½f ME � þ

Z
ð= � j� kÞ ln f ME dNz. ð47Þ

Summing up, we have,

d

dt
S½f ME � ¼ �

_N

N
S½f ME � þ

Z
ð= � j� kÞ ln f ME dNz. (48)

Comparing now the expression for the entropy’s time derivative corresponding to the exact solutions (cf.
Eq. (19)) with the expression just derived (48) for the maximum entropy ansatz, we can reach an important
conclusion: our present maximum entropy scheme always (even in the case of approximate solutions)
preserves the exact functional relationship between the time derivative of the entropy and the time-dependent
solutions of the evolution equation. Consequently, any H-theorem verified when evaluating the entropy
functional upon the exact solutions is also verified when evaluating the entropy upon the MaxEnt
approximate treatments. This is of considerable relevance in connection with the consistency of the method as
a maximum entropy approach.
5. Examples

5.1. Liouville equation with constant sources

According to Eq. (31), and remembering that, for the Liouville equation, the flux is given by J ¼ Fw, the
temporal evolution of the mean values of the dynamical quantities Ai is

dhAii

dt
¼

Z
½Fw � =Ai þ AiK �d

Nz

¼ hw � =Aii þ Bi ði ¼ 1; . . . ;MÞ, ð49Þ
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where

Bi ¼

Z
AiK dNz ði ¼ 1; . . . ;MÞ. (50)

Here we are going to assume that f is given by the ansatz (33)–(34). We can then regard the quantities Z; f ; and
li’s as functions of the set a1; . . . ; aM . Alternatively, it is also possible to regard all relevant quantities as
functions of the li’s instead.

Let us consider the important particular case where the following closure relationship holds:

w � =Ai ¼
XM

j

CijAj ði ¼ 1; . . . ;MÞ, (51)

where the Cij constitute a set of (structure) constants. This entails that

dhAii

dt
¼
XM

j

CijhAji þ Bi ði ¼ 1; . . . ;MÞ. (52)

It is useful also to introduce the quantity,

B0 ¼

Z
K dNz ði ¼ 1; . . . ;MÞ. (53)

The general solution of the equations of motion for the mean values is then seen to be of the form

hAiiðtÞ ¼ hAiiinhom: þ hAiihom :, (54)

where hAjiinhom: complies with

XN

j¼1

CijhAjiinhom: þ Bi ¼ 0, (55)

and is a particular solution of the (inhomogeneous) set of linear differential equations, while hAiihom : is the
general solution of the homogeneous set of equations

dhAii

dt
¼
XM

j

CijhAji ði ¼ 1; . . . ;MÞ. (56)

Now, if r � w ¼ 0 (that is, if the flux w is divergenceless) the temporal evolution of the Lagrange multiplier is
given by

dli

dt
¼

q
qai

Z
f = �

j

f

� �
þ

_N

N
f � k

� �
ln f

� �
dNz

�
XM
j¼1

lj

q
qai

Z
j � =Aj þ Ajk �

_N

N
fAj

� �
dNz

¼
q
qai

Z
f = � wþ

1

N
_Nf � K

� 	
ln f

� �
dNz

�
XM
j¼1

lj

q
qai

Z
fw � =Aj þ

1

N
ðAjK � _NfAjÞ

� �
dNz
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¼ �
_N

N

qS

qai

�
1

N

q
qai

Z
K ln f dNz

�
XM
j¼1

lj
q
qai

Z
f
XM

k

CjkAk

 !
þ

1

N
ðAjK � _NfAjÞ

" #
dNz

¼ �
_N

N
li �

1

N

q
qai

Z
K ln f dNz

�
XM
j¼1

lj
q
qai

XM
k

Cjkak

 !
þ

1

N

Z
AjK dNz

� �
�

_N

N
aj

" #

¼ �
_N

N
li �

1

N

q
qai

Z
K ln f dNz

�
XM
j¼1

lj Cji þ
1

N

q
qai

Z
AjK dNz

� �
�

_N

N
dij

� �
, ð57Þ

which ends up in

dli

dt
¼

XM
j¼1

Cjilj

 !
�

1

N

q
qai

Z
K ln f dNz. (58)

