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Nicotinic acetylcholine receptors (nAChRs) are homo- or

heteropentameric ligand-gated ion channels mediating

excitatory neurotransmission and muscle activation.

Regulation of nAChR subunit assembly and transfer of

correctly assembled pentamers to the cell surface is only

partially understood. Here, we characterize an ER trans-

membrane (TM) protein complex that influences nAChR

cell-surface expression and functional properties in

Caenorhabditis elegans muscle. Loss of either type I TM

protein, NRA-2 or NRA-4 (nicotinic receptor associated),

affects two different types of muscle nAChRs and causes in

vivo resistance to cholinergic agonists. Sensitivity to sub-

type-specific agonists of these nAChRs is altered differ-

ently, as demonstrated by whole-cell voltage-clamp of

dissected adult muscle, when applying exogenous ago-

nists or after photo-evoked, channelrhodopsin-2 (ChR2)

mediated acetylcholine (ACh) release, as well as in single-

channel recordings in cultured embryonic muscle. These

data suggest that nAChRs desensitize faster in nra-2 mu-

tants. Cell-surface expression of different subunits of the

‘levamisole-sensitive’ nAChR (L-AChR) is differentially

affected in the absence of NRA-2 or NRA-4, suggesting

that they control nAChR subunit composition or allow

only certain receptor assemblies to leave the ER.
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Introduction

Nicotinic acetylcholine receptors (nAChRs) are homo- or

heteropentamers composed of a- and non-a-subunits, which

mediate fast synaptic transmission in neurons and muscles

(Changeux and Edelstein, 2005). The agonist binds at the

interface between an a-subunit and either another a- or a

non-a-subunit (Chiara and Cohen, 1997). Two or three acet-

ylcholine (ACh) molecules need to bind for maximal activa-

tion (Karlin, 2002; Rayes et al, 2009); thus, functional

properties of nAChRs are affected by the number of a-

subunits, and the presence of particular subunits in the

pentamer. In vertebrates, a-, b-, d-, g- and e-subunits are

found in muscle, and nAChRs are of a2bdg or a2bde composi-

tion, depending on the developmental stage (Mishina et al,

1986); in neurons, 9 a- and 3 b-subunits form a5- or a2b3-type

receptors. The nAChR subunit repertoire of Caenorhabditis

elegans is even more complex: its genome encodes 29 con-

firmed nAChR subunits (Jones et al, 2007), of which at least

seven are expressed in muscle, based on microarray profiling

and biochemical purification (Gottschalk et al, 2005;

Touroutine et al, 2005; Fox et al, 2007). However, expression

of additional nAChRs in muscle was demonstrated (Treinin

et al, 1998).

Regulating nAChR subunit composition is an important

way to fine-tune cholinergic signalling. Subunit combinations

can be predetermined by cell-specific expression, and many

potential assembly intermediates may be unstable due to

incompatible subunit interfaces. In vertebrate neurons, a

vast variety of nAChRs could be generated; however, only

few combinations were detected experimentally (Gotti et al,

2007). Out of the 208 possible combinations of vertebrate

muscle nAChR subunits, only one is found in mature muscle.

To some extent, this is explained by sequence-specific inter-

actions within the N-terminal, as well as the first transmem-

brane (TM) domains, according to different models (Gu et al,

1991; Kreienkamp et al, 1995; Wang et al, 1996; Keller and

Taylor, 1999; Wanamaker et al, 2003). HSP70 chaperones and

the ER quality control assist in nAChR assembly (Blount and

Merlie, 1991; Keller et al, 1996, 1998; Keller and Taylor, 1999).

The ER-resident TM protein RIC-3 and the Golgi-associated

protein UNC-50 are also required for efficient nAChR assem-

bly, maturation or trafficking from the ER and beyond (Halevi

et al, 2002; Eimer et al, 2007), and 14-3-3 proteins further

assist nAChRs in leaving the ER (Jeanclos et al, 2001).

Immature assemblies and single subunits are retained in

the ER, as they expose retention motifs in the first TM

helix, which are masked only on closed pentamer formation

(Wang et al, 2002). Yet, no factors are known that select

particular subunits for incorporation into mature receptors,

particularly in cells expressing many different nAChR sub-

units. It is further unknown whether there is active sorting

that allows only particular nAChRs to exit the ER.
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The C. elegans ‘levamisole-sensitive’ nAChR (L-AChR) is

expressed in muscle cells, but some of its subunits are also

found in neurons. Genetic screens based on levamisole-

induced paralysis defined three essential subunits: UNC-38,

UNC-63 (both a-subunits) and UNC-29 (non-a; Lewis et al,

1987; Fleming et al, 1997; Culetto et al, 2004). Further,

L-AChR subunits, LEV-8 (a) and LEV-1 (non-a), are consid-

ered non-essential as their loss confers weak levamisole

resistance (Lewis et al, 1987; Culetto et al, 2004; Towers

et al, 2005). Co-expression of these five subunits in Xenopus

oocytes, together with essential L-AChR biogenesis factors,

RIC-3, UNC-50 and UNC-74, sufficed to constitute levamisole-

activated currents (Boulin et al, 2008). An electrophysiologi-

cally defined ‘nicotine-sensitive’ N-AChR contributes to ACh

currents at neuromuscular junctions (NMJs). This apparently

homopentameric receptor consists of ACR-16 subunits

(Francis et al, 2005; Touroutine et al, 2005).

To define proteins contributing to L-AChR function, we

previously purified the L-AChR by tandem affinity purifica-

tion and identified co-purified proteins by mass spectrometry

(Gottschalk et al, 2005). In addition to the five genetically

identified L-AChR subunits, we found two more a-subunits,

ACR-8 and ACR-12. Although ACR-12 is expressed in neurons

only, ACR-8 is expressed in body wall muscle cells. Thus,

seven nAChR subunits are implicated in L-AChR function

in vivo, suggesting that L-AChRs may represent a mixed

population of pentamers with variable subunit composition,

and/or that their composition could depend on the particular

cell. Non-nAChR proteins that co-purified with the L-AChR

were screened for effects on the in vivo sensitivity to choli-

nergic agonists (Gottschalk et al, 2005). Among proteins

causing reduced agonist sensitivity was the product of gene

T05F1.1, subsequently termed nra-2.

Here, we show that NRA-2, in complex with a second

protein, NRA-4, acts in the ER to affect functional properties

and subunit composition of L-AChRs expressed at synapses.

Electrophysiological properties of L- and N-AChRs are altered

in nra-2 and nra-4 mutants, as well as single-channel L-AChR

properties in embryonic muscle, consistent with faster desen-

sitization of L-AChRs. Synaptic expression of UNC-29 and,

particularly, UNC-38 subunits are characteristically altered in

nra-2 and nra-4 mutants. Mutations in acr-8 suppress nra-2

phenotypes, and synaptic expression of ACR-8 is increased in

nra-2 mutants, uncovering a reciprocal regulation of UNC-38

versus ACR-8 a-subunit incorporation into synaptic nAChRs

by NRA-2. Thus, NRA-2 and NRA-4 affect L-AChR properties

by altering subunit composition and/or the relative

abundance of particular L-AChR subtypes at the synapse.

