Manuel ABAD, José Patricio DíAZ VARELA and Marta ZANDER

BOOLEAN ALGEBRAS WITH A DISTINGUISHED AUTOMORPHISM

Abstract

In this paper we investigate a subvariety $\mathcal{B} \mathcal{A}$ of tense algebras, which we call Boolean algebras with a distinguished automorphism. This variety provides a unifying framework for the algebras studied by Monteiro in [4] and by Moisil in [5, 6]. Among others we prove that $\mathcal{B A}$ is generated by its finite members and we characterize the locally finite subvarieties of $\mathcal{B A}$.

1. Introduction and Preliminaries

The variety of tense algebras [7] is defined as the variety of algebras $\langle A ; \wedge$, $\left.\vee,-, T, T^{\prime}, 0,1\right\rangle$, where $\langle A ; \wedge, \vee,-, 0,1\rangle$ is a Boolean algebra and T and T^{\prime} are unary operators satisfying the following identities: $T(1)=1, T^{\prime}(1)=1$; $T(x \wedge y)=T(x) \wedge T(y), T^{\prime}(x \wedge y)=T^{\prime}(x) \wedge T^{\prime}(y) ;-x \vee T\left(-T^{\prime}(-x)\right)=1 ;$ $-x \vee T^{\prime}(-T(-x))=1$.

[^0]In [4], Monteiro defined the k-cyclic Boolean algebras, k a fixed integer ≥ 1, as Boolean algebras with a new unary operation T with the properties of an automorphism such that $T^{k}=I d$. This class of algebras is a variety, denoted by V_{k}. Monteiro characterized the subdirectly irreducible members of V_{k} and described its finitely generated free objects. As a consequence of Monteiro's work V_{k} turns out to be locally finite.

Some particular cases had been previously studied by Moisil [5, 6] in connection with the theory of switching circuits. Moisil proved that the 2cyclic Boolean algebra $\left\langle B_{2} ; T\right\rangle$ can be identified with the Galois field $G F\left(2^{2}\right)$ and he also proved that a ring structure such that $2 x=0$ and $x^{4}=x$ can be defined on any 2 -cyclic Boolean algebra, and conversely. These results were generalized by Cendra [3] for arbitrary k, and recently by Abad et al. [1] for cyclic Post algebras and finite fields.

The purpose of this paper is to investigate a subvariety of tense algebras, which we call Boolean algebras with a distinguished automorphism. Such variety contains all the varieties of Monteiro and provides a unifying framework to prove results that generalize his.

By a Boolean algebra with a distinguished automorphism we understand a tense algebra $\left\langle A ; \wedge, \vee,-, T, T^{\prime}, 0,1\right\rangle$, such that T is an automorphism of A (and so $T^{\prime}=T^{-1}$).

The class of Boolean algebras with a distinguished automorphism is denoted by $\mathcal{B A}$. $\mathcal{B A}$ can be characterized by the identities $T(x \wedge y)=$ $T(x) \wedge T(y), T(-x)=-T(x)$, and $T\left(T^{-1}(x)\right)=T^{-1}(T(x))=x$, so $\mathcal{B A}$ is a variety.

As it is standard practice, we will frequently denote with the same letter an algebra and its underlying universe. Hence, by a subalgebra of an algebra $A \in \mathcal{B A}$ we understand a Boolean subalgebra of A which is closed under T and T^{-1}, and by a homomorphism from A to $B, A, B \in \mathcal{B} \mathcal{A}$, we understand a Boolean homomorphism $h: A \rightarrow B$ such that $h(T(a))=T(h(a))$ and $h\left(T^{-1}(a)\right)=T^{-1}(h(a))$, for all $a \in A$.

Typical examples of Boolean algebras with a distinguished automorphism are the following algebras introduced by Monteiro.

Let B_{k} denote the Boolean algebra of k-tuples $\left(x_{1}, \ldots x_{k}\right)$, with $x_{i} \in$ $\{0,1\}$. Let $a_{1}, a_{2}, \ldots, a_{k}$ be the atoms of this algebra, that is, $\left(a_{i}\right)_{j}=1$ if $i=j$ and $\left(a_{i}\right)_{j}=0$ otherwise, and let T be the automorphism of B_{k} such that $T\left(a_{1}\right)=a_{2}, T\left(a_{2}\right)=a_{3}, \ldots, T\left(a_{k-1}\right)=a_{k}, T\left(a_{k}\right)=a_{1}$. It is clear
that $T^{k}(x)=x$ for every $x \in B_{k}$. It is clear that B_{k} with the operations T and T^{-1} is a Boolean algebra with an automorphism. Then B_{k} is a simple k-cyclic Boolean algebra and $V_{k}=V\left(B_{k}\right)$, the variety generated by B_{k}.

