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A B S T R A C T

In regions of strong Land-Atmosphere (L-A) interaction, soil moisture (SM) conditions can impact the atmo-
sphere through modulating the land surface fluxes. The importance of the identification of L-A interaction re-
gions lies in the potential improvement of the weather/seasonal forecast and the better understanding of the
physical mechanisms involved. This study aims to compare the terrestrial segment of the L-A interaction from
satellite products and climate models, motivated by previous modeling studies pointing out southeastern South
America (SESA) as a L-A hotspot during austral summer. In addition, the L-A interaction under dry or wet
anomalous conditions over SESA is analyzed. To identify L-A hotspots the AMSRE-LPRM SM and MODIS land
surface temperature products; coupled climate models and uncoupled land surface models were used. SESA
highlights as a strong L-A interaction hotspot when employing different metrics, temporal scales and in-
dependent datasets, showing consistency between models and satellite estimations. Both AMSRE-LPRM bands (X
and C) are consistent showing a strong L-A interaction hotspot over the Pampas ecoregion. Intensification and a
larger spatial extent of the L-A interaction for dry summers was observed in both satellite products and models
compared to wet summers. These results, which were derived from measured physical variables, are encouraging
and promising for future studies analyzing L-A interactions.

L-A interaction analysis is proposed here as a meeting point between remote sensing and climate modelling
communities of Argentina, within a region with the highest agricultural and livestock production of the con-
tinent, but with an important lack of in-situ SM observations.

1. Introduction

The identification of regions where the land surface condition has a
significant impact on the atmosphere is crucial to improve our under-
standing of regional and local climate. In these regions −called hot-
spots-, soil moisture (SM) variability has the potential to modulate the
atmospheric conditions through changes in the latent- and sensible-
energy fluxes on time scales ranging from diurnal to seasonal
(Seneviratne et al., 2010). SM influence on precipitation is predominant
during the summer season, when energy fluxes are high enough to
trigger convection. As SM anomalies persist longer than atmospheric
ones, L-A interactions can also contribute to the intensification and
persistence of extreme temperature events (Mo and Berbery, 2011); for
example low soil moisture values reduce the evaporative cooling, in-
creasing the atmospheric heating through sensible heat fluxes (Hirschi
et al., 2014; Seneviratne et al., 2010). Therefore, an improved knowl-
edge of L-A interactions and more realistic SM data for atmospheric
models can improve weather and seasonal forecast skills over these

hotspot regions. In transition zones between dry and wet climates, SM is
in general characterized by medium range values and high variability,
giving the potential conditions for strong L-A interactions (Koster et al.,
2004).

Conceptually, L-A interaction can be divided in two segments; the
terrestrial and the atmospheric. The terrestrial segment involves the
direct influence of SM anomalies over surface variables such as tem-
perature or evapotranspiration through their influences on the parti-
tioning of latent and sensible heat fluxes (Dirmeyer, 2011). This me-
chanism has been confirmed over regions with water-limited regimes
where the partitioning of available energy is sensitive to changes in SM
conditions (Fig. 2a of Entekhabi et al., 2010). The atmospheric segment,
i.e. SM influence (through evapotranspiration or temperature) on pre-
cipitation, is of high complexity since it involves thermodynamic and
dynamic atmospheric processes on a wide range of temporal and spatial
scales (e.g. Ruscica et al., 2015). Here, the “interaction” and “coupling”
terms follow the definitions given in Seneviratne et al. (2010).

Land surface models (LSMs) represent processes ranging from basic
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water and energy balances to complex biogeochemical interactions and
dynamic vegetation (Sato et al., 2015). The atmospheric input to the
LSM usually comes from an atmospheric model (coupled mode) or
observations (uncoupled mode). Surface SM is among the most complex
hydrologic variables to simulate as it interacts with the atmosphere,
plant canopy and roots, and vadose zone (Du et al., 2016). In this sense,
the main limitations of LSMs are related to uncertainties in the re-
presentation of the land surface information like vegetation (e.g.
greenness fraction, leaf area index, stomatal resistance), land cover (e.g.
surface roughness, albedo, emissivity) and soil-types (texture).

Climate and weather/seasonal forecasts are performed by numerical
models that consist of physical equations that describe the components
of the climate system and their interactions (Stensrud, 2007). In par-
ticular, in these numerical models the atmosphere is coupled to a LSM.

Global studies show that for summer, southeastern South America
(SESA) is characterized as a water-limited region (Jung et al., 2010) and
identified as a L-A interaction hotspot (e.g. Wang et al., 2007; Zeng
et al., 2010). Hirschi et al. (2014) and Mueller and Seneviratne (2012)
found a negative correlation between SM conditions and the number of
hot days of the warmest month, thus highlighting the strong L-A in-
teraction over the region of SESA.

Several continental-scale studies also found L-A hotspots over SESA,
using different variables, models and statistical approaches. Among
them, Sörensson and Menéndez (2011) found that the main summer
hotspot of both evapotranspiration and precipitation is located within
SESA using ad-hoc experiments to isolate the influence of SM on at-
mospheric variables. The same methodology was used in Ruscica et al.
(2015), showing that coupling is stronger during anomalously dry
summers. Studies using various statistical approaches applied to dif-
ferent datasets found strong L-A interaction in the same region (e.g.