Results

NRA-2 and NRA-4 are type I TM proteins associated

with L-AChRs

NRA-2 is a type I TM protein, consisting of a 518 amino acid

(aa) luminal domain and an 18 aa cytosolic tail (Figure 1A

and B), and contains a peptidase domain, likely inactive, as

certain amino acids are non-conserved (Supplementary

Figure 1). NRA-2 resembles vertebrate Nicalin (nicastrin-

like protein; Supplementary Figures 2 and 3). Nicastrins are

subunits of the integral membrane peptidase g-secretase

(Yu et al, 2000). Nicalin, which is not part of g-secretase,

antagonizes TGFb signalling in an ill-defined manner, acting

in complex with a second type I TM protein, termed NOMO

(nodal modulator) in the ER (Haffner et al, 2004, 2007).

Nicalin and NOMO were shown to stabilize each other in

this complex. Interestingly, the C. elegans homologue of

NOMO (gene C02E11.1; Figure 1A; Supplementary Figures 4

and 5), was among the proteins we co-purified with the

L-AChR (Gottschalk et al, 2005). We termed this protein

NRA-4. NRA-4 has a 1068 aa luminal domain, a 30 aa

cytosolic tail and no motifs suggesting a function

(Figure 1B). Both nra-2 and nra-4 produce only single-splice

variants, based on published ESTs (www.wormbase.org) and

sequencing of full-length cDNAs obtained from Y Kohara.

Deletion alleles of nra-2 (tm1453 and ok1731) and nra-4

(hd127 and tm2656) were obtained for further study

(Figure 1; Supplementary Figures 2 and 4).

Mutants in nra-2(ok1731) were slightly uncoordinated,

and nra-2(ok1731) and nra-4(tm2656) mutants showed re-

duced brood size (data not shown). The nra-2 alleles truncate

the NRA-2 protein C-terminal, leaving only 294 (tm1453) or

212 (ok1731) aa of the luminal domain (Supplementary

Figure 6). Alleles of nra-4 delete N- (hd127) or C-terminal

(tm2656) sequences. hd127 is predicted to remove 183 nt of

the promoter and the first 48 aa, including a leader sequence

(Figure 1; Supplementary Figure 6). As the second exon,

unaffected by hd127, begins with an ATG, a protein without

leader sequence could be made. RT–PCR analysis confirmed

the presence of an nra-4 transcript lacking exon 1 in hd127

mutants (data not shown). However, it is unclear whether the

truncated promoter expresses in the same tissues as the full-

length promoter, or whether any functional protein is made in

this mutant. The nra-4(tm2656) allele removes aa 816–920 of

the luminal domain in-frame, leaving TM domain and

cytosolic tail intact (Figure 1; Supplementary Figure 6). As

most assays used in this work showed no phenotypes of

nra-4(tm2656), we consider it at most a reduction-of-function

allele (see Supplementary Figure 7 for a summary of experi-

ments involving nra-4(tm2656)).

NRA-2 and NRA-4 affect in vivo sensitivity to

cholinergic, but not GABAergic agonists, and

act cell autonomously in muscle

We tested the nra-2 and nra-4 mutants in paralysis assays for

altered in vivo sensitivity to cholinergic agonists (nicotine

and levamisole), and to aldicarb, an ACh-esterase inhibitor

that causes ACh accumulation in the synaptic cleft. Both

alleles of nra-2 as well as nra-4(hd127) caused mild resis-

tance to either drug, indicating reduced activity of muscle

nAChRs (Figure 1C and D; Supplementary Figure 8). The

paralysis phenotypes could be reversed by expression of the

nra-2 cDNA in muscle only (using pmyo-3), and nra-4 under

its own promoter, in the respective mutants (Figure 1C and D;

Supplementary Figure 9A). Thus, at least NRA-2 acts cell

autonomously in muscle. Double mutants of nra-2 and nra-4

(and double RNAi; data not shown) showed no exacerbation

of the single-mutant effects in paralysis assays, indicating

that NRA-2 and NRA-4 act in the same pathway.

To test whether NRA-2 and NRA-4 generally affect ligand-

gated ion channels at the NMJ, we assayed function of the

inhibitory GABAA receptor. Swimming behaviour was ana-

lysed in the presence of muscimol, a GABAAR agonist that

slows down swimming rate. Muscimol sensitivity was un-

affected in nra-2, nra-4 or nra-2; nra-4 double mutants,

An ER complex regulating nAChR subunit assembly
RB Almedom et al

The EMBO Journal VOL 00 | NO 00 | 2009 &2009 European Molecular Biology Organization2

www.wormbase.org


indicating that nra-2 and nra-4 do not act on GABAARs

(Figure 1E).

Human Nicalin partially functions in C. elegans, likely

independent of TGFb signalling

The Nicalin/NOMO ER protein complex was shown to act in

signalling through the nodal TGFb pathway, but a potential

function in vertebrate nAChR biology was not investigated

(Haffner et al, 2004). We thus asked whether human Nicalin

could rescue nra-2 cholinergic phenotypes. Human Nicalin

cDNA, fused to GFP, was expressed in muscle cells of

nra-2(ok1731) mutants, which caused partial rescue of

levamisole and nicotine resistance phenotypes

(Supplementary Figure 9B), indicating potential conservation

of an nAChR-associated function of Nicalin. However, trans-

genic animals were small, slightly uncoordinated, and

NicalinHGFP partially aggregated (Supplementary Figure

9C), possibly preventing full rescue.

As nra-2 and nra-4 mutants may affect cholinergic signal-

ling indirectly through TGFb pathways, we tested mutants in

these pathways for cholinergic phenotypes. C. elegans has

five TGFb ligands (Savage-Dunn, 2005): two are of unknown

function, DAF-7 controls the dauer larval state (Ren et al,

1996), whereas DBL-1 affects body size (Suzuki et al, 1999)

Figure 1 Cholinergic agonist-induced phenotypes are altered in nra-2 and nra-4 mutants, and rescued by muscle-specific expression. (A) The
nra-2 and nra-4 genes, as annotated in www.wormbase.org, were confirmed by sequencing cDNAs kindly provided by Y Kohara. Sequences
deleted in the alleles used are indicated by bars. (B) The nra-2 and nra-4 genes encode predicted type I TM proteins with signal sequences (SS),
thus they are expected to be synthesized into the ER lumen, exposing a short C-terminal cytosolic tail. Deletion/insertion alleles tm1453 and
ok1731 truncate NRA-2, bringing stop codons (X) in frame. nra-4(hd127) removes part of the promoter and exon I including SS and start codon
and tm2656 is a predicted in-frame deletion. (C, D) Paralysis time-course of wild-type and mutant animals exposed to 0.2 or 0.25 mM
levamisole (C) or 31 mM nicotine (D). The fraction of non-paralyzed animals was counted every 15 min. Experiments were repeated 3–7 times
(30 animals tested each time), data represent mean±s.e.m., statistically significant differences to wild type are indicated (*Po0.05; **Po0.01;
***Po0.001). Brackets indicate overall significant differences between genotypes, if they were different for at least three time points.
(E) Swimming cycles of animals immersed for 1 h in M9 buffer with 8 mM muscimol, a GABAAR agonist, were normalized to swimming cycles
of untreated control animals.
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and GABA signalling at the NMJ (Vashlishan et al, 2008),

neither of which is altered in nra-2 or nra-4 mutants. UNC-

129 affects dorsoventral axon guidance of some motor neu-

rons, and could thus affect the NMJ (Colavita et al, 1998). We

analysed levamisole and nicotine paralysis in the mutants

unc-129(ev554), dbl-1(wk70), daf-7(e1372) and in TGFb re-

ceptor mutants daf-1(m402) and sma-6(wk7) (Supple-

mentary Figure 10A and B). dbl-1(wk70) and sma-6(wk7)

animals were hypersensitive to nicotine and levamisole. For

dbl-1, this was previously shown to be caused by a GABA

signalling defect (Vashlishan et al, 2008). sma-6(wk7) mu-

tants were sick and paralyzed immediately, likely indicating a

cuticle defect. The other mutants had normal sensitivity to

cholinergic agonists. Effects of nra-2 and nra-4 alleles on

TGFb signalling are most likely not causing the observed

cholinergic defects, though we cannot completely rule out

that the two TGFb ligands of unknown function may affect

NMJs.