The lattice of subalgebras of B_{k} ordered by inclusion is isomorphic to the lattice of divisors of k, ordered by divisibility. If d is a divisor of k, in symbols $d \mid k$, the corresponding subalgebra is isomorphic to the algebra B_{d}, where T acts transitively on the atoms of $B_{d}[4] . V_{k}$ is a discriminator variety [7]. Indeed, let us write $\Delta_{k}(a)=a \wedge T(a) \wedge T^{2}(a) \wedge \ldots \wedge T^{k-1}(a)$. Then, for $a \in B_{k}, \Delta_{k}(a)=1$ if $a=1$ and $\Delta_{k}(a)=0$ otherwise. Then $t(x, y, z)=\left(z \wedge \Delta_{k}(x \leftrightarrow y)\right) \vee\left(x \wedge-\Delta_{k}(x \leftrightarrow y)\right)$, where $x \leftrightarrow y=(x \vee$ $-y) \wedge(-x \vee y)$, is a discriminator term for B_{k}. In particular, every finite k-cyclic algebra is a direct product of simple algebras [4] and every finite subdirectly irreducible algebra in V_{k} is simple [2].

For $A \in \mathcal{B} \mathcal{A}$, a subset F of A is a T-filter if F is a filter such that $T(x)$, $T^{-1}(x) \in F$, whenever $x \in F$. If $W \subseteq A$, the notion of T-filter generated by W is defined as usual. If $W=\{z\}$, the T-filter $F_{T}(z)$ generated by $\{z\}$ is the filter generated by $\left\{T^{n}(z): n \in \mathbb{Z}\right\}$, that is,

$$
F_{T}(z)=\left\{x \in A: T^{n_{1}}(z) \wedge \ldots \wedge T^{n_{k}}(z) \leq x, n_{i} \in \mathbb{Z}\right\}
$$

Congruences on A are determined by T-filters in the following way: If F is a T-filter of A, then the relation \equiv defined on A by $x \equiv y(\bmod F)$ if and only if $x \leftrightarrow y \in F$, is a congruence relation. Conversely, if \equiv is a congruence on A, then $F=\{x \in A: x \equiv 1\}$ is a T-filter and $x \equiv y$ if and only if $x \leftrightarrow y \in F$. Therefore, there exists a lattice isomorphism from the set of T-filters of A onto the set of congruences of A.

The notions of T-ideal and T-ideal generated by a subset of A are dually defined. Congruences can also be determined by T-ideals: the congruence associated to the T-ideal I is $\quad x \equiv y(\bmod I)$ if and only if $x \triangle y \in I$, where $x \triangle y=(x \wedge-y) \vee(-x \wedge y)$.

2. The algebra $2^{\mathbb{Z}}$

The aim of this section is to introduce the crucial example of the algebra $\mathbf{2}^{\mathbb{Z}}$ and prove some of its properties. We will see that this algebra contains an isomorphic copy of every subdirectly irreducible algebra in $\mathcal{B A}$, and consequently it is a generator for $\mathcal{B} \mathcal{A}$.

Let $2^{\mathbb{Z}}$ be the field of subsets of \mathbb{Z} with the set-theoretical operations of union, meet and complementation. Let T be the automorphism of $\mathbf{2}^{\mathbb{Z}}$ induced by the mapping $n \mapsto n+1, n \in \mathbb{Z}$. It is clear that $\left\langle\mathbf{2}^{\mathbb{Z}}, T, T^{-1}\right\rangle \in$ $\mathcal{B A}$.

The algebra $2^{\mathbb{Z}}$ is atomic, that is, every element in $\mathbf{2}^{\mathbb{Z}}$ is a (finite or infinite) join of atoms, or equivalently, every element in $2^{\mathbb{Z}}$ is a meet of coatoms; the atoms of $\mathbf{2}^{\mathbb{Z}}$ are the singletons and the coatoms are their complements.

Lemma 2.1. $\mathbf{2}^{\mathbb{Z}}$ is non-simple subdirectly irreducible.
Proof. Let $I_{0}=\left\{x \in \mathbf{2}^{\mathbb{Z}}: x\right.$ is a finite subset of $\left.\mathbb{Z}\right\}$. It is easy to see that I_{0} is a non-trivial T-ideal of $\mathbf{2}^{\mathbb{Z}}$, generated by any atom of $\mathbf{2}^{\mathbb{Z}}$. So, $\mathbf{2}^{\mathbb{Z}}$ is not simple.

If $I \neq\{0\}$ is a T-ideal of $\mathbf{2}^{\mathbb{Z}}$, then I contains an element $x \neq 0$. Let a be an atom of $\mathbf{2}^{\mathbb{Z}}$ such that $a \leq x$. Then $a \in I$, that is, I contains an atom of $\mathbf{2}^{\mathbb{Z}}$. Consequently, $I_{0} \subseteq I$, that is, I_{0} is the only minimal T-ideal of $\mathbf{2}^{\mathbb{Z}}$, and then, $\mathbf{2}^{\mathbb{Z}}$ is subdirectly irreducible.

