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This work addresses a parameter estimation problem in an ecological water quality model through a
simultaneous dynamic optimization approach. The model is based on first principles and has a large
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number of parameters, which must be estimated based on data collected in the water body under study.
Gradients of state variables are considered along the water column, rendering a partial differential equa-
tion problem, which is transformed into a differential algebraic (DAE) one by spatial discretization in
several water layers. Within a simultaneous approach, the DAE constrained optimization problem is
transformed into a large-scale nonlinear programming problem, with a weighted least squares objective

mical
wn i
hytoplankton
ynamic optimization

function. Main biogeoche
lake dynamics, as it is sho

. Introduction

The increasing download of nutrients into lakes, rivers and costal
ones throughout the world, mainly due to agricultural and indus-
rial activities, have intensified eutrophication of water bodies,
hich has in turn increased the need for predictive ecological water

uality modeling. Eutrophication models provide a representation
f major physical, chemical and biological processes that affect the
iomass of phytoplankton and nutrients. Based on first principles,
hey represent ecological processes through a set of complex non-
inear partial differential algebraic equations, with rate coefficients
hat require estimation to suit site-specific environment.

The parameter estimation problem in hybrid ecological water
uality model has been addressed through different approaches.
he traditional approach has been the iterative calibration of
arameters by trial and error adjustment of the most impor-
ant parameters derived from a sensitivity analysis (Scavia, 1980;
chladow & Hamilton, 1997). Hamilton and Schladow (1997) devel-
ped a combined hydrodynamic and ecological model (DYSREM)
nd they estimated main parameters through a trial and error pro-
edure.

Shen and Kuo (1996, 1998) used the variational method for

stimating the unknown kinetic parameters for an estuarine
utrophication model. This method requires running both the for-
ard and the adjoint models in each iteration, regardless of the
umber of parameters to be estimated. They proposed the use of a

∗ Corresponding author. Tel.: +54 2914861700; fax: +54 2914861600.
E-mail address: sdiaz@plapiqui.edu.ar (M.S. Diaz).

098-1354/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
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parameters have been obtained, which allow a close representation of the
n the numerical results.

© 2009 Elsevier Ltd. All rights reserved.

pre-conditioner to improve ill-conditioning of the Hessian matrix.
However, determination of the pre-conditioner is not trivial and
the application of the variational method requires extensive model
coding. Omlin, Brun, and Reitchert (2001) and Omlin, Reitchert,
and Forster (2001) developed a biogeochemical model for a lake
within program AQUASIM (Reichert, 1994, 1998). In this program,
parameter estimation is performed by minimizing a least squares
objective function. Partial derivative equations are transformed into
differential equations by spatial discretization along the water col-
umn. The resulting differential algebraic system is integrated in
time by applying the Backward Differentiation Formulae within
DASSL (Ascher & Petzold, 1998), coupled to the Simplex (Nelder &
Mead, 1965) and/or the secant method (Ralston & Jennrich, 1978).
Based on the availability of observed data, Omlin et al. divided
model parameters into two groups, those potentially to be esti-
mated from the lake data and those to be estimated from other
sources. They included kinetic parameters, specific for the pop-
ulations in the lake, as the ones requiring estimation based on
experimental data.

Jorgensen (1994, 2001) proposed a general procedure for param-
eter calibration in ecological modeling that includes determination
of possible ranges of parameters, sensitivity analysis and calibra-
tion of the most sensitive ones. He proposed the minimization of
the system exergy as the goal function when estimating model
parameters. The concept is based on the fourth law of ther-

modynamics, describing the change in parameters when the
system moves away from equilibrium (Jorgensen, Ray, Berec, &
Straskraba, 2002). While minimizing exergy, these authors pro-
posed a sequential procedure to determine model parameters by
calibrating both physical and chemical parameters by trial and

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:sdiaz@plapiqui.edu.ar
dx.doi.org/10.1016/j.compchemeng.2009.01.007
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Table 1
Trophic classification of water bodies.

Oligotrophic Mesotrophic Eutrophic Hypereutrophic

Inorganic phosphorus (�g/l) 1–10 10–20 20–100 >100
Inorganic nitrogen (�g/l) <150 150–300 >300
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hytoplankton (cells/ml) 2000
uperficial chlorophyll a (�g/l) 1–2
epth of Secchi disk (m) 5–10

rror and iteratively introducing size functions for phytoplank-
on and zooplankton parameters (Zhang, Jorgensen, & Mahler,
004).

More recently, Shen (2006) proposed a least squares objective
unction and the application of a modified Gauss–Newton method
or the solution of the dynamic parameter estimation problem. He
as modified the algorithm to handle upper and lower bounds on
arameters. Partial derivatives of state variables with respect to
arameters are obtained by finite differences. The efficiency of the
lgorithm is proved in the same estuarine eutrophication model
roposed by Shen and Kuo (1998).

Bayesian approaches have also been applied for parameter esti-
ation in estuary and coastal zone models (Borsuk, Higdom, Stow,
Reckhow, 2001) and lake models (Arhonditsis et al., 2006), as well

s genetic algorithms (Whigham & Recknagel, 2001).
Rode, Suhr, and Wriedt (2007) estimated seven kinetic and

iological parameter for a river water quality model using the
utomatic Parameter Estimation Program (PEST, Doherty, 2004),
hich implements the Gauss–Marquardt–Levenberg optimization
ethod. Furthermore, complex three-dimensional eutrophication
odels have been proposed for lakes with horizontal uneven distri-

utions (Hu, Jørgensen, & Zhang, 2006). More recent work includes
water quality model considering sediment related processes

Chao, Jia, Shields, Wang, & Cooper, 2007) and detailed model-
ng of functional phytoplankton groups (Mieleitner & Reichert,
008).

The main objective in the development of hybrid eutrophication
odels is to provide a tool for the proposal of remediation poli-

ies to improve water quality and to examine competition patterns
nd structural shifts under nutrient enrichment conditions (Zhao,
amin, Cheng, & Arhonditsis, 2008).