Spennemann and Saulo, 2015; Ruscica et al., 2016).
The scarcity of in-situ SM observation networks hinders a validation

at regional scales, particularly in South America (https://ismn.geo.
tuwien.ac.at/networks/). Alternatively, the recent availability of land
surface variables −like SM- derived from multiple remote sensing
products, allows the evaluation of L-A interaction based on simulations
at global scale (Ferguson et al., 2012; Hirschi et al., 2014; Gallego-
Elvira et al., 2016). The instruments operating in the microwave por-
tion of the spectrum have received attention because this frequency
range has the unique ability to return information on media (atmo-
sphere, vegetation, soil) that are opaque to shorter visible/near-infrared
and thermal wavelength and because microwave scattering and emis-
sion are directly related to the water content of the target. In particular,
remote sensing from active and passive microwave sensors have de-
monstrated to be good and flexible tools for observing the SM content of
the first centimeters of soil and for detecting its spatial and temporal
variations from radar (e.g. Barret et al., 2009; Notarnicola et al., 2006)
and radiometric microwave sensors (e.g. Jackson, 1993; Mladenova
et al., 2014).

Satellite-derived SM products have benefited from ongoing im-
provements in the instrument and retrieval algorithm. Currently, sev-
eral global SM products have become available (Sakai et al., 2016). The
availability of in-situ SM observations to validate the products has also
significantly increased, but mainly in the northern hemisphere (Dorigo
et al., 2011).

Motivated by evidences of climate models that point out SESA as a
L-A hotspot and by the availability of consistent time series of satellite
products, this study aims at answering the following questions: 1) Do
satellite estimations reproduce the terrestrial segment of the modelled
summer L-A interaction over SESA? 2) Is this interaction enhanced or

Fig. 1. a) Topography and b) Ecoregions over South America. Black box denotes SESA region. Topography data: 30 s conditioned DEM from HydroSHEDS (Lehner et al., 2006).
Ecoregions have been modified from Terrestrial Ecosystems of the World (TEOW, Olson et al., 2001).
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diminished under dry or wet anomalous conditions over the region?
The region of study, the models and satellite products, and the L-A

index employed are described in Section 2. Results and discussion are
presented in Section 3, where several model (coupled and uncoupled)
experiments and L-A interaction metrics over the region are presented,
in order to analyse the satellite estimations. Then, the physical con-
sistency of the satellite and model L-A interaction patterns are com-
pared for anomalous wet and dry seasonal events. Finally, Section 4
presents authors conclusions.

2. Data and methods

2.1. Study region and its climatic characteristics

The diverse precipitation and temperature regimes together with
the complex topography of the South American continent (Fig. 1a)
create the conditions for the development of a vast variety of ecoregions
(Fig. 1b), ranging from desert to forest and from dry regions to wet-
lands. However, many of these natural ecosystems have been modified
through human activities (i.e. agricultureand cattle raising).

SESA (Fig. 1) expands between 40.5°-22.5°S and 67.5°–47.5°W.

Fig. 2. Modeled terrestrial-segment of L-A interaction in South America for summer (DJF). Models and L-A interaction indices are shown in columns and rows respectively. Grid points
with strong, medium and low L-A interaction are shown in red, orange and yellow respectively. Intensity values are not displayed due to differences in metrics, periods, temporal scales
and variables used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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SESA includes the southern part of La Plata Basin, the second largest
basin of South America, with over 70 million people and 80% of the
Gross Net Production of the 5 countries sharing the basin (Argentina,
Brazil, Bolivia, Paraguay and Uruguay).

2.2. Observations: remote sensing products

2.2.1. Soil moisture and vegetation optical depth products
When selecting a satellite SM product for climatic applications,

quality and length of the time series are of great importance. Although
merged products exist, such as the ESA CCI SM product (http://www.
esa-soilmoisture-cci.org/), the different instruments, temporal windows
and spatial scales involved make these products not straightforward to
use.

Our approach is to prioritize the SM product being directly related
to the physical variable (i.e. microwave brightness temperature) mea-
sured by a specific instrument, and selecting among the individual
products the one with the longest temporal series in order to obtain the
largest amount of data. Thus, the SM product retrieved from the
Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSRE-EOS) was selected, using the Land Parameter Retrieval Model
(LPRM, Mo et al., 1982; Meesters et al., 2005).

The LPRM is based on a forward radiative transfer model to retrieve
surface SM and Vegetation Optical Depth (VOD) from microwave
brightness temperatures. The AMSRE-LPRM product is available in two
files per day, one ascending (daytime) and one descending (night-time),
archived as two different products. Here the night-time product was
used, since studies (Njoku et al., 2003; Norouzi et al., 2011) show that it
has a better performance, related with more uniform temperature and
moisture profiles during the night time overpass. The AMSRE-LPRM
product covers from June 2002 to October 2011 (when the AMSRE
stopped producing data). SM and VOD products are analyzed over
South America on a spatial resolution of 0.25° and on a temporal re-
solution of 8-day mean values to be comparable with Land Surface
Temperature (LST) data (Section 2.2.2).

2.2.2. Land surface temperature product
The surface temperature was used, since the partitioning