Let $A \in \mathcal{B A}$ and let $\operatorname{Ult}(A)$ denote the set of ultrafilters of A. Consider the Boolean algebra $2^{U l t(A)}$. Then the automorphism $T: A \rightarrow A$ induces an automorphism, which we denote with the same letter, T : $\mathbf{2}^{U l t(A)} \rightarrow \mathbf{2}^{U l t(A)}$ by means of $T(x)(U)=1$ if and only if $x\left(T^{-1}(U)\right)=$ 1 for every $x \in \mathbf{2}^{U l t(A)}, \quad U \in U l t(A)$.

The following lemma shows that the Boolean Stone embedding is in fact a $\mathcal{B} \mathcal{A}$-embedding, that is, it preserves T.

Lemma 2.2. (Stone embedding) If $A \in \mathcal{B} \mathcal{A}, A$ is isomorphic to a subalgebra of $\mathbf{2}^{\text {Ult(A) }}$.

Proof. Let $s: A \rightarrow \mathbf{2}^{U l t(A)}$ be the Stone embedding

$$
s(x)(U)=\left\{\begin{array}{l}
1 \text { if } x \in U \\
0 \text { if } x \notin U
\end{array}\right.
$$

It is known that s is a Boolean embedding. In addition we have that $T(s(x))(U)=1$ if and only if $s(x)\left(T^{-1}(U)\right)=1$, and this is equivalent to $x \in T^{-1}(U)$, that is, $T(x) \in U$, or equivalently, $s(T(x))(U)=1$. So s is an embedding in $\mathcal{B} \mathcal{A}$.

The orbit of an element $a \in A$ is the set $O(a)=\left\{T^{n}(a): n \in \mathbb{Z}\right\}$.

Now we prove that the algebra $2^{\mathbb{Z}}$ is a generator for the variety $\mathcal{B} \mathcal{A}$. That is,

Theorem 2.3. The variety $\mathcal{B A}$ is generated by the algebra $\mathbf{2}^{\mathbb{Z}}$. Moreover, $\mathcal{B A}=\operatorname{ISP}\left(\mathbf{2}^{\mathbb{Z}}\right)$.

Proof. By Lemma 2.2, if $A \in \mathcal{B} \mathcal{A}, A \hookrightarrow \mathbf{2}^{U l t(A)}$. If $\left\{O\left(U_{j}\right)\right\}_{j \in \mathfrak{J}}$ is the family of distinct orbits of $\operatorname{Ult}(A)$, then $\operatorname{Ult}(A)=\bigcup_{j \in \mathfrak{J}} O\left(U_{j}\right)$, and $\mathbf{2}^{U l t(A)} \cong \prod_{j \in \mathfrak{J}} 2^{O\left(U_{j}\right)}$, where the automorphism in $\mathbf{2}^{O\left(U_{j}\right)}$ is the one induced by the action of T in $O\left(U_{j}\right)$. If $O\left(U_{j}\right)$ is finite, then $\mathbf{2}^{O\left(U_{j}\right)} \cong B_{n}$ for some n, and if $O\left(U_{j}\right)$ is infinite then $\mathbf{2}^{O\left(U_{j}\right)} \cong \mathbf{2}^{\mathbb{Z}}$. Consequently $\mathbf{2}^{U l t(A)}$ is isomorphic to a product $\prod_{j \in \mathfrak{J}} A_{j}$, where $A_{j} \cong B_{n}$ or $A_{j} \cong \mathbf{2}^{\mathbb{Z}}$. In both cases there exists a monomorphism $A_{j} \hookrightarrow \mathbf{2}^{\mathbb{Z}}$. Thus $A \hookrightarrow \prod_{j \in \mathfrak{J}} A_{j} \hookrightarrow\left(\mathbf{2}^{\mathbb{Z}}\right)^{\mathfrak{J}}$, and so $A \in \operatorname{ISP}\left(\mathbf{2}^{\mathbb{Z}}\right)$.

Corollary 2.4. An equation holds in every algebra in the variety $\mathcal{B} \mathcal{A}$ if and only if it holds in $\mathbf{2}^{\mathbb{Z}}$.

For each orbit $O\left(U_{j}\right)$ of $\operatorname{Ult}(A)$ consider the $\mathcal{B} \mathcal{A}$-homomorphism f_{j} : $A \rightarrow \mathbf{2}^{O\left(U_{j}\right)}$ defined by $f_{j}(x)(U)=1$ if and only if $x \in U$, for every $x \in A$ and $U \in O\left(U_{j}\right)$. We say that f_{j} is the homomorphism associated to $O\left(U_{j}\right)$.