In this work, we formulate a constrained parameter estimation
roblem for a water quality model, subject to a partial differen-
ial algebraic equations (PDAE) model. Partial differential equations
esult from temporal and spatial dynamic mass balances in the

ajor groups of phytoplankton community, key nutrients in lake,
iochemical demand of oxygen and dissolved oxygen. Algebraic
quations represent profiles for temperature, solar radiation and
iver inflows, in addition to the calculation of most factors that
ffect rate equations, such as effect of solar radiation, temper-
ture, nutrients, etc. The PDE is transformed into an ordinary
ifferential equation system by spatially discretizing into hori-
ontal layers. The parameter estimation problem subject to DAE
onstraints is solved within a simultaneous approach and the
esulting large-scale nonlinear program is solved with an Interior
oint method with successive quadratic programming techniques
ithin program IPOPT (Biegler, Cervantes, & Waechter, 2002),
hich takes advantage of the special structure of the resulting
odel. The present study has been performed on Paso de las

iedras Reservoir, which is the drinking water source for two
ities in Argentina and whose current state is eutrophic. Numer-

cal results show good agreement with observed data from the
ake throughout an entire year and provide values for parame-
ers that are within ranges published in the literature. The model
s currently being validated with recently obtained data from the
ake.
000–5000 >5000
2–5 5–50 >50
3–5 1–3 <1

2. Eutrophication processes

In the life cycle of water bodies, there are four stages:
oligotrophic, mesotrophic, eutrophic and hypereutrophic. In an
extremely clean water body, as nutrients available are minimal,
there is no significant biological activity in the water column that
can support sedimentation. The water body is healthy and the
condition is called oligotrophic. As time passes and possible due
to human activities, nutrients can build up. A water body with
nutrient concentration support biological activity that is not objec-
tionable, but above that of the oligotrophic conditions is considered
mesotrophic. In the next stage of the life cycle, the water body
becomes eutrophic. This is characterized by murky water with an
accelerated rate of sedimentation of microorganisms. The final life
stage before extinction is hypereutrophic. Table 1 shows a quanti-
tative description of the above-mentioned trophic states.

As a result of cultural eutrophication, the one encouraged by
human activities, the water body goes through an over enrichment
of nutrients (mainly phosphorous and nitrogen), with an associated
increase in the production levels and biomass. There is a very strong
development of the phytoplankton community and a decrease in
the water depth caused by sediment accumulation.

Eutrophication has both point and non-point sources. Main
point sources are the discharges of agricultural, industrial and urban
wastewater. Much research effort is being devoted in the chem-
ical engineering community to address effluent treatment when
dealing with point sources. However, non-point sources, which are
mainly due to agricultural activities, are more difficult to deal with
and have not received much attention. The application of restora-
tion policies requires modeling and optimization of major chemical
and biological processes that take place within water bodies and the
first step is model calibration to the lake specific conditions.

3. Study area and input data

Paso de las Piedras Reservoir is located in the south of Buenos
Aires Province (Argentina) at 38◦22′S and 61◦12′W. It was built
30 years ago to supply drinking water to Bahía Blanca and Punta
Alta (cities whose population is above 450,000 inhabitants) and for
industrial purposes at a petrochemical complex nearby. The lake
has two tributaries: El Divisorio Stream and Sauce Grande River,
which run through an important agricultural area. This water body
has a coastline perimeter of 60 km and a mean depth of 8.2 m, so it
can be considered as a shallow lake. The high content of phospho-
rus and nitrogen in Paso de las Piedras Reservoir is a consequence
of agricultural activities. The trophic state of this water body is cur-
rently eutrophic (Parodi, Estrada, Trobbiani, & Argañaraz Bonini,
2004), as it can be clearly seen in Figs. 1 and 2. These figures show
observed concentration profiles for total phytoplankton and Secchi
disk depth (depth at which a white disk can be seen from outside
the water body) as related to the levels beyond which the water

body is considered eutrophic (horizontal lines that correspond to
5000 cells/ml and 3 m, for phytoplankton concentration and Sec-
chi disk depth, respectively). The urgent need for application of
systematic restoration strategies requires a deep knowledge of the
dynamics of main components in the lake.
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ig. 1. Observed total phytoplankton concentration (eutrophic above 5000 cells/ml).

Biological and chemical data have been collected weekly from
anuary to December 2004 at four sampling stations and two
epths. Biological qualitative and quantitative determinations have
een carried out, as well as physicochemical ones. They include
he determination of concentrations of nitrate, ammonium, organic
itrogen, phosphate, organic phosphorus, dissolved oxygen and
iochemical demand of oxygen, water temperature, pH and depth
f Secchi disk. An important characteristic of this water body is that

t does not form a thermocline in any season of the year (Intartaglia
Sala, 1989), hence there is no limitation in the nutrients circula-

ion. One reason for the lack of thermal stratification of the water
olumn could be that the reservoir is wind-exposed due to the low
opography of the surrounding area.

Inputs for the model are of four types. They are descriptive data
or the lake itself, hydrodynamic forcing data (primarily meteo-
ological, as temperature and solar radiation profiles, and inflow
nd outflow profiles data), water quality known parameters, phy-
oplankton and nutrients profiles and initial conditions for state
ariables. High frequency sampling is required to properly describe
he dynamics of the lake. Water temperature and solar radiation
rofiles were approximated with sinusoidal functions, as shown
n Fig. 3, based on meteorological data and measured water tem-
erature. River inflows and associated nutrient loading, as well as
utflow data and rain and evaporation, have been approximated
ith polynomial functions, based on observed data.

Fig. 2. Observed Secchi disk depth (eutrophic between 1 and 3 m).
Fig. 3. Temperature (◦C) and solar radiation (ly day−1) profiles (2 years).