NRA-2 and NRA-4 form a protein complex in the ER

and co-localize with the L-AChR

NRA-2 and NRA-4 may affect nAChR biogenesis and/or

function either in the ER, in which the vertebrate homologues

form a complex, in the Golgi, the secretory pathway or at

synapses. To determine the site of action of these proteins, we

analysed their subcellular localization using fluorescent pro-

teins as tags. NRA-2HGFP, NRA-2HmCherry and NRA-4HGFP

showed a reticular pattern reminiscent of the ER in muscles

(for NRA-2 and NRA-4; Figures 2 and 3) and other cells (for

NRA-4HGFP only; Figure 2B; pnra-4 and pnra-2 are active in

muscles, neurons and other tissues; Supplementary Figure

11). NRA-2HGFP also co-localized with an ER marker in HeLa

cells (data not shown). To study whether NRA-2 and NRA-4

physically interact in vivo, we used bimolecular fluorescence

complementation (BiFC). Indeed, NRA-2 and NRA-4 interact

within the ER membrane (Figure 2C), whereas NRA-4 and an

unrelated control membrane protein, the stomatin UNC-1, do

not (Figure 2D). Thus, NRA-2 and NRA-4 form a membrane

protein complex in the ER of muscle cells, in which they may

interact with nAChRs during biogenesis and assembly.

Consistent with this idea, NRA-2HmCherry and the

L-AChR subunit UNC-29HGFP largely co-localized in ER

membranes (Figure 3A). Although L-AChR subunits are

visible in the ER only when over-expressed (endogenous L-

AChRs are only detectable at synapses; Figure 3B; Gally et al,

2004), a diffuse localization of nascent nAChRs in the ER is

not unexpected. Several additional observations argue

against direct interactions of NRA-2/NRA-4 with L-AChRs at

synapses: (1) NRA-2HGFP and NRA-4HGFP did not accumu-

late at the plasma membrane or the tips of muscle arms, in

which NMJ postsynaptic elements are found (Gottschalk

et al, 2005; Gottschalk and Schafer, 2006; Eimer et al,

2007). (2) The endogenous L-AChR subunit UNC-29 does

not co-localize with NRA-2HGFP (Figure 3B). (3) NRA-

2HGFP does not co-localize with the synaptic UNC-

38H3xMYC L-AChR subunit (Figure 3C; the later one immu-

nolabelled at the cell surface, using fluorescent antibodies

injected into the body cavity; Gottschalk et al, 2005;

Figure 2 NRA-2 and NRA-4 are expressed in the ER and interact in a complex. (A) NRA-2HYFP (upper panel, single confocal plane) or NRA-
2HGFP (lower panel, epifluorescence) were expressed from the muscle-specific pmyo-3 promoter. Reticular expression, reminiscent of the ER
was found. (B) NRA-4HGFP was expressed from the endogenous pnra-4 promoter. Intracellular, reticular expression was observed in muscle
cells (upper panel) and neurons (arrowhead), and in other tissues (lower panel: muscles, neurons and hypodermal cells in the tail). (C) NRA-2
and NRA-4 form a complex, as shown by bimolecular fluorescence complementation (BiFC). NRA-2 was fused to the VN173 fragment of Venus,
and NRA-4 to the VC155 fragment. Fluorescence was restored in muscle ER (arrows point to muscle cell nuclei surrounded by ER), in which the
two proteins were co-expressed. (D) NRA-4HVC155 does not interact in the ER with the stomatin UNC-1HVN173, expressed in muscle (a gift
by ZW Wang). Occasionally, vesicular fluorescent structures were observed, possibly representing lysosomes in which the fusion proteins are
degraded and in whose membranes their cytosolic tails (and Venus fragments) accumulate. Size bars are 10mm.
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Gottschalk and Schafer, 2006; Eimer et al, 2007). (4) Minor

amounts of cell-surface NRA-2 were detected with extracel-

lular anti-HA antibody in animals expressing 3xHAHNRA-

2HGFP, in clusters along muscle cell boundaries

(Supplementary Figure 12), but this did not accumulate at

nerve cords, in which synaptic L-AChRs are found. Cell-

surface expression of 3xHAHNRA-2HGFP may be due to

overexpression (its binding partner NRA-4 was not over-

expressed). In sum, our observations do not support an

interaction of NRA-2 with L-AChRs at synapses.

NRA-2 may interact with L-AChRs during assembly, or

when they are sorted for ER exit. However, NRA-2HmCherry

and SEC-23HGFP, a COPII coat component localizing to ER

exit sites and secretory vesicles (Roberts et al, 2003) showed

different localization patterns: SEC-23HGFP was found in

punctate intracellular clusters, whereas NRA-2HmCherry was

not enriched at these sites (Figure 3D). Thus, NRA-2 is likely

not part of the ER exit machinery.

Cholinergic inward currents in muscle cells are

reduced in nra-2 and nra-4 mutants

To directly measure nAChR and GABAAR function in muscle,

we recorded postsynaptic currents (PSCs) evoked by pres-

sure-applied ACh, levamisole, nicotine and GABA under

whole-cell voltage-clamp (Supplementary Table 1;

Richmond and Jorgensen, 1999; Francis et al, 2003;

Richmond, 2006; Liewald et al, 2008). Levamisole- and

nicotine-evoked PSCs were significantly reduced in both

nra-2 mutants (ok1731: levamisole: 62±6%, normalized to

wild type, Po0.01, t-test; nicotine: 57±5%, Po0.001;

tm1453: levamisole: 74±9%, Po0.05; nicotine: 72±8%,

Po0.05), as well as in nra-4(hd127) mutants (levamisole:

61±5%, Po0.05; nicotine: 76±6%, Po0.05), indicating that

both L-AChRs and N-AChRs, were functionally compromised

in these animals (Figure 4A and B). GABA-evoked PSCs were

not affected (nra-2(tm1453): 103±17%; Figure 4C).