The next theorem tells us where the subdirectly irreducible algebras in $\mathcal{B} \mathcal{A}$ are.

Theorem 2.5. If an algebra $A \in \mathcal{B} \mathcal{A}$ is subdirectly irreducible then A is isomorphic to a subalgebra of $\mathbf{2}^{\mathbb{Z}}$.

Proof. We are going to prove that if A is subdirectly irreducible, there exists an orbit $O\left(U_{j}\right) \in U l t(A)$ such that the associated homomorphism f_{j} is an embedding.

If A is simple, then we can choose any orbit of $\operatorname{Ult}(A)$. Indeed, for any orbit $O\left(U_{j}\right), \operatorname{Ker}\left(f_{j}\right) \neq A$, and consequently $\operatorname{Ker}\left(f_{j}\right)=\{1\}$.

Suppose that A is non-simple subdirectly irreducible and let M be the minimal proper T-filter of A. For an orbit $O\left(U_{j}\right)$, if $\operatorname{Ker}\left(f_{j}\right) \neq\{1\}$, then $M \subseteq \operatorname{Ker}\left(f_{j}\right)$. Thus if we suppose that for every orbit $O\left(U_{j}\right)$, $\operatorname{Ker}\left(f_{j}\right) \neq\{1\}$, then $M \subseteq \bigcap \operatorname{Ker}\left(f_{j}\right)=\bigcap\{U: U \in U l t(A)\}=\{1\}$, which is a contradiction. Hence there exists an orbit $O\left(U_{j}\right)$ such that f_{j} is an embedding. By Lemma 3.1, A is infinite, so this orbit cannot be finite. Thus $A \hookrightarrow \mathbf{2}^{O\left(U_{j}\right)} \simeq \mathbf{2}^{\mathbb{Z}}$.

It is worth pointing out that Theorem 2.5 in conjunction with Lemma 2.1 show that $\mathcal{B} \mathcal{A}$ is residually small, with residual bound $\left(2^{\omega}\right)^{+}$.

The next theorem proves that the variety $\mathcal{B} \mathcal{A}$ is generated by its finite members, and consequently, $\mathcal{B A}$ provides the unifying framework for the varieties V_{k} of Monteiro. In the proof, any element $x \in \mathbf{2}^{\mathbb{Z}}$ will be written as a sequence $x=\left(x_{i}\right)_{i \in \mathbb{Z}}$, where $x_{i}=0$ or $x_{i}=1$, for every $i \in \mathbb{Z}$. Similarly, any element in B_{m} will be represented as a finite sequence of $m 0$'s and 1's, without commas between them.

Theorem 2.6. $\mathbf{2}^{\mathbb{Z}} \in V\left(\left\{B_{m}: m>0\right\}\right)$.
Proof. Consider the algebra $\prod_{k>0} B_{2 k+1}$, and for $x=\left(x_{i}\right)_{i \in \mathbb{Z}} \in \mathbf{2}^{\mathbb{Z}}$, define

$$
f(x)=\left(x_{-1} x_{0} x_{1}, x_{-2} x_{-1} x_{0} x_{1} x_{2}, \ldots\right) \in \prod_{k>0} B_{2 k+1} .
$$

f is a Boolean homomorphism.
Let I be the T-ideal of $\prod_{k>0} B_{2 k+1}$ generated by

$$
\{T(f(x)) \triangle f(T(x)), x \in \mathbb{Z}\}
$$

and let $\bar{f}: \mathbf{2}^{\mathbb{Z}} \rightarrow \prod_{k>0} B_{2 k+1} / I$ be the mapping $\bar{f}(x)=\overline{f(x)}$, for $x \in \mathbf{2}^{\mathbb{Z}}$.
\bar{f} is a Boolean homomorphism, and it is clear that $\bar{f}(T(x))=T(\bar{f}(x))$. Observe that $T^{-1}(f(x)) \triangle f\left(T^{-1}(x)\right) \in I$, and so, $\bar{f}\left(T^{-1}(x)\right)=T^{-1}(\bar{f}(x))$. In order to prove that \bar{f} is injective it suffices to show that $\bar{f}(z)=0$ implies $z=0$.

Observe that from the definition of f and taking into account that $(T(x))_{i}=(x)_{i-1}$, we have that $T(f(x)) \Delta f(T(x)) \leq(100,10000, \ldots) \in$ $\prod_{k>0} B_{2 k+1}$.