4. Parameter estimation problem

Eutrophication models comprise large sets of complex partial
differential algebraic systems of equations (PDAE) that arise from
dynamic mass balances for phytoplankton, nutrients and main
components. Therefore, the associated parameter estimation prob-
lem is formulated as a PDAE-constrained optimization problem. The
main simplifying assumption in the present model is the consid-
eration of horizontally averaged concentrations. This assumption
has been introduced in the literature in most mechanistic eutroph-
ication models for lakes and reservoirs (Arhonditsis et al., 2006;
Hamilton & Schladow, 1997; Jorgensen et al., 2002; Omlin, Brun,
et al., 2001; Omlin, Reitchert, et al., 2001; Zhang et al., 2004).
Arhonditsis and Brett (2005) and Arhonditsis et al. (2006) have pro-
posed a very detailed 1D model for lake Washington, which has a
surface area of 87 km2, seven inflows and 12 surrounding cities.
On the other hand, 3D eutrophication models for lakes have been
developed for different situations. Hu et al. (2006) formulated a 3D
model for lake Taihu (China), whose surface area is 2338 km2, with
38 cities and 34.2 million people surrounding the lake, with the
associated discharges of domestic and industrial wastewater. In our
case study, Paso de las Piedras Reservoir (surface area: 36 km2, two
inflows and no discharges of wastewater), we analyzed collected
data at the four existing sampling stations to decide the inclusion
of the simplifying assumption. Two sampling stations are coastal
and the remaining ones are in central parts of the lake. The analy-
sis of the data collected during the bloom period, gives up to 8, 9
and 12% average relative differences in nitrate, phosphate and total
phytoplankton concentrations, respectively, as related to the first
sampling station. These small differences justify the assumption of
horizontally averaged concentrations in our model and they could
be explained with the fact that the reservoir is located in a windy
area and is wind-exposed throughout the entire year due to the low
topology.

Additional simplifying assumptions in the present model
include constant transversal area in the lake and constant water
density (Estrada, Parodi & Diaz, 2007). In this way, only gradients
along the water column height are considered. Phosphorus is con-
sidered as the limiting nutrient, as it is generally the case in lakes.
To transform the partial differential equations system into a set of
ordinary differential equations, the column height is discretized
into two layers, according to available data from the lake. The

fact that the residence time in the lake is 4 years suggests that a
discretization with only two horizontal layers may be enough to
describe the process. In most eutrophication models, the different
types of phytoplankton are lumped within one state variable;
however, we have considered three state variables corresponding
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o diatoms, chlorophytes and cyanobacteria, which are represen-
ative of the dominating phytoplankton groups in the lake. The
etailed information on each phytoplankton group is very useful to
etermine the potential damage they can produce in the drinking
ater source when an algal bloom takes place. The remaining state

ariables correspond to concentrations of main nutrients (nitrate,
itrite, ammonium, organic nitrogen, phosphate, and organic
hosphorus), dissolved oxygen and biochemical demand of oxygen.

.1. Process description and model equations

Algae are produced by photosynthesis. In these complex reac-
ions and using sunlight energy, the water molecule breaks down
eleasing electrons for synthesis:

76H2O → 138O2 + 552H+ + 552e− (1)

Dissolved carbon dioxide, together with nutrients and trace ele-
ents, take the electrons to produce algae and water, according

o:

106CO2 + 16NO3
− + HPO4

2− + 570H+ + 552e− + trace elements

→ (CH2O)106(NH3)16H3PO4.traceelements + 154H2O (2)

According to Eq. (2), algae are able to uptake nitrogen in both
mmonium and nitrate form for growth. Phosphorus is also uptaken
y phytoplankton in phosphate form for growth.

Dynamic mass balances in each spatial layer include component
nputs from tributaries (QIN), outputs for both potabilization and
ndustrial purposes and the river itself (QOUT), generation and con-
umption, and transference between layers, also accounting for lake
olume variability (through upper layer height variability). A global
ass balance also takes into account inputs from rains (Qrain) and

utputs due to evaporation (Qevap). Algebraic equations stand for
he generation/consumption terms, as well as for profiles in tem-
erature, solar radiation, rain, evaporation and river inflows and
orresponding concentrations. Estimated kinetic and physicochem-
cal parameters are included within the generation/consumption
erms. The objective function is a weighted least squares one.

Total mass balances:

dhT
dt

= 1
A

[
Qrain − Qevap +

NIN∑
k=1

QINk −
NOUT∑
m=1

QOUTm

]
(3)

here k = Sauce Grande River, El Divisorio Stream and
= potabilization plant, industrial usage, and Sauce Grande

iver outflows.
Component mass balances for horizontal layers (U: upper layer;

: lower layer; j: cyanobacteria, diatoms, chlorophytes, nitrate,
mmonium, organic nitrogen, phosphate, organic phosphorus, bio-
hemical demand of oxygen, dissolved oxygen):

Upper layer:

dCUj
dt

=
NIN∑
k=1

QINU,k

VU
CINUjk −

NOUT∑
m=1

QOUTU
VU

CUj + rUj

− kdA

�hUhU
(CUj − CLj) − CUj

hU

dhU
dt

(4)

Lower layer:

dCLj =
NOUT∑QOUTL CLj + rLj +

kdA
(CLj − CUj) − CLj dhL , (5)
dt
m=1

VL �hLhL hL dt

here rUj and rLj correspond to generation and consumption terms,
U and hL are height of water column and VU and VL correspond to

ake volume in upper (U) and lower (L) water layer, respectively.
Engineering 33 (2009) 1760–1769 1763

4.1.1. Rate equations for components
Phytoplankton. Rate equations for phytoplankton groups take

into account production and losses due to respiration, natural
death, settling, and grazing by herbivorous zooplankton.

rij = Rij,growth − Rij,resp − Rij,death − Rij,settling − Rij,graz,
i = UL, LL; j = cyano,diatom, chlorophyte (6)

The growth rate of the three phytoplankton groups is a function of
solar radiation, water temperature and nutrients availability. The
effect of solar radiation and nutrients on phytoplankton growth rate
is handled following a multiplicative model.