Levamisole-induced PSCs in nra-2(ok1731); nra-4(hd127)

Figure 3 NRA-2 co-localizes with L-AChR subunits in the ER, but not at synapses. (A) NRA-2HmCherry (expressed from the pmyo-3 promoter)
was co-expressed with the L-AChR subunit UNC-29HGFP (expressed from punc-29) and co-localization was observed by confocal microscopy
(single confocal plane of midbody muscle cells). (B) Endogenous UNC-29 protein was immunolabelled with specific antibodies in animals
expressing NRA-2HGFP in muscles (GFP fluorescence was preserved during fixation). Dorsal nerve cord (dnc) and adjacent muscle cells (bwm)
are shown near the pharyngeal terminal bulb. No co-localization of NRA-2HGFP and UNC-29 was apparent. (C) NRA-2HGFP was co-expressed
in muscle with epitope-tagged UNC-38H3xMYC (expressed from punc-38). UNC-38, exposing the MYC tag on the cell surface, was labelled with
Cy3-conjugated anti-MYC antibodies injected into the body cavity. The ventral nerve cord was imaged by confocal microscopy (single focal
plane), showing punctate cell-surface L-AChR clusters that contain UNC-38. NRA-2HGFP is adjacent to L-AChR clusters, but not co-localizing
with them (inset: enlarged region). (D) SEC-23HGFP, a COPII coat component that labels ER exit sites, and NRA-2HmCherry were co-expressed
in muscle and imaged by confocal microscopy. Puncta of SEC-23 accumulation contained also NRA-2; however, NRA-2 did not accumulate at
these sites. Z-stack of confocal sections. Size bars are 10 mm.
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double mutants were not further reduced than in single

mutants, again indicating a function of NRA-2 and NRA-4 in

the same pathway. Yet, nicotine-evoked PSCs were normal in

these double mutants. Possibly, some nra-2 and nra-4 effects

on L- and N-AChRs are allele specific, and such effects may

be partly compensated in double mutants, for example, due

to direct physical interactions of NRA-2 and NRA-4.

Levamisole- and nicotine-induced PSCs in nra-2(ok1731)

mutants were rescued by muscle-specific expression of

NRA-2HGFP (Figure 4A and B), confirming the cell-autono-

mous function of NRA-2.

Short-term ACh sensitivity of L- and possibly

N-AChRs is increased in nra-2 mutants

On the basis of agonist-evoked PSCs, both L- and N-AChRs

are affected in nra-2 and nra-4 mutants. This is not seen in

paralysis assays, as acr-16 mutants are not resistant to either

agonist, in contrast to L-AChR mutants (Supplementary

Figure 13), stressing differences between behavioural

and electrophysiological phenotypes of L- versus N-AChR

mutations. These could depend on the duration of agonist

exposure, as L-AChRs desensitize much more slowly than

N-AChRs. Surprisingly, PSCs in response to short-term ACh

application in both nra-2 alleles, in nra-4(hd127) mutants

and in several double-mutant combinations, were indistin-

guishable from the wild type (Figure 4A and B;

Supplementary Figure 8). This was unexpected, as L- and

N-AChRs are the only nAChRs contributing to cholinergic

signalling at the NMJ (Richmond and Jorgensen, 1999;

Francis et al, 2005; Touroutine et al, 2005).

Our findings indicated that sensitivity of the two nAChRs

was altered in an agonist-specific manner, that is, reduced for

levamisole and nicotine, but largely unaltered for ACh. As

both nAChRs contribute to ACh PSCs, they could be differ-

ently affected for ACh sensitivity. To examine this, we assayed

properties of each AChR individually, in acr-16(ok789) or

Figure 4 Whole-cell voltage-clamp analysis of muscle cells reveals altered nAChR function in nra-2 and nra-4 mutants. (A) Representative
traces for levamisole- (top), nicotine- (middle) and ACh-evoked (bottom) muscle currents in wild-type animals and various mutants of nra-2,
nra-4, L- and N-AChR subunits. (B) Normalized mean peak values of levamisole-, nicotine- and ACh-mediated muscle currents in wild-type
animals and various nra-2 and nra-4 mutants, and nra-2(ok1731) animals rescued in muscle by NRA-2HGFP expression. Only GFP-positive
cells were patched. (C) Representative traces (left) and mean peak values (right) of GABA-mediated muscle currents were not altered in nra-
2(tm1453) mutants, compared with wild type. (D) Normalized mean peak values of levamisole-, nicotine- and ACh-mediated muscle currents
in wild-type animals, nra-2(tm1453 or ok1731) mutants as well as in mutants lacking the N-AChR (acr-16(ok789); left) or L-AChR (unc-
38(x20); right), and respective double mutants. Displayed are means±s.e.m., statistically significant differences to the wild type are indicated
(*Po0.05; **Po0.01; ***Po0.001), as well as the number of animals.
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unc-38(x20) mutants, in nra-2 or nra-4 backgrounds (Figure

4A and D; Supplementary Figure 14).

In acr-16(ok789); nra-2(tm1453) mutants, in which only

the L-AChR contributes to PSCs, levamisole sensitivity was

reduced as in nra-2(tm1453) mutants (68±7%, Po0.05),

whereas nicotine sensitivity was abolished (5±2%,

Po0.001), as in acr-16(ok789) single mutants (6±1%,

Po0.001). However, ACh sensitivity in the acr-16;

nra-2(tm1453) double mutants (50±7%, Po0.001, versus

wild type) was significantly increased when compared with the

acr-16 single mutant (32±5%, Po0.001, versus wild type;

Po0.05, versus acr-16 mutant). This indicates that ACh sensi-

tivity of the L-AChR was increased by nra-2(tm1453), even

though sensitivity to the L-AChR-specific agonist levamisole

was decreased. Thus, functional properties of the L-AChR may

be altered in nra-2(tm1453) animals. In acr-16(ok789);

nra-4(hd127) double mutants, ACh PSCs were not increased.

These animals also had normal levamisole responses, but

reduced nicotine responses (Supplementary Figure 14). This

discrepancy to nra-2 mutant phenotypes may be due to

allele-specific effects, or could point to different functions of

the two proteins in the heteromeric complex.

Mean ACh sensitivity of the N-AChR was affected similarly

when unc-38(x20) single mutants and nra-2(ok1731); unc-

38(x20) double mutants were compared. Although ACh PSCs

were significantly reduced in unc-38 mutants (68±8%,

Po0.05), they were not significantly different from wild

type (87±10%) in the nra-2; unc-38 double mutant, possibly

suggesting that ACh sensitivity of also the N-AChR is in-

creased by nra-2(ok1731). Interestingly, nicotine sensitivity

of the N-AChR, which was significantly reduced in nra-

2(ok1731) single mutants (57±5% of wild type, Po0.001),

was not altered in nra-2(ok1731); unc-38(x20) double or unc-

38(x20) single mutants (91±6% and 84±9% of wild type,

respectively), possibly due to compensatory changes induced

by lack of the L-AChR (Figure 4A and D). Although nra-2

effects were not as clear as for the L-AChR, our findings

indicate that also N-AChR functional properties are altered in

nra-2 mutants in an agonist-specific manner.