5.2. A collisional Vlasov equation with sources

We are going to consider the following collisional Vlasov with sources:

qF

qt
þ v

qF

qx
�

qf
qx
þ gv

� �
qF

qv
� ga

q2F
qv2
� gF ¼ ½b0 þ b1x

2�F , (59)

where g, a, b0, and b1 are constants (g and a are positive) and the potential f is of a quadratic form,

fðxÞ ¼ 1
2
f2x

2. (60)

Here we are also going to assume that f240. Eq. (59) is a generalization of the source-free equation studied in
Ref. [24]. Let us now consider a maximum entropy ansatz of the form

F ðx; v; tÞ ¼ exp½�l0 � l1x� l2v� l3x2 � l4xv� l5v2�,

¼
N

Z
exp½�l1x� l2v� l3x2 � l4xv� l5v2�

¼Nf , ð61Þ

where the li; i ¼ 0; . . . ; 5 are appropriate Lagrange multipliers and

Z ¼

Z
exp½�l1x� l2v� l3x2 � l4xv� l5v2�dxdv. (62)

The (normalized) distribution f appearing in (61) maximizes the Boltzmann–Gibbs entropic functional,

S½f � ¼ �

Z
f ðx; v; tÞ ln f ðx; v; tÞdxdv, (63)

under the constraints imposed by normalization and the instantaneous mean values of the quantities B1 ¼ x,
B2 ¼ v, B3 ¼ x2, B4 ¼ xv, and B5 ¼ v2. All the time dependence of the ansatz (61) is expressed through the
Lagrange multipliers li, which are time dependent. Inserting the ansatz (61) into the partial differential
equation (59), and equating to zero, separately, terms proportional to xivj with different exponents i; j, it is
possible to prove that the ansatz (61) constitutes an exact solution to (59), provided that the Lagrange
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multipliers comply with the set of coupled ordinary differential equations,

dl0
dt
¼ �gal22 þ 2gal5 � g� b0, (64)

dl1
dt
¼ f2l2 � 2gal4l2, (65)

dl2
dt
¼ �l1 þ gl2 � 4gal2l5, (66)

dl3
dt
¼ f2l4 � gal24 � b1, (67)

dl4
dt
¼ �2l3 þ 2f2l5 þ gl4 � 4gal4l5, (68)

and

dl5
dt
¼ �l4 � 4gal25 þ 2gl5. (69)

Alternatively, we can focus our attention on the set of ordinary differential equations governing the
evolution of the selected set of relevant mean values,

d

dt
hxi ¼ hvi þ b0hxi þ b1hx

3i, (70)

d

dt
hvi ¼ �f2hxi � ghvi þ b0hvi þ b1hx

2vi, (71)

d

dt
hx2i ¼ 2hxvi þ b0hx

2i þ b1hx
4i, (72)

d

dt
hxvi ¼ �f2hx

2i � ghxvi þ hv2i þ b0hxvi þ b1hx
3vi, (73)

and

d

dt
hv2i ¼ �2f2hxvi � 2ghv2i þ 2agþ b0hv

2i þ b1hx
2v2i. (74)

This example exhibits the peculiarity that, in spite of the fact that the maximum entropy ansatz (61) provides
exact time-dependent solutions to Eq. (59), the equations of motion (70)–(74) for the five relevant mean values
do not constitute a closed set of differential equations of motion for these quantities.

6. Conclusions

A maximum entropy approach to construct approximate, time-dependent solutions to evolution equations
endowed with source terms was considered. We have shown that in some particular cases the method leads to
exact time-dependent solutions. By construction our present implementation of the maximum entropy
prescription complies with the exact equations of motion of the relevant mean values. Moreover, it always
(even in the case of approximate solutions) preserves the exact functional relationship between the time
derivative of the entropy and the time-dependent solutions of the evolution equation. This means that any H-
theorem verified when evaluating the entropy functional upon the exact solutions is also verified when
evaluating the entropy upon the MaxEnt approximate treatments. This is of considerable relevance in
connection with the consistency of the method as a maximum entropy approach. Other features exhibited by
the maximum entropy solutions and some illustrative examples were also discussed.
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