Rij,growth = ki,growthf (T)ijf (I)ijf (N)ijCij,

i = UL, LL; j = cyano,diatom, chlorophyte (7)

The temperature limitation function for the three phytoplankton
groups follows Zhang et al. (2004).

f (T)ij = − (Tj − Topti )2

T2
opti

+ 1, i = UL, LL;

j = cyano,diatom, chlorophyte (8)

The Steele (1962) function is applied to take into account solar radi-
ation control on phytoplankton growth, coupled with Beer’s Law to
adjust the extinction of the incoming solar radiation with depth.

f (I)ij = Ioi
Ioptj

exp

(
1 − Ioi

Ioptj

)
, i = UL, LL;

j = cyano,diatom, chlorophyte (9)

where

Ioi =
I[1 − exp(−Ke �Di)]

Ke �Di
(10)

Ke = K1 + K2

∑3
j=1Cj

cchl
(11)

where I is the incoming solar radiation in ly day−1 and Ke is the light
extinction coefficient.

Generally, phosphate is considered as the limiting nutrient for
primary productivity in freshwater ecosystems (Hecky & Kilham,
1988; Vollenweider, 1975) and its control is usually the best strat-
egy for management proposes. An important concept to determine
the limiting nutrient in an aquatic ecosystem has been the N:P
ratio. However, studies performed in sites with large nitrogen
and phosphorus downloads has shown that the N:P ratio is not
applicable to highly eutrophic systems (Paerl, Fulton, Moisander,
& Dyble, 2001; Xie, Xie, Li, Tang, & Liu, 2003). Sas (1989) suggested
threshold values for phosphate and inorganic nitrogen limitation of
0.01 and 0.1 mg l−1, respectively. Both dissolved inorganic nitrogen
(NH4 + NO3 + NO2) and phosphate in Paso de las Piedras Reservoir
have never been below the threshold values. Hence, the model
includes a Monod type kinetics to account for phosphate lim-
itation as well as limitation by silica for diatoms, since it is a
requirement for most of the diatoms species for cell wall formation
(Thamatrakoln & Hildebrand, 2008).

f (N)ij = Ci,PO4

Ci,PO4
+ KPi

,
CSii

CSii + KSj
, i = UL, LL; j = diatom (12)

f (N)ij =
CPO4j

CPO4j
+ KPi

, i = UL, LL; j = cyano, chlorophyte (13)
Phytoplankton respiration and natural death rates are given as:

Rij,resp = kj,resp�(T−20)
r Cij, i = UL, LL;

j = cyano,diatom, chlorophyte (14)
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Rij,death = kj,death�(T−20)
m Cij, i = UL, LL;

j = cyano,diatom, chlorophyte (15)

ince phytoplankton species are denser than water, a term taking
nto account settling of the cells is included:

Rij,settling = kj,settling
Cij
hi
, i = UL, LL;

j = cyano,diatom, chlorophyte (16)

he herbivorous zooplankton grazing rate is:

Rij,graz = kj,graz
Cij

Cij + Kgraz
CZooi , i = UL, LL;

j = cyano,diatom, chlorophyte (17)

he differences in growth rates for the three phytoplankton groups
re given by differences between their maximum growth rates,
utrients kinetics, optimal light and temperature requirements.

.1.2. Nutrients cycles
Nitrogen cycle. Three state variables describe nitrogen cycle:

mmonium, nitrate and organic nitrogen. Phytoplankters are
ble to absorb both ammonium and nitrate for growth, with
mmonium preference as it is energetically less expensive to
etabolize. Ammonium and nitrate concentration decrease in

he water column by algal uptake. Ammonium is oxidized to
itrate in an oxygen-temperature-dependent nitrification rate and

ts concentration increases by organic nitrogen hydrolysis at a
emperature-dependent mineralization rate. For the lower layer,
he model includes a term of ammonium release from sediments
Hamilton & Schladow, 1997). Nitrate can be reduced to molecular
itrogen by a process requiring low oxygen conditions, i.e., deni-
rification. The organic nitrogen pool is reduced by mineralization
nd settling and increases with mortality of phytoplankton. The
overning equations that describe the above processes are given by

U,NH4 = −RU,NH4,uptake − RiU,nit + RU,NH4,death + RU,NH4,miner (18)

L,NH4 = −RL,NH4,uptake − RL,i,nit + RL,NH4,death + RL,NH4,miner

+RL,NH4,sediment (19)

i,NO3
= −Ri,NO3,uptake + Ri,NO3,nit − Ri,NO3,denit, i = UL, LL (20)

ri,ON = Ri,ON,death − Rij,miner − Ri,ON,settling, i = UL, LL;
j = cyano,diatom, chlorophyte (21)

Ri,NH4,uptake =
∑
j

(˛ncRj,growthPNH4 ), i = UL, LL;

j = cyano,diatom, chlorophyte (22)

here PNH4 is the preference factor for ammonium uptake
Arhonditsis & Brett, 2005).

PNH4 = 1 − exp( jCi,NH4
), i = UL, LL;

j = cyano,diatom, chlorophyte (23)

Ri,NH4,nit = knit�(T−20)
nit

Ci,DO

Knit + Ci,DO
Ci,NH4

, i = UL, LL;

j = cyano,diatom, chlorophyte (24)
Ri,NH4,death =
∑
j

(Cijkj,death˛nc(1 − fON)), i = UL, LL;

j = cyano,diatom, chlorophyte (25)
l Engineering 33 (2009) 1760–1769

Rij,miner = kmn�(T−20)
mn

∑
jCij

Kmpc +
∑

jCij
Ci,ON, i = UL, LL;

j = cyano,diatom, chlorophyte (26)

RL,NH4,sediment = SN
(

1 − CL,DO

KDOS + CL,DO

)
A (27)

Ri,NO3,uptake =
∑
j

(˛ncRj,growth(1 − PNH4 )), i = UL, LL;

j = cyano,diatom, chlorophyte (28)

Ri,NO3,denit = kdenit�(T−20)
denit

Kdenit
Kdenit + Ci,DO

Ci,NO3
, i = UL, LL (29)

Ri,ON,death =
∑
j

(Cijkj,death˛ncfON), i = UL, LL;

j = cyano,diatom, chlorophyte (30)

Ri,ON,settling = kON,settling(1 − fDON)
Di

Ci,ON, i = UL, LL (31)