PSCs after prolonged optogenetic ACh release reveal

altered nAChR desensitization in nra-2 mutants

Somewhat contrasting our electrophysiological results, in

which no reduction of acute ACh responses was seen in

nra-2 mutants, they showed a slight resistance in aldicarb

assays, in which endogenous ACh accumulates in the synap-

tic cleft (Supplementary Figure 8). This could indicate re-

duced postsynaptic AChR sensitivity, or reduced presynaptic

ACh release. Aldicarb assays take 1–2 h, whereas the ‘puff’

application of ACh in electrophysiological assays lasts only

70 ms, using non-physiological amounts of ACh, broadly

sprayed over the muscle cell. Thus, long-term effects such

as altered desensitization may cause different results in both

types of experiments. To examine this, we used the light-

gated cation channel channelrhodopsin-2 (ChR2) to stimulate

ACh release at the NMJ, at endogenous levels, only at

synapses, and for short or long durations (Liewald et al,

2008).

We photo-stimulated sustained release of ACh (1000 ms),

which evokes large peak currents, followed by small steady-

state currents that occur after nAChR desensitization. In acr-16

mutants (i.e. when only the L-AChR is present), we observed

largely reduced peak, but unaltered steady-state currents. In

unc-38(x20) mutants (N-AChR only), we observed reduced

steady-state currents, and no major effects on peak currents

(Figure 5). The differences in steady-state currents are likely

explained by different rates of desensitization of the two

nAChRs, and can thus help distinguishing which of the two

nAChRs is affected. In nra-2(ok1731) mutants, we observed

no significant differences in the peak photo-ePSCs (Figure 5),

whereas steady-state currents were significantly smaller than

in wild type. Our results rule out presynaptic defects, and

indicate that alterations in the desensitization rate of L-AChRs

may cause the slight aldicarb resistance of nra-2 mutants.

Single-channel L-AChR properties are altered in nra-2

mutant embryonic muscle

To assay L-AChR properties in more detail, we recorded

single-channel currents from cell-attached patches of cultured

embryonic muscle cells, which show activity of L- but not of

N-AChRs (Rayes et al, 2007). We compared channels from

wild type and nra-2(ok1731) mutants in the presence of

different concentrations of ACh or levamisole.

Figure 5 Optogenetic analysis of ACh transmission in cholinergic
and nra-2 mutants using channelrhodopsin-2 (ChR2). (A) Whole-
cell voltage-clamp was used to record photo-ePSCs in animals
expressing ChR2 in cholinergic motor neurons (punc-17 promoter),
in response to a 1000 ms photo-stimulus, as described earlier
(Liewald et al, 2008). Representative peak and steady-state currents
were compared in wild type, acr-16(ok789), unc-38(x20) and nra-
2(ok1731) mutants. Duration of light stimulus is indicated by a bar.
(B) Mean peak and steady-state photo-ePSCs, obtained using two
different integrated transgenes, as indicated. Displayed are mean-
s±s.e.m., statistically significant differences to the wild type are
indicated (t-test; *Po0.05; ***Po0.001), as is the number of
animals used.
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Single-channel openings of about 3.5 pA activated by ACh

or levamisole were detected in nra-2(ok1731) mutant muscle

cells at �100 mV (Figure 6A and B). For both agonists,

opening frequency increased with agonist concentration but

was strongly reduced in nra-2(ok1731) mutants (Figure 6C),

as observed in the closed time histogram by displacement of

the main component to longer durations. This could reflect

lower cell-surface density and/or altered open probability

and/or increased desensitization of L-AChRs in the patch.

Open time distributions of L-AChRs activated by 1 mM ACh in

wild-type cells are fitted by two exponential components

(Rayes et al, 2007); duration of the main component (relative

area o0.85) is 100±20ms (Figure 6A). Significant changes in

the open time distributions were observed in nra-2 mutants.

For ACh, the mean open duration was three-fold longer than

that of wild-type L-AChRs; open time histograms showed a

single component of 350±50ms (Figure 6A). For channels

activated by 0.1 mM levamisole, open time histograms are

fitted by two components in wild-type and nra-2 mutants.

Yet, the mean open time of the slowest component was

significantly briefer in levamisole-activated channels re-

corded from nra-2 mutant cells (ton¼ 310±50ms, relative

area 0.1±0.08) with respect to wild type (ton¼ 600±70 ms,

relative area 0.35; Figure 6B). Higher levamisole concentra-

tions produce open-channel block, which is observed as a

reduction in the mean open time. The decreased frequency of

opening events, increased closed times and decreased open

durations of levamisole-activated L-AChRs from nra-2 mu-

tants are in line with the reduced levamisole-induced PSCs in

adult nra-2 mutants (Figure 4A and B). The comparison is not

straightforward for ACh responses, as the increase in open

duration but not the reduction in opening frequency supports

increased ACh sensitivity. Yet, the reduced frequency may be

explained by an increase in desensitization, consistent with

the results from the optogenetic ACh release experiments. In

sum, our single-channel recordings confirm that L-AChR

functional properties differ significantly in nra-2 mutants,

indicating agonist-specific kinetic changes of L-AChRs.

Contribution of ACR-8 and LEV-8 to L-AChR function

in nra-2 and nra-4 mutants

How do nra-2 and nra-4 mutations affect L-AChR properties?

Receptor properties could be determined by posttranslational

modifications, or by subunit composition of the pentamer. In

purified L-AChRs, we identified seven subunits, more than

the five present in any individual channel: ACR-8, ACR-12,

UNC-63, UNC-38, UNC-29, LEV-8 and LEV-1 (Gottschalk et al,

2005). Co-expression of the latter five subunits reconstitutes

levamisole-specific currents in Xenopus oocytes (Boulin et al,

2008). ACR-12 is expressed only in motor neurons, but a

potential contribution of ACR-8, also expressed in muscle

(Gottschalk et al, 2005), was not tested in oocytes. Different

L-AChR populations with variable subunit content could

exist, and the relative contribution of individual subunits to

L-AChRs could be controlled by NRA-2/NRA-4. As essential

subunits, UNC-38, UNC-63 and UNC-29 should be present in

every L-AChR pentamer. Yet, receptors containing more than

one of the essential subunits, for example, two copies of

UNC-38, may exist, and one of them may be replaced

with a non-essential a-subunit, LEV-8 and ACR-8, preserving

function, but possibly altering functional properties. We,

thus, investigated the contribution of ACR-8 and LEV-8 to

NMJ function, in nra-2, lev-8 or acr-8 single mutants, or in

combination.

Figure 6 Single-channel properties of the L-AChR in cell-attached patches of cultured embryonic muscle cells are altered in nra-2(ok1731)
mutants. (A) Single-channel currents recorded from wild type and nra-2(ok1731) muscle cells in the presence of 1 mM (upper panel) and 50 mM
(lower panel) ACh. Shown are representative traces (left) and open and closed time histograms (right). (B) Single-channel currents activated by
0.1mM (upper panel) and 50mM (lower panel) levamisole; representative traces (left) and open time histograms (right). (C) Frequency of
channel openings in mutant and wild-type animals. Channel events were counted within the first minute of recording and plotted as events/s.
Holding potential in all recordings was �100 mV. Displayed are means±s.d.
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Mutants lacking LEV-8 showed strong levamisole- and

nicotine-resistance in paralysis assays, just like mutants in

the essential subunit UNC-38 (Figure 7A and B); however,

lev-8(x15) mutants were special in that only head and

neck region of the animals were resistant. Consistent with

our behavioural assays and a previous report (Towers et al,

2005), lev-8(x15) mutants showed largely reduced

levamisole-induced PSCs (28±10%, Po0.05; Figure 7C),

whereas nicotine PSCs were normal. Surprisingly, this

was also the case in lev-8; nra-2 double mutants, even though

nra-2(ok1731) mutants have reduced nicotine PSCs.