An element $w \in I$ if and only if $w \leq \bigvee_{j \in J} T^{j}\left(T\left(f\left(x_{j}\right)\right) \triangle f\left(T\left(x_{j}\right)\right)\right), J$ finite, and then there exists m such that $w \leq \bigvee_{j=-m}^{j=m} T^{j}(100,10000, \ldots)$, that is

$$
(w)_{k} \leq\left(\bigvee_{j=-m}^{j=m} T^{j}(100,10000, \ldots)\right)_{k} \leq \underbrace{11 \ldots 1}_{m+1} 00 \ldots 0 \underbrace{11 \ldots 1}_{m} \in B_{2 k+1}
$$

In particular, if $\bar{f}(z)=\overline{f(z)}=0$, for $z=\left(z_{i}\right)_{i \in \mathbb{Z}}$, then $f(z) \in I$, and then there exists m such that for every k,

$$
(f(z))_{k}=z_{-k} z_{-(k-1)} \ldots z_{-1} z_{0} z_{1} \ldots z_{k-1} z_{k} \leq \underbrace{11 \ldots 1}_{m+1} 00 \ldots 0 \underbrace{11 \ldots 1}_{m} \in B_{2 k+1}
$$

Then it is clear that $z_{i}=0$ for every $i \in \mathbb{Z}$, that is, $z=0$.
Corollary 2.7. $\mathcal{B} \mathcal{A}$ is generated by its finite members.

3. Other generators for $\mathcal{B A}$

In the present section we obtain some more insight into the structure of $\mathcal{B} \mathcal{A}$. We first study some subalgebras of $\mathbf{2}^{\mathbb{Z}}$, namely, the subalgebra of m-periodic subsets of \mathbb{Z} for each m, the subalgebra of finite and cofinite subsets of \mathbb{Z}, and the subalgebra $B_{\mathbb{N}}$ of the elements of finite order of $\mathbf{2}^{\mathbb{Z}}$. We use these subalgebras to deduce some properties of $\mathcal{B A}$.

Let m be a positive integer. A subset x of \mathbb{Z} is called m-periodic if it coincides with the set obtained by adding m to each of its elements.

It is clear that if x is m-periodic, then $T(x)$ and $T^{-1}(x)$ are m-periodic, so the set of m-periodic subsets of \mathbb{Z} is a subalgebra of $\mathbf{2}^{\mathbb{Z}}$. If we consider the congruence modulo m in \mathbb{Z} and we use the notation $[x]_{m}$ for the equivalence class of x, then $[0]_{m},[1]_{m}, \ldots,[m-1]_{m}$ are the atoms of this subalgebra. T acts transitively on the atoms, and thus, this subalgebra is isomorphic to the algebra B_{m} of Monteiro [4]. From now on, the notation B_{m} will also be used to denote the subalgebra of m-periodic subsets of $\mathbf{2}^{\mathbb{Z}}$. In particular, the algebras B_{m} are simple, and the lattice of subalgebras of B_{m} is isomorphic to the lattice of divisors of m.

Lemma 3.1. For a finite algebra algebra $A \in \mathcal{B A}, A$ is subdirectly irreducible if and only if A is isomorphic to B_{m}, for some m, that is, A is subdirectly irreducible if and only if A is simple.

Proof. If A is finite, $T^{k}=I d$, for some k. Then A is a finite k-cyclic algebra, and then $A \cong \prod_{m \mid k}\left(B_{m}\right)^{\alpha_{m}}$, where $m \mid k$ stands for m a divisor of k. As A is subdirectly irreducible, then $A \cong B_{m}$, for some m. The converse is trivial.

Another important subalgebra of $\mathbf{2}^{\mathbb{Z}}$ is the subalgebra of finite-cofinite subsets of \mathbb{Z}. Recall that a subset of a set X is said to be cofinite if its complement in X is finite.

Let $F C=\left\{x \in \mathbf{2}^{\mathbb{Z}}: x\right.$ is either finite or cofinite $\} . F C$ is the subalgebra of $\mathbf{2}^{\mathbb{Z}}$ generated by the atoms of $\mathbf{2}^{\mathbb{Z}}$, or equivalently by an atom of $\mathbf{2}^{\mathbb{Z}}$.

The proof of the following lemma is similar to that of Lemma 2.1.
Lemma 3.2. FC is non-simple subdirectly irreducible.
Proof. $\quad I_{0}=\{x \in F C: x$ is a finite subset of $\mathbb{Z}\}$ is the only (nontrivial) minimal T-ideal of $F C$.

In addition, if I is a T-ideal of $F C$ such that $I_{0} \subset I$ and $I_{0} \neq I$, then if $x \notin I_{0}$, then x is a cofinite subset of \mathbb{Z}. So, $-x \in I_{0} \subseteq I$, which implies $1=x \vee-x \in I$, that is, $I=F C$. In particular, the lattice of T-ideals of $F C$ is a three-element chain.

Observe that $F C$ has no proper subalgebras other than the two-element one. Indeed, if $S \neq\{0,1\}$ is a subalgebra of $F C$, then S contains an element $x, x \neq 0,1$ which is a finite subset of \mathbb{Z}. As before, S contains an atom of $2^{\mathbb{Z}}$, which is a generator of $F C$, so $S=F C$.