Phosphorus cycle. The state variables describing phosphorus
cycle are phosphate and organic phosphorus. Processes within
the phosphorus cycle are similar to those from the nitrogen ones.
Phosphorus is uptaken by phytoplankton in phosphate form. Phy-
toplankton mortality, temperature-dependent mineralization of
organic phosphorus and oxygen-dependent release from sediments
(only for lower layer) increase concentration of phosphate. Organic
phosphorus pool is augmented with algal dead and decline by
mineralization and settling process. The following rate equations
express the main processes in the phosphorus biogeochemical
cycle:

ri,PO4
= −RU,PO4,uptake + RU,PO4,death + RU,j,miner, i = UL, LL;

j = cyano,diatom, chlorophyte (32)

rL,PO4 = −RL,PO4,uptake + RL,PO4,death + RL,j,miner + RL,PO4,sediment,

i = UL, LL; j = cyano,diatom, chlorophyte (33)

ri,OP = Ri,OP,death − Rij,miner − Ri,OP,settling, i = UL, LL;
j = cyano,diatom, chlorophyte (34)

Ri,PO4,uptake =
∑
j

(˛pcRj,growth), i = UL, LL;

j = cyano,diatom, chlorophyte (35)

Ri,PO4,death =
∑
j

(Cijkj,death˛pc(1 − fOP)), i = UL, LL;

j = cyano,diatom, chlorophyte (36)
RL,PO4,sediment = SP
(

1 − CL,DO

KDOS + CL,DO

)
A, i = UL, LL;

j = cyano,diatom, chlorophyte (37)
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Ri,OP,death =
∑
j

(Cijkj,death˛pcfOP), i = UL, LL;

j = cyano,diatom, chlorophyte (38)

Rij,miner = kmp�(T−20)
mp

∑
jCij

Kmpc +
∑

jCij
Ci,OP, i = UL, LL;

j = cyano,diatom, chlorophyte (39)

Ri,OP,settling = kOP,settling(1 − fDOP)
Di

Ci,OP i = UL, LL;

j = cyano,diatom, chlorophyte (40)

Dissolved oxygen. The main sources of dissolved oxygen in the
ater column are atmospheric re-aeration, which depends on sat-
ration concentration, and photosynthetic oxygen production. The
issolved oxygen sink are autotrophic and heterotrophic respira-
ion, organic matter oxidation, nitrification and sediment oxygen
emand. The rate equations that describe the major processes gov-
rning the dynamics of dissolved oxygen are given as Priyantha,
saeda, Saitoh, and Gotoh (1997).

rU,DO = RU,DO,reair − RU,DO,nitr + RU,DO,resp/fot − RU,DO,bod,

i = UL, LL (41)

rL,DO = −RL,DO,nitr − RL,DO,resp/fot − RL,DO,bod + RL,DO,sediment,

i = UL, LL (42)

U,DO,reair = ka�
(T−20)
a

DU
(C∗ − CS) (43)

here C* is the saturated oxygen concentration at the surface tem-
erature and is given by Zhang et al. (2004).

∗ = 16.5 − 8
22
T (44)

Ri,DO,nitr = knit�(T−20)
nit

Ci,DO

Knit + Ci,DO
Ci,NH4

˛on, i = UL, LL;

j = cyano,diatom, chlorophyte (45)

Ri,DO,resp/fot =

⎛
⎝∑

j

Rij,growh − Rij,resp

⎞
⎠˛oc, i = UL, LL;

j = cyano,diatom, chlorophyte (46)

Ri,DO,bod = kbod�(T−20)
bod

Ci,DO

Kbod + Ci,DO
CBODi , i = UL, LL;

j = cyano,diatom, chlorophyte (47)

L,DO,sediment = ksod�
(T−20)
sod

DL

CL,DO

Ksod + CL,DO
(48)

Carbonaceous biochemical demand of oxygen. The main source of
arbonaceous biochemical oxygen demand is phytoplankton mor-

ality and the sink term is the sum of carbonaceous oxidation and
ettling processes.

ri,BOD = Ri,BOD,death − Ri,BOD,oxid − Ri,BOD,denit − Ri,BOD,settling,
i = UL, LL (49)
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Ri,BOD,death =
∑
j

(Cijkj,death˛oc), i = UL, LL;

j = cyano,diatom, chlorophyte (50)

Ri,BOD,oxid = kbod�(T−20)
bod

Ci,DO

Kbod + Ci,DO
Ci,BOD, i = UL, LL (51)

Ri,BOD,settling = kbod,settling(1 − fDBOD)
Di

Ci,BOD, i = UL, LL;

j = cyano,diatom, chlorophyte (52)

Based on a previous global sensitivity analysis (Estrada et al.,
2008; Estrada & Diaz, 2009), we have selected 15 main parame-
ters to be estimated; they are: maximum growth rate (kC,growth,
kD,growth, kG,growth, Eq. (7)) and mortality rate (kC,death, kD,death, kG,death,
Eqs. (15), (25), (36), (38) and (50)) for the three species of phyto-
plankton; optimal light intensity for cyanobacteria (IoptC, Eq. (9));
half-saturation constant for oxygen limitation of nitrification (Knit,
Eqs. (24) and (45)); temperature adjustment for phytoplankton res-
piration and mortality rate (�r, �m, Eqs. (14) and (15)); temperature
adjustment for organic nitrogen and organic phosphorus mineral-
ization rate (�mn, �mp, Eqs. (26) and (39)); phytoplankton nitrogen
to carbon ratio and phytoplankton phosphorus to carbon ratio (˛nc,
˛pc, Eqs. (25), (28), (30), (35) and (38)); and background light atten-
uation (K1, Eq. (11)). The remaining model parameters and their
values are shown in Table A.1.

The resulting DAE constrained optimization problem is:

min � = 1
2

NI∑
i=1

NV∑
j=1

NL∑
k=1

(cMijk − cijk)
T
V−1(cMijk − cijk) (53)

st

Eqs. (13)–(62)
c(0) = c0

cL ≤ c ≤ cU
pL ≤ p ≤ pU

where the summation in the objective function is over NL layers,
NV state variables and NI data points. The symbol M stands for
measured values of component concentrations and V is a diagonal
weighting matrix for state variables, whose elements correspond
to variances of measurement errors. Vector p corresponds to esti-
mated parameters.