Either, in the absence of NRA-2, LEV-8 assembles with

ACR-16, thus explaining altered nicotine PSCs, or, as in

unc-38(x20) mutants, N-AChRs undergo compensatory

changes in lev-8 mutants.

Mutants of acr-8(ok1240) showed no levamisole

resistance, but a significant resistance to nicotine in

paralysis assays, which was slightly elevated in the acr-

8(ok1240); nra-2(ok1731) double mutants (Figure 7A and B).

To our surprise, PSCs for ACh, levamisole, or nicotine

did not differ between wild type, acr-8(ok1240) and acr-

8(ok1240); nra-2(ok1731) double mutants, even though

nra-2(ok1731) alone significantly reduces levamisole

and nicotine PSCs. Thus, the acr-8 mutation suppresses

nra-2(ok1731) effects on L- and N-AChRs. This could

be explained if NRA-2 prevents ACR-8 subunits from

assembling with other subunits. In nra-2 mutants, ACR-8

could be integrated in L- and N-AChRs, thus altering

their physiological properties, which cannot occur in acr-8

mutants.

Figure 7 Contribution of essential and non-essential L-AChR subunits to cholinergic agonist sensitivity in nra-2(ok1731) mutants. (A, B)
Paralysis assays (n¼ 2–7; 30 animals each) in response to levamisole (A) and nicotine (B) of mutants in nra-2(ok1731), lev-8(x15), acr-
8(ok1240) and unc-38(x20), and in double-mutant combinations as indicated. (C) Normalized mean peak values of ACh-, levamisole- and
nicotine-induced muscle PSCs in wild-type animals, nra-2(ok1731) mutants, and mutants of the non-essential L-AChR a-subunits lev-8(x15)
and acr-8(ok1240) as well as respective double mutants. Displayed are means±s.e.m., number of animals and significant differences to wild
type (t-test; *Po0.05; **Po0.01; ***Po0.001) are indicated.
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Relative expression of individual L-AChR subunits

is altered in nra-2 and nra-4 mutants

Our findings suggested that NRA-2/NRA-4 could affect

nAChR properties by influencing the representation of parti-

cular subunits in the mature receptors. We thus probed

synaptic expression of LEV-1 (4xHA tagged), UNC-38

(3xMYC tagged), LEV-8 (3xHA) and ACR-8 (6xHA) by anti-

body injection, and of UNC-29 by immunostaining relative to

the presynaptic UNC-17 vesicular ACh transporter, in wild

type, nra-2 and nra-4 mutants (Figure 8).

For UNC-38 (essential a-subunit), synaptic expression was

significantly reduced in nra-2(tm1453 and ok1731), and in

nra-4(hd127) animals. UNC-29 (essential non-a) was reduced

in nra-2(ok1731) animals, and, intriguingly, significantly

increased in nra-4(hd127) animals. LEV-1 cell-surface expres-

sion levels were not affected in either mutant (Figure 8A and

C). Effects of NRA-2 on LEV-8 and ACR-8 synaptic expression

were assayed relative to UNC-38. The synaptic expression

pattern of LEV-8 was peculiar, and could explain our obser-

vations in paralysis assays (resistance in head and neck): we

Figure 8 Individual L-AChR subunit levels at postsynaptic elements vary in nra-2 and nra-4 mutants reciprocally. (A, B, E) Synaptic expression
of different L-AChR subunits was analysed by quantitative fluorescence microscopy. Endogenous, postsynaptic UNC-29, as well as the
presynaptic UNC-17 (vAChT), were immunolabelled with specific 11 and different fluorescent 21 antibodies, then UNC-29 fluorescence was
normalized to UNC-17 and compared in the indicated mutants. Also, transgenic animals expressing epitope-tagged LEV-1 (4 HA tags), UNC-38
(3 MYC tags), LEV-8 (3 HA tags) or ACR-8 (6 HA tags) were injected into the body cavity with fluorescent tag-specific antibodies. Size bar:
10mm. (B) LEV-8 is non-uniformly expressed in the nervous system, as compared with UNC-38. Shown is expression of both subunits in the
nerve ring, and the anterior and midbody ventral nerve cords (nc). (C, D, E) Fluorescence in the ventral cord was quantified (as linescans,
followed by background correction) either in fixed animals (UNC-29, UNC-17), or in live animals after a recovery period of 46 h (during which
excess antibody is cleared from the extracellular fluid by scavenger cells). Shown is mean fluorescence±s.e.m. (normalized to wild type in C,
arbitrary units in D and E), number of animals and significant differences to wild type are indicated (t-test; *Po0.05; **Po0.01; ***Po0.001).
(F) Model of NRA-2/NRA-4 function. Left, NRA-2/NRA-4 either influence the choice of particular subunits (indicated by different colours) to be
assembled into pentameric nAChRs, or they determine to which extent pentamers of particular subunit composition are allowed to leave the ER
(less favoured, as no obvious accumulation of NRA-2 was seen at ER exit sites). ACR-16 N-AChRs and L-AChRs, rarely incorporating ACR-8
subunits (yellow) are preferably formed. Right, In the nra-2 or nra-4 mutants, nAChRs of other composition are found, for example, containing
ACR-8 or UNC-29 subunits more often. Depending on the allele, NRA-2 and NRA-4 proteins could either be completely absent, not bound to ER
membranes and secreted, or of inverted topology.
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found the protein in L-AChR clusters in the nerve ring and the

anterior ends of ventral and dorsal nerve cords, together with

UNC-38 (largely co-expressed in the same synaptic clusters;

Supplementary Figure 15). Interestingly, LEV-8 was almost

not detectable in the rest of the body (Figure 8B); synaptic

LEV-8 expression was not affected in the nra-2(ok1731)

mutant (Figure 8D).

ACR-8 and UNC-38 expression was found in all regions of

the nerve cords (Figure 8E); however, as we observed earlier,

ACR-8 was present in many clusters that did not contain

UNC-38, in addition to clusters in which both proteins were

co-expressed (Supplementary Figure 15; Gottschalk et al,

2005). This indicates that ACR-8 is either found in (unknown)

receptors that are different from the L-AChR, or that there are

L-AChRs in which ACR-8 replaced UNC-38. In nra-2(ok1731)

mutants, while synaptic UNC-38 levels were reduced, expres-

sion of ACR-8 was significantly increased (Figure 8E). Thus,

NRA-2 function affects synaptic expression of UNC-38 and

ACR-8 a-subunits reciprocally. In sum, NRA-2 and NRA-4

affect the relative composition of the synaptic L-AChR in a

(subunit) gene-, and (nra-2/nra-4) allele-specific manner.

Discussion

In this work, we showed that NRA-2 and NRA-4, evolutiona-

rily conserved type I TM proteins forming a protein complex

in the ER, affect synaptic nAChR subunit composition in

C. elegans. Mutants lacking these proteins exhibited moder-

ate resistance to cholinergic but not GABAergic agonists,

verifying that in muscle they affect nAChRs, and not

GABAARs. The cholinergic deficits were accompanied by

defects in agonist sensitivity in whole-cell voltage-clamp

analyses: sensitivities of the L-AChR and the N-AChR to

their ‘specific’ agonists, levamisole and nicotine, were

reduced, whereas sensitivity for short-term applied ACh

was either unaffected (N-AChR) or increased (L-AChR).