Now we are going to show some subalgebras of $\mathbf{2}^{\mathbb{Z}}$ with the property that they are simple and non atomic.

A family $\left\{A_{i}\right\}_{i \in \mathfrak{I}}$ of subalgebras of an algebra is said to be directed if for $i, j \in \mathfrak{I}$ there exists $k \in \mathfrak{I}$ such that $A_{i} \subseteq A_{k}$ and $A_{j} \subseteq A_{k}$.

If $\left\{A_{i}\right\}_{i \in \mathfrak{I}}$ is a directed family of subalgebras of $\mathbf{2}^{\mathbb{Z}}$, then $A_{\mathfrak{I}}=\bigcup_{i \in \mathfrak{I}} A_{i}$ is a subalgebra of $\mathbf{2}^{\mathbb{Z}}$, and thus $A_{\mathfrak{I}} \in \mathcal{B} \mathcal{A}$.

In particular, we are interested in the algebras $B_{\mathfrak{I}}=\bigcup_{i \in \mathfrak{I}} B_{i}$, where $\left\{B_{i}\right\}_{i \in \mathfrak{I}}, \mathfrak{I} \subseteq \mathbb{N}$, is a directed family of subalgebras B_{i} introduced above.

We say that an element $x \in \mathbf{2}^{\mathbb{Z}}$ is of finite order if $x \in B_{m}$, for some m. Otherwise we say that x is of infinite order.

An algebra A is locally finite if and only if every finitely generated subalgebra of A is finite. A class of algebras K is locally finite if and only if every member of K is locally finite. A variety is finitely generated if it is generated by a finite set of finite algebras.

Lemma 3.3. If \mathfrak{I} is infinite, the algebra $B_{\mathfrak{I}}$ is simple, atomless and locally finite. If $\mathfrak{I}=\mathbb{N}, B_{\mathbb{N}}$ consists of the elements of finite order of $\mathbf{2}^{\mathbb{Z}}$.

Proof. Let F be a proper T-filter of $B_{\mathfrak{I}}$ and $x \neq 1$ an element of F. Since $x \in B_{\mathfrak{I}}, x \in B_{i}$ for some $i \in \mathfrak{I}$, and consequently $0=\triangle_{i} x=$ $x \wedge T(x) \wedge \ldots \wedge T^{i-1}(x) \in F$. So $F=B_{\mathfrak{I}}$. Hence $B_{\mathfrak{I}}$ is simple.

Let us see that $B_{\mathfrak{I}}$ has no atoms. For $x \in B_{\mathfrak{I}}, x \in B_{i}$, for some $i \in \mathfrak{I}$. Consider $i^{\prime} \in \mathfrak{I}$ a multiple of $i, i^{\prime} \neq i$. B_{i} is a proper subalgebra of $B_{i^{\prime}}$, and since T acts transitively on the atoms or $B_{i^{\prime}}$, it follows that x can be not an atom of $B_{i^{\prime}}$. In particular, there exists an atom a of $B_{i^{\prime}}$ such that $0<a<x$, that is x is not an atom of $B_{\mathfrak{I}}$.

Every element of $B_{\mathfrak{I}}$ is of finite order, and consequently $B_{\mathfrak{I}}$ is locally finite.

Finally, it is clear that for $x \in \mathbf{2}^{\mathbb{Z}}, x \in B_{\mathbb{N}}$ if and only if $T^{m}(x)=x$, for some m.

From Theorem 2.6, as B_{n} is a subalgebra of $B_{\mathbb{N}}$ for every n, we get that $B_{\mathbb{N}}$ is another generator for $\mathcal{B A}$, that is, $\mathcal{B A}=V\left(B_{\mathbb{N}}\right)$.

It is known that every finitely generated subvariety is locally finite. Let us prove that in $\mathcal{B A}$ the converse also holds.

Lemma 3.4. A subvariety V of $\mathcal{B A}$ is locally finite if and only if it is finitely generated.

Proof. Let V be a locally finite subvariety of $\mathcal{B} \mathcal{A}$ and suppose that V is not finitely generated. Let $X=\left\{A_{i}, i \in I\right\}$ be a set of non-isomorphic subdirectly irreducible algebras that generate V. Then X is not a finite set of finite algebras.

Suppose that X contains an infinite algebra $A_{i}=A$. If A has an element x of infinite order, then the subalgebra $\langle x\rangle$ generated by x is not finite. So V is not locally finite. Suppose that every element $x \in A$ is of finite order. Since A is subdirectly irreducible, we may assume that A is isomorphic to a subalgebra of $\mathbf{2}^{\mathbb{Z}}$. Then for every $x \in A,\langle x\rangle$ is isomorphic to B_{k}, for some k. Then $A \simeq \bigcup_{k \in K} B_{k}$. If K is finite, then infinitely many different subalgebras if A are isomorphic to B_{k} for some k. But A is a subalgebra of $2^{\mathbb{Z}}$ and therefore contains only one subalgebra isomorphic to B_{k} for every k. So, K must be infinite, $K \subseteq \mathbb{N}$. Thus we have that $\prod_{k \in K} B_{k} \in V$ and $\prod_{k \in K} B_{k}$ is not locally finite, contrary to the assumption.