4.2. Optimization algorithm

The resulting differential algebraic equations constrained opti-
mization problem is formulated within a simultaneous dynamic
optimization approach, in which the DAE system is transformed
into a large nonlinear programming (NLP) problem by representing
state variables profiles by polynomial functions over finite elements
in time and discretizing the DAE by collocation over these finite
elements. The NLP is then solved with an efficient reduced succes-
sive quadratic programming (rSQP) algorithm within an Interior
Point program IPOPT (Biegler et al., 2002; Zabala & Biegler, 2006).
As described in Cervantes, Waechter, Tutuncu, and Biegler (2000), a
barrier approach is applied to convert the inequality constraints in
the NLP to a logarithmic penalty term in the objective function. This

leads to a parametric NLP with only equality constraints; a penalty
parameter on the barrier terms is systematically forced to zero and
an NLP is solved for each value of this parameter. Applying Newton’s
method to the KKT conditions of this equality constrained NLP leads
to large, sparse linear subproblems, which are solved using a range



1 emical Engineering 33 (2009) 1760–1769

a
l
C
d

5

P
a
l
w
r
l
s
l
l
c
M
d

Table 2
Optimal parameter set for eutrophication model.

Parameter Initial value Lower bound Upper bound Value

kC,growth (day−1) 0.195 0.15 1.5 0.216
kD,growth (day−1) 0.653 0.6 5.0 0.640
kG,growth (day−1) 0.785 0.5 5.0 0.846
kC,death (day−1) 0.019 0.0005 0.1 0.001
kD,death (day−1) 0.100 0.001 0.1 0.074
kG,death (day−1) 0.100 0.001 0.5 0.147
IoptC (ly day−1) 99.0 70.0 150. 149.12
Knit (mg day−1) 0.115 0.1 7.0 0.191
�r 1.04 0.96 2.0 1.077
�m 1.02 0.96 2.0 0.998
�mn 1.08 0.96 2.0 0.960
�mp 1.10 0.96 2.0 0.994
˛nc (mg N mg C−1) 0.125 0.09 3.0 0.099
˛pc (mg P mg C−1) 0.01 0.01 0.3 0.022
K1 (m−1) 1.97 1.0 5.0 2.137

F
(
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nd null space decomposition tailored to the structure of the col-
ocation equations. Further details of this method can be found in
ervantes et al. (2000). Extensions of this approach have also been
escribed in Kameswaran and Biegler (2006).

. Discussion of results

The resulting parameter estimation problem in Paso de las
iedras eutrophication model has 20 differential equations and 60
lgebraic ones, after spatial discretization into two horizontal water
ayers. Currently available observed data of concentrations at two

ater levels (water surface and outflow level, at 6 m depth) have
endered this discretization. The 4-year residence time in this shal-
ow lake is large enough to enforce the validity of this discretization
cheme. Phytoplankton observed data correspond only to the upper

ayer, as no data on phytoplankton were collected from the lower
ayer during the sampling period. The remaining components con-
entration data are available for both the upper and lower layer.
ost eutrophication models from the literature use less frequent

ata (e.g., monthly, Arhonditsis & Brett, 2005; Omlin, Brun, et al.,

ig. 4. Observed data and simulation profiles for cyanobacteria (mg C/l), diatoms (mg C/l
mg O/l) concentrations in upper water layer.
), chlorophytes (mg C/l), phosphate (mg P/l), nitrate (mg N/l) and dissolved oxygen
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Fig. 5. Observed data and simulation profiles for phosphate (mg P/l) and nitrate (mg N/l) concentration in lower layer.

Table 3
Average deviations between observed data and model predictions and standard deviation of error for main components.

Cyanobacteria Diatoms Chlorophyta
(m

Phosphate Nitrate Ammonium Dissolved

A 0
S 0

2
p
s
r
c
f
f
t

(mg C/l) (mg C/l)

verage deviation (upper/lower layer) 0.115 0.223
tandard deviation of error (upper/lower layer) 0.067 0.078

001). However, for modeling purposes, it is important to sam-
le data with a frequency corresponding to the dynamics of the
ystem (Jorgensen, Jorgensen, Kamp-Nielsen, & Mejer, 1981). This
ule has often been neglected in modeling the eutrophication pro-

ess, mainly because limnological lake data, which are not sampled
or modeling purposes, are often collected with a relatively low
requency. In the present work, samples have been collected with
wice a week frequency. We have considered a 1 day time unit, as

Fig. 6. Predicted profiles for cyanobacteria, diatoms and chlorop
g C/l) (mg P/l) (mg N/l) (mg N/l) oxygen

.285 0.041/0.040 0.121/0.122 0.657/0.601 2.763/2.560

.110 0.024/0.074 0.077/0.079 0.301/0.298 1.438/1.321

well as a time horizon of 365 days, to account for a complete annual
cycle, starting at January. This is another distinctive feature of the
present model, as many ecological water quality models either con-
sider a monthly time unit or shorter time horizons when using a

daily basis. To transform the DAE constrained optimization problem
into a nonlinear programming (NLP) problem, we have considered
a time discretization with 40 finite elements and three collocation
points. The resulting constrained parameter estimation problem

hytes concentration (mg C/l) in lower layer of water body.
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Appendix A.

See Table A.1 .

Table A.1
Model biogeochemical parameters.