These effects may sum up such that overall ACh PSC are

unaffected in nra-2 mutants; however, compensatory changes

when both L- and N-AChRs are present in nra-2 mutants

cannot be ruled out. Yet, optogenetic, prolonged application

of ACh demonstrated increased desensitization of L-AChRs,

even though N-AChRs were present. We further showed that

in the absence of NRA-2 or NRA-4, the NMJ contained

L-AChRs of different subunit composition, or altered relative

amounts of different L-AChRs with specific subunit composi-

tions, particularly UNC-38 and ACR-8. Thus, NRA-2 and

NRA-4 either influence choice of subunits for assembly in

the ER, or the extent to which particular pentamers are

allowed to leave the ER and reach the NMJ (see model in

Figure 8F).

Altered L-AChR single-channel properties in nra-2

mutants

Our conclusions are supported by analyses of single-channel

properties of embryonic L-AChRs, which indicated changes in

the functional properties of receptors in nra-2 mutants versus

wild type, and which appeared to originate from changes in

L-AChR subunit composition. The main kinetic change was

an increase in the open duration of channels activated by

ACh, and a decrease when levamisole was the agonist. These

agonist-specific changes parallel the sensitivity changes ob-

served in whole-cell experiments of adult muscle. However,

correlating results from single-channel experiments with

whole-cell currents is not trivial. For levamisole, both single

channel and macroscopic currents showed decreased

responses. Single-channel recordings of L-AChRs activated

by ACh showed reduced frequency in the nra-2 mutant,

whereas macroscopic currents were unaltered. One explana-

tion is that desensitization is affected in the nra-2 mutant L-

AChR. Single-channel recordings occur in the continuous

presence of agonist, thus enhanced desensitization to ACh

will appear as a decrease in single-channel opening fre-

quency, as we observed, and in agreement with our results

obtained after long-term photo-evoked ACh release, which

uncovered increased desensitization of the L-AChR in nra-2

mutants. Another explanation for these differences is that

embryonic, extrasynaptic L-AChRs are compared with synap-

tic adult L-AChRs, in which subunit composition may change

during development, and interaction with additional proteins

could occur, for example, LEV-10 (Gally et al, 2004). Also,

more than one type of L-AChR may be present in adult

muscle cells, though we only detect a single main functional

population in embryonic cells. This L-AChR population is

kinetically different in nra-2 mutants, likely due to altered

subunit composition.

NRA-2 and NRA-4 affect subunit composition of

synaptic nAChRs

The effects of nra-2 and nra-4 mutants on synaptic L-AChR

subunit representation were subunit dependent. In particular,

the a-subunit UNC-38 was reduced in these mutants, whereas

the non-a-subunit UNC-29 was increased in nra-4(hd127)

animals. The non-a-subunit LEV-1 was unaltered, as was the

a-subunit LEV-8. In contrast, the a-subunit ACR-8 was in-

creased in nra-2 mutants, and thus may compensate for the

reduction in UNC-38 levels. This could explain the observed

increase in short-term applied ACh sensitivity of L-AChRs,

and the increased desensitization in long-term ACh applica-

tion (either optically, or in response to aldicarb). In nra-4

mutants, in which UNC-38 is reduced and UNC-29 increased,

fewer a-subunits, and thus fewer ACh-binding sites should be

present in synaptic L-AChRs. This may explain why in nra-4;

acr-16 double mutants compared with acr-16 single mutants

ACh sensitivity of the L-AChR was not increased

(Supplementary Figure 14). In this regard, we recently

showed that channel activation rate and agonist sensitivity

increase with the number of functional binding sites in

homomeric Cys-loop receptors (Rayes et al, 2009). Yet, as

we do not know the number of ACh-binding sites in the

L-AChR or the number of bound agonist molecules required

for maximal activation, ACh sensitivity in nra-2 or nra-4

mutants may mainly be affected by altering ACh-dependent

desensitization rather than ACh binding, as suggested by

optogenetic experiments and single-channel recordings.

Mode of action of NRA-2 and NRA-4 in L-AChR assembly

Our findings suggest that NRA-2/NRA-4 interact with

L-AChRs in the ER. How do NRA-2 and NRA-4 influence

L-AChR subunit composition? They may interact with RIC-3,

an ER protein that affects biogenesis and/or trafficking of

several types of nAChRs (Halevi et al, 2002; Gottschalk et al,

2005; Gottschalk and Schafer, 2006; Biala et al, 2009). We

tested for possible genetic interactions between ric-3 and

nra-2 by analysing swimming behaviour as an indirect

Q1
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measure for NMJ function. ric-3 mutants showed significantly

less swimming cycles, which were further reduced in the ric-

3; nra-2 double mutants (data not shown). Thus, RIC-3 and

NRA-2 likely act in separate pathways.

An intriguing alternative is indicated by findings made for

the NRA-2/Nicalin homologue Nicastrin: this g-secretase

component was implicated as ‘gate-keeper’ of the intramem-

brane peptidase and regulates substrate access by binding

their N-termini (Shah et al, 2005). NRA-2/NRA-4 could

act as a ‘nucleation centre’ for nAChR assembly and regulate

inclusion of particular subunits during pentamer assembly.

L-AChRs require essential subunits UNC-29, UNC-38 and

UNC-63; remaining positions are occupied by non-essential

subunits. NRA-2/NRA-4 could sort certain subunits into the

pentamer, while excluding others, for example, ACR-8. Also

N-AChR properties were altered in nra-2 and nra-4 mutants,

which could be explained by NRA-2/NRA-4 ensuring that

only ACR-16 is assembled. As nra-2 effects on N-AChRs were

reversed by lev-8 and acr-8 mutations, these subunits may

assemble with ACR-16 in the absence of NRA-2/NRA-4.

Alternatively, NRA-2/NRA-4 could control which nAChR

pentamer of particular composition is allowed to leave the

ER. However, our observation that NRA-2/NRA-4 is not

enriched at ER exit sites argues against this idea.

Evolutionary conservation and additional functions

of NRA-2 and NRA-4

The nra-4 expression pattern was broad, extending beyond

the neuromuscular system, and also the nra-2 promoter was

active in tissues in addition to muscles and neurons. nra-2

and nra-4 mutants had reduced broodsize, indicating addi-

tional functions. Furthermore, these genes are conserved

across all phyla, that is, also in species that do not express

nAChRs (Supplementary Figures 2–5). Vertebrate homolo-

gues of NRA-2/NRA-4 (NOMO/Nicalin) antagonistically

influence cell-surface signalling events through the nodal

type of TGFb ligands (Haffner et al, 2004, 2007), but how

these signalling pathways are influenced by the ER proteins

NOMO/Nicalin was not further investigated. Possibly,

they may affect receptors for TGFb-like ligands, that is,

heterodimeric activin receptors. TGFb receptors are antago-

nized by other membrane-associated co-receptors or inhibi-

tors that bind to the complex (e.g. ‘Cripto’; Gray et al, 2003),

and secretion or cell-surface expression of such antagonists

could be influenced by ER-resident proteins. A role for TGFb
in Drosophila NMJ formation was shown (Rawson et al,

2003), thus we cannot rule out the possibility that NRA-2

and NRA-4 affect nAChRs indirectly through TGFb pathways.