So X does not contain an infinite algebra, and consequently X contains infinitely many non-isomorphic finite algebras A_{i}. In this case $\prod_{i \in I} A_{i} \in V$ and $\prod_{i \in I} A_{i}$ is not locally finite, since it contains an element of infinite order, again a contradiction.

It is also known that every locally finite subvariety is generated by its finite members. The converse does not hold in $\mathcal{B A}$ as it is the case for the subvariety generated by all the finite algebras.

Remarks.

1. An algebra $A \in \mathcal{B A}$ can be locally finite and it still may not be in a locally finite variety (the variety generated by A is not locally finite). For instance, $B_{\mathbb{N}}$ is locally finite and we will see that the variety generated by $B_{\mathbb{N}}$ is the whole variety $\mathcal{B A}$.
2. The locally finite simple algebras in $\mathcal{B A}$ are subalgebras of $B_{\mathbb{N}}$. It is a consequence of the proof of Lemma 3.4.
3. The locally finite subdirectly irreducible algebras in $\mathcal{B A}$ are simple, and consequently, subalgebras of $B_{\mathbb{N}}$. (Observe that every subalgebra of $B_{\mathbb{N}}$ is simple: the filter generated by $x \neq 1$ is the whole algebra).
4. As a consequence, every locally finite algebra $A \in \mathcal{B A}$ is semisimple, and consequently, A can be embedded into $\left(B_{\mathbb{N}}\right)^{k}$.

The locally finite varieties are the varieties generated by finitely many algebras B_{n}. An equation that characterizes the subvariety $V\left(B_{m_{1}}\right) \vee \ldots \vee$ $V\left(B_{m_{n}}\right)$ is $x \rightarrow\left(T^{m_{1}}(x) \vee \ldots \vee T^{m_{n}}(x)\right)=1$. The proof follows by simple inspection.

In the rest of this section we exhibit other generators for the variety $\mathcal{B A}$. In fact, we prove that for every infinite directed family $\left\{B_{i}\right\}_{i \in \mathfrak{I}}$, the algebra $B_{\mathfrak{I}}$ generates $\mathcal{B A}$, and that the algebra $F C$ of finite-cofinite subsets of \mathbb{Z} generates $\mathcal{B A}$ as well.

Lemma 3.5. If $\left\{B_{i}, i \in \Im\right\}$ is an infinite family of non-isomorphic simple finite algebras of $\mathcal{B A}$, then $B_{n} \in V\left(\left\{B_{i}, i \in \mathfrak{I}\right\}\right)$, for every n.

Proof. Let $\mathfrak{I}^{\prime}=\{i \in \mathfrak{I}, i \geq n\}$. Let b_{1}, \ldots, b_{s} be the atoms of B_{s} and consider the element $a=\left(a_{i}\right)_{i \in \mathcal{I}^{\prime}} \in A=\prod_{i \in \mathfrak{I}^{\prime}} B_{i}$ defined by

$$
a_{i}=b_{1} \vee T^{n}\left(b_{1}\right) \vee T^{2 n}\left(b_{1}\right) \vee \ldots \vee T^{n \cdot m_{i}}\left(b_{1}\right),
$$

with m_{i} the greatest integer such that $n\left(m_{i}+1\right)+1 \leq i$.
Consider the T-ideal I generated by $a \triangle T^{n}(a)$. An element $x \in A$ belongs to I if and only if $x \leq \bigvee_{j \in J} T^{j}\left(a \triangle T^{n}(a)\right)$, J finite, $J \subseteq \mathbb{Z}$. But the coordinate of $a \triangle T^{n}(a)$ corresponding to B_{i} is $\left(a \triangle T^{n}(a)\right)_{i}=$ $b_{1} \vee T^{n\left(m_{i}+1\right)+1}\left(b_{1}\right)$, that is, $\left(a \triangle T^{n}(a)\right)_{i}$ is a join of two atoms. Hence each coordenate of $\bigvee_{j \in J} T^{j}\left(a \triangle T^{n}(a)\right)$ is a join of at most $2|J|$ atoms.