Parameter Description Value

A (km2) Transversal area of the lake 36
kC,resp (day−1) Respiration rate for cyanobacteria 0.047
kD,resp (day−1) Respiration rate for diatoms 0.43
kG,resp (day−1) Respiration rate for chlorophytes 0.42
kC,settling (m day−1) Settling velocity for cyanobacteria 0.15
kD,settling (m day−1) Settling velocity for diatoms 0.20
kG,settling (m day−1) Settling velocity for chlorophytes 0.15
Kd (m2 day−1) Vertical eddy diffusivity rate 0.5428
ToptC (◦C) Optimal temperature for cyanobacteria 30
ToptD (◦C) Optimal temperature for diatoms 19
ToptG (◦C) Optimal temperature for chlorophytes 20
IoptD (ly day−1) Optimal light intensity for diatoms 25
IoptG (ly day−1) Optimal light intensity for chlorophytes 89.8
KPC (mg P l−1) Half-saturation constant for P uptake by

cyanobacteria
0.0002

KPD (mg P l−1) Half-saturation constant for P uptake by
diatoms

0.05

KPG (mg P l−1) Half-saturation constant for P uptake by
chlorophytes

0.0009

KS (mg Si l−1) Half-saturation constant for Si uptake 0.0053
knit (day−1) Nitrification rate 0.09
kdenit (day−1) Denitrification rate 0.001
kmn (day−1) Organic nitrogen mineralization rate 0.032
kmp (day−1) Organic phosphorus mineralization rate 0.02
kbod (day−1) CBOD deoxygenation rate 0.5
ksod (day−1) Sediment oxygen demand rate 0.65
SN (g N m−2 day−1) Release rate of ammonium from the

sediment
0.4

SP (g P m−2 day−1) Release rate of phosphate from the
sediment

0.013

Kdenit (mg day−1) Half-saturation constant for oxygen
limitation of denitrification

0.2

Kbod (mg day−1) Half-saturation constant for oxygen
limitation of CBOD oxidation

0.5

Ksod (mg day−1) Half-saturation constant for sediment
oxygen demand

0.4

Kmpc (mg day−1) Half-saturation constant for phytoplankton
limitation

1.00

KDOS (mg day−1) Half-saturation constant for nutrient
sediment fluxes

0.4

kON,settling (m day−1) Settling velocity for organic nitrogen 0.03
kOP,settling (m day−1) Settling velocity for organic phosphorus 0.03
Kbod,settling (m day−1) Settling velocity for organic CBOD 0.03
�nit Temperature adjustment for nitrification

rate
1.080

�denit Temperature adjustment for denitrification
rate

1.080

�N Temperature adjustment for release of NH4

sediment rate
1.080

�P Temperature adjustment for release of PO4

sediment rate
1.080

�bod Temperature adjustment for CBOD
deoxygenation rate

1.050
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Bard, 1974) has 10,436 nonlinear equations. It has been solved
ith an Interior Point method with reduced successive quadratic

rogramming (rSQP) techniques within program IPOPT (Biegler et
l., 2002; Raghunathan, Diaz, & Biegler, 2004), in which successive
arametric NLP subproblems are solved for decreasing values of the
arrier parameter. Initial barrier parameter value has been 0.01. The
5 estimated parameters are shown in Table 2, as well as their initial
alues and bounds, which are taken from the literature. The objec-
ive function has an initial value of 5816.45 and it has been reduced
o 122.85 in the optimal solution, in 51 iterations. Figs. 4 and 5 show

ain state variables profiles as compared to observed data, in the
pper and the lower water layers, respectively. It can be noted that a
easonable reproduction of concentration profiles for the three phy-
oplankton groups, cyanobacteria, diatoms and chlorophytes, and

ain nutrients has been obtained. Table 3 shows main components
verage deviation for concentrations and the standard deviation
f the error. Major discrepancies between model predictions and
bserved data have been obtained for dissolved oxygen concentra-
ion. In this component, experimental data show a wide dispersion
nd, consequently, the associated standard deviation to weight in
he objective function is large (5.24), rendering a low weight on
rrors in dissolved oxygen concentrations deviations.

The model closely reproduces cyanobacteria autumn bloom,
s well as summer bloom, mainly composed of chlorophytes and
yanobacteria (80 and 20%, respectively) and spring blooms of
iatoms in the lake. Fig. 6 shows predicted concentration profiles

or the three main phytoplankton groups in the lower layer. It can
e noted that cyanobacteria concentration reduction with respect
o the upper layer is lower that the reduction in concentration cor-
esponding to the other phytoplankton groups, as it is the case with
hese groups.

. Conclusions and future work

We have formulated a partial differential equation constrained
arameter estimation problem for a first principles based eutroph-

cation model of a shallow lake, within a simultaneous dynamic
ptimization framework. This hybrid model includes complex rela-
ionships in the consumption-generation terms and requires a large
umber of experimental data for tuning biogeochemical parame-
ers to site conditions. The problem has been solved in the water

odeling literature with approaches ranging from iterative trial
nd error estimations to the use of variational methods. The formu-
ation within a simultaneous dynamic optimization approach has
roved to be quite efficient in the determination of model param-
ters and it has allowed the straightforward inclusion of bounds
n both parameters and state and algebraic variables, as well as
ath constraints in complex nonlinear systems (Rodriguez & Diaz,
007).

We have determined optimal values for 15 biogeochemical
arameters, which have been identified as most influential through
previous global sensitivity analysis. The model provides a good

epresentation of the main components in both upper and lower
ayers in the lake. A satisfactory fit was obtained between simu-
ated and observed data throughout a time horizon of 1 year, with

sampling frequency of twice a week. The case study on a highly
utrophic reservoir that is the drinking water source for more than
50,000 inhabitants, is a challenging problem that requires a close
epresentation of the dynamics of biogeochemical processes that
ake place within the water body. Currently, more data are being
ollected at different water levels in the lake to perform both addi-

ional model validation and model extension by considering a finer
patial discretization in the water column. The dynamic optimiza-
ion model is currently being used to determine bio-restoration
olicies for the control of algal blooms and the reduction of nutri-
nt loading to the lake. Such policies include tributaries derivation
l Engineering 33 (2009) 1760–1769

through a wetland for nutrient removal and the application of sys-
tematic inlake bio-restoration strategies.