Yet, though some mutants in TGFb pathways we tested

showed increased levamisole or nicotine sensitivity, the

effects are likely indirect (e.g. through GABA signalling for

dbl-1; Vashlishan et al, 2008). Furthermore, our co-purifica-

tion of NRA-2/NRA-4 with L-AChRs argues for direct interac-

tions (Gottschalk et al, 2005).

Are Nicalin and NOMO involved in nAChR assembly in

vertebrates? This is not unlikely, given the conservation of

the proteins, and the fact that human Nicalin, expressed in C.

elegans muscle, partially rescued nra-2 phenotypes. However,

as vertebrate muscle does not express such a large set of

nAChR subunits as C. elegans muscle, it may be worthwhile

to study the function of Nicalin/NOMO in nAChR subunit

choice or assembly in neurons.

Materials and methods

C. elegans strains
Nematodes were grown under standard conditions (Brenner, 1974).
Mutant strains were backcrossed four to six times. Transgenic
strains were generated following standard procedures (Fire, 1986).
nra-4(hd127) was isolated from an EMS mutagenized library by a
poison primer approach (Edgley et al, 2002), using primers 50-
GATTACGGTTCCCGGTCTTAAC-30, 50-CATCAACAAATGGATTCATG
CT-30 and 50-TCGACTATTCCCAG TTGAAGGT-30.

Strains used or generated: N2 (wild type), lin-15(n765ts), ZZ37:
unc-63(x37), ZZ20: unc-38(x20), RB1195: acr-8(ok1240), ZZ15:
lev-8(x15), RB918: acr-16(ok789), RM509: ric-3(md1181), NW987:
unc-129(ev554), ZX383: nra-2(tm1453), RB1480: nra-2(ok1731),
ZX441: nra-4(hd127), ZX544: nra-4(tm2656), ZX453: nra-
2(ok1731); nra-4(hd127), ZX455: nra-2(tm1453); nra-4(hd127),
ZX543: nra-2(ok1731); nra-4(tm2656), ZX395: nra-2(tm1453);
unc-38(x20), ZX502: nra-2(ok1731); unc-38(x20), ZX500: nra-
2(ok1731); acr-8(ok1240), ZX621: nra-2(ok1731); lev-8(x15),
ZX445: nra-2(tm1453); acr-16(ok789), ZX575: nra-4(hd127); acr-
16(ok789), ZX501: nra-2(tm1453); ric-3(md1181), LT186: sma-
6(wk7), DR960: daf-1(m402), LT121: dbl-1(wk70), CB1372: daf-
7(e1372).

Transgenic strains: ZX15: ljEx42[punc-38Hunc-38HMYCH6x-
HISH2xMYC; rol-6d], ZX56: zxEx51[punc-38Hunc-38HMYCH6x-
HIS-2xMYC; podr-2Hodr-2HHA; rol-6d], ZX275: zxIs1[plev-1Hlev-
1HHA-6xHIS-3xHA; rol-6] (as described in Gottschalk and Schafer,
2006), ZX387: nra-2(tm1453); zxIs1, ZX386: nra-2(ok1731); zxIs1,
ZX568: nra-4(hd127); zxIs1, ZX569: nra-2(ok1731); nra-4(hd127);
zxIs1, ZX525: nra-2(tm1453); ljEx42, ZX524: nra-2(ok1731);
ljEx42, ZX523: nra-4(hd127); ljEx42, ZX522: nra-2(ok1731); nra-4
(hd127); ljEx42, ZX574: zxEx52[pnra-4HGFP; rol-6d], ZX556: nra-2
(tm1453); zxEx53[pmyo3Hnra-2(cDNA)HGFP; rol-6d], ZX578: nra-2
(ok1731); ljEx42; zxEx54[pmyo-3Hnra-2(cDNA)HGFP; lin15þ ],
ZX640: nra-2(ok1731); lin-15(n765ts); zxEx54, ZX579: zxEx55[p-
myo-3Hnra-2(cDNA)HYFP; rol-6d], ZX576: zxEx56[pmyo-3Hnra-
2(cDNA)HmCherry; punc-29Hunc-29HGFP; rol-6d], ZX577: zxEx57
[pmyo-3Hnra-2(cDNA)HmCherry; psec23Hsec23HGFP; rol-6d],
ZX628: nra-2(ok1731); zxEx58[pmyo-3HNicalin(human cDNA)HGFP;
rol-6d], ZX629: nra-4(hd127); zxEx59[pnra-4Hnra-4(cDNA)HGFP;
rol-6d], ZX636: lin-15(n765ts); zxEx60[pnra-4Hnra-4(cDNA)HVC155;
lin-15þ ]; zxEx61[pmyo-3Hnra-2(cDNA)HVN173; rol-6d], ZX639: lin-
15(n765ts); zxEx60; zxEx62[pmyo-3Hunc-1HVN173; rol-6d], ZX627:
nra-2(ok1731); zxEx63[pmyo-3H3xHAHnra-2(cDNA)HGFP; rol-6d],
ZX699: N2; zxEx64[plev-8Hlev-8H3xHA; punc-38Hunc-38-MYCH6x-
HIS-2xMYC; rol-6d], ZX700: nra-2(ok1731); zxEx64, ZX701: N2;
zxEx65[pacr-8Hacr-8H6xHIS-3xHAH6xHIS-3xHA; punc-38Hunc-38-
MYCH6xHIS-2xMYC; rol-6d], ZX702: nra-2(ok1731); zxEx65, ZX703:
N2; zxEx66[pnra-2HGFP; rol-6d], ZX460; N2; zxIs6[punc-17H
ChR2(H134R)HYFP; lin-15þ ]IV (Liewald et al, 2008), ZX499: N2;
zxIs5[punc-17HChR2(H134R)HYFP; lin-15þ ]X, ZX704: nra-2(ok1731);
zxIs6, ZX705: acr-16(ok789); zxIs5, ZX706: unc-38(x20); zxIs5.

Bimolecular fluorescence complementation
BiFC experiments were essentially as described (Chen et al, 2007;
Shyu et al, 2008). pnra-4Hnra-4(cDNA)HVC155 was first injected
(10 ng/ml) into lin-15(n765ts) animals. Stable lines were obtained,
and into one of those, either pmyo-3Hnra-2(cDNA)HVN173 (7 ng/
ml), or, as a negative control, pmyo-3HUNC-1HVN173 (wp646;
15 ng/ml) were injected with rol-6d(pRF4) as a marker. Stable lines
were analysed for reconstituted Venus fluorescence.

Behavioural assays
Paralysis assays, as well as swimming assays, were as described
(Gottschalk et al, 2005).

Electrophysiology
Recordings of agonist- or photo-induced PSCs from dissected
C. elegans body muscle cells were as described (Liewald et al,
2008; Biala et al, 2009). Single-channel recordings from embryonic
muscle cells were as described earlier (Christensen et al, 2002;
Rayes et al, 2007).

More detailed and additional Materials and methods are
presented in Supplementary data.
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Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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