Let us see that in the quotient A / I, the elements $\bar{a}, \overline{T(a)}, \ldots \overline{T^{n-1}(a)}$ form a partition of 1 . Indeed, it is clear that the meet of any two of them is 0 . In addition, the coordinate of $\left(a \vee T(a) \vee \ldots \vee T^{n-1}(a)\right) \Delta 1$ that corresponds to B_{i} has at most the last n atoms of B_{i}, that is $(a \vee T(a) \vee \ldots \vee$ $\left.T^{n-1}(a)\right) \triangle 1 \leq \bigvee_{s=1}^{n} T^{-s}\left(a \triangle T^{n}(a)\right) \in I$. Then $\bar{a} \vee \overline{T(a)} \vee \ldots \vee \overline{T^{n-1}(a)}=1$.

Consequently, the atoms of the subalgebra $\langle\bar{a}\rangle$ generated by \bar{a} look like the following diagram

and thus $\langle\bar{a}\rangle$ is isomorphic to B_{n}.

As easy consequences of this lemma we have that every infinite family $\left\{B_{i}, i \in \mathfrak{I}\right\}$ also generates $\mathcal{B A}$, and $B_{\mathfrak{J}}$ is a generator for $\mathcal{B A}$, for every infinite directed family $\left\{B_{i}\right\}_{i \in \mathcal{I}}$.

As a corollary of the following lemma, it follows that $F C$ is another generator for the variety $\mathcal{B A}$.

Lemma 3.6. $B_{n} \in V(F C)$, for every n.
Proof. Consider the product $A=\prod_{i \in \mathbb{N}} A_{i}$, where every $A_{i}=F C$, and consider the element

$$
a=\left(a_{1}, a_{1} \vee T^{n}\left(a_{1}\right), \ldots, a_{1} \vee T^{n}\left(a_{1}\right) \vee \ldots \vee T^{n k}\left(a_{1}\right), \ldots\right),
$$

where a_{1} is an atom of $F C$. Arguing as before, we can prove that \bar{a} is of order n in the quotient of A by the T-ideal generated by $a \triangle T^{n}(a)$ and that $T^{i}(\bar{a}) \wedge T^{j}(\bar{a})=\overline{0}$, for $0 \leq i, j \leq n-1$. Observe that the coordinates of any element $x \in I$ are finite, and the element $b=a \vee T(a) \vee \ldots \vee T^{n-1}(a)$ is such that the coordinates of $b \triangle 1$ are cofinite. Consequently, $b \triangle 1 \notin I$, that is, $\bar{b} \neq 1$.

So we have that $\bar{a}, \overline{T(a)}, \ldots, \overline{T^{n-1}(a)}$ and $-\bar{b}$ form a partition of $1, \bar{a}$ is of order n and $-\bar{b}$ is invariant by T. Hence the atoms of the subalgebra $\langle\bar{a}\rangle$ generated by \bar{a} look like the following diagram,

that is, $\langle\bar{a}\rangle$ is isomorphic to $B_{n} \times B_{1}$. Then $B_{n} \times B_{1}$ belongs to the variety generated by $F C$ and, accordingly, so does B_{n}.

Corollary 3.7. $\mathcal{B A}=V(F C)$
We conclude the paper by conjecturing that any proper subvariety of $\mathcal{B A}$ is locally finite, that is to say, any proper subvariety of $\mathcal{B A}$ is a finite join of $V\left(B_{n}\right)$'s. And related to this, we also conjecture that the converse of Theorem 2.5 holds, that is, every subalgebra of $\mathbf{2}^{\mathbb{Z}}$ is subdirectly irreducible.

References

[1] M. Abad, J. P. Díaz Varela, F. López Martinolich, M. del C. Vannicola, M. Zander, Varieties Generated by Finite Fields and Cyclic Post Algebras, submitted for publication.
[2] S. Burris and H. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Vol 78, Springer, Berlin, 1981.
[3] H. Cendra, Cyclic Boolean Algebras and Galois Fields $F\left(2^{k}\right)$, Portugaliae Mathematica, 39 (1980), pp.1-4 .
[4] A. Monteiro, Algèbres de Boole Cycliques, Revue Roumaine de Mathématiques Pures et Appliquées, XXIII, 1 (1978), pp.71-76.
[5] G. Moisil, Algebra Schemelor cu Elemente Ventil, Revista Universitatii C.I. Parhon, Bucharest, Seria St. Nat. 4-5 (1954), pp.9-15.
[6] G. Moisil, Algèbres Universelles et Automates, in: Essais sur les logiques non chrysippiennes, Editions de L'Academie de la Republique Socialiste de Roumanie, Bucharest, 1972.
[7] T. Kowalski, Varieties of Tense Algebras, Reports on Mathematical Logic, 32 (1998), pp.53-95.

Departamento de MatemáticaUniversidad Nacional del Sur8000 Bahía BlancaArgentina
\{imabad, usdiavar, mzander\}@criba.edu.ar

[^0]: Received 30 October 2002
 Mathematics Subject Classification (2000): 06E25, 03G25
 Keywords: Varieties, Boolean Algebras, Tense Algebras.