Acknowledgements

The authors gratefully acknowledge financial support from CON-
ICET, ANPCYT and Universidad Nacional del Sur, Argentina.
�sod Temperature adjustment for oxygen
sediment demand rate

0.4

fON Fraction of dead and respired
phytoplankton recycled to ON pool

0.5

fOP Fraction of dead and recycled
phytoplankton recycled to OP pool

0.5
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Table A.1 (Continued )

Parameter Description Value

fDON Fraction of dissolved organic nitrogen 1.00
fDOP Fraction of dissolved organic phosphorus 1.00
fDBOD Fraction of dissolved CBOD 1.00
˛oc (mg O mg C−1) Oxygen to carbon ratio 2.67
cchl (mg C mg Chl−1) Phytoplankton carbon to chlorophyll ratio 50
K2 (m2 mg−1) Light attenuation coefficient for

chlorophyll
0.002

� C,D,G ((mg N m−3)−1) Strength of the ammonium preference 0.009
ka (day−1) Reaireation rate 0.38
˛on (mg O mg N−1) Stoichiometric oxygen to nitrogen ratio for

nitrification
Estimated

kC,growth (day−1) Maximum growth rate for cyanobacteria Estimated
kD,growth (day−1) Maximum growth rate for diatoms Estimated
kG,growth (day−1) Maximum growth rate for chlorophytes Estimated
kC,death (day−1) Mortality rate for cyanobacteria Estimated
kD,death (day−1) Mortality rate for diatoms Estimated
kG,death (day−1) Mortality rate for chlorophytes Estimated
IoptC (ly day−1) Optimal light intensity for cyanobacteria Estimated
Knit (mg day−1) Half-saturation constant for oxygen

limitation of nitrification
Estimated

�r Temperature adjustment for
phytoplankton respiration rate

Estimated

�m Temperature adjustment for
phytoplankton mortality rate

Estimated

�mn Temperature adjustment for ON
mineralization rate

Estimated

�mp Temperature adjustment for OP Estimated

˛
˛
K

R

A

A

A

B
B

B

C

C

D

E

E

E

H

H

H

mineralization rate
nc (mg N mg C−1) Phytoplankton nitrogen to carbon ratio Estimated
pc (mg P mg C−1) Phytoplankton phosphorus to carbon ratio Estimated
1 (m−1) Background light attenuation Estimated
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estado trófico del Embalse Paso de las Piedras (Buenos Aires, Argentina). Ecología
en tiempos de Cambio, 178.

Priyantha, N. D. G., Asaeda, T., Saitoh, S., & Gotoh, K. (1997). Modelling effects of
curtain method on algal blooming in reservoirs. Ecological Modelling, 98, 89–104.

Raghunathan, A., Diaz, M. S., & Biegler, L. T. (2004). An MPEC formulation for dynamic
optimization of distillation operations. Computers and Chemical Engineering, 28,
2037.

Ralston, M. L., & Jennrich, R. I. (1978). DUD—A derivative-free algorithm for nonlinear
least squares. Technometrics, 20, 7–14.

Reichert, P. (1994). AQUASIM—A tool for simulation and data analysis of aquatic
systems. Water Science and Technology, 30, 21–30.

Reichert, P. (1998). AQUASIM 2.0—User manual. Technical report. Swiss Federal
Institute for Environmental Science and Technology (EAWAG), Dubendorf,
Switzerland.

Rode, M., Suhr, U., & Wriedt, G. (2007). Multi-objective calibration of a river water
quality model – Information content of calibration data. Ecological Modelling,
204, 129–142.

Rodriguez, M., & Diaz, M. S. (2007). Dynamic modelling and optimisation of cryogenic
systems. Applied Thermal Engineering, 27, 1182–1190.

Sas, H. (1989). Lake restoration by reduction of nutrient loading: Expectation, experi-
ences, extrapolations. Sankt Augustin: Academia-Verlag, Richarz Publikations.

Scavia, D. (1980). An ecological model of lake Ontario. Ecological Modelling, 8, 49–78.
Schladow, S., & Hamilton, D. (1997). Prediction of water quality in lakes and reser-

voirs. Part II. Model calibration, sensitivity analysis and applications. Ecological
Modelling, 96, 111–123.

Shen, J. (2006). Optimal estimation of parameters for a estuarine eutrophication
model. Ecological Modelling, 191, 521–537.

Shen, J., & Kuo, A. Y. (1996). Inverse estimation of parameters for an estuarine
eutrophication model. Journal of Environmental Engineering, 122, 1031–1040.

Shen, J., & Kuo, A. Y. (1998). Application of inverse model to calibrate estuarine
eutrophication model. Journal of Environmental Engineering, 124, 409–418.

Steele, J. H. (1962). Environmental control of photosynthesis in the sea. Limnology
and Oceanography, 7, 137–150.

Thamatrakoln, K., & Hildebrand, M. (2008). Silicon uptake in diatoms revisited: A
model for saturable and nonsaturable uptake kinetics and the role of silicon
transporters. Plant Physiology, 146, 1397–1407.

Vollenweider, R. A. (1975). Input–output models with special reference to the phos-
phorus loading concept in limnology. Schweiz. Z. Hydrol., 37, 53–84.

Whigham, P. A., & Recknagel, F. (2001). Predicting chlorophyll-a in freshwater lakes
by hybridizing process-based models and genetic algorithms. Ecological Mod-
elling, 146, 243–251.

Xie, L., Xie, P., Li, S., Tang, H., & Liu, H. (2003). The low TN:TP ratio, a cause or a result
of Mycrocystis blooms? Water Research, 37, 2073–2080.

Zabala, V., & Biegler, L. T. (2006). Large-scale parameter estimation in low-density
polyethylene tubular reactors. Industrial Engineering and Chemical Research, 45,

7867–7881.

Zhang, J. J., Jorgensen, S. E., & Mahler, H. (2004). Examination of structurally dynamic
eutrophication model. Ecological Modelling, 173, 313–333.

Zhao, J., Ramin, M., Cheng, V., & Arhonditsis, G. B. (2008). Plankton community
patterns across a trophic gradient: The role of zooplankton functional groups.
Ecological Modelling, 213, 417–436.


	Determination of biogeochemical parameters in eutrophication models with simultaneous dynamic optimization approaches
	Introduction
	Eutrophication processes
	Study area and input data
	Parameter estimation problem
	Process description and model equations
	Rate equations for components
	Nutrients cycles

	Optimization algorithm

	Discussion of results
	Conclusions and future work
	Acknowledgements
	Appendix A
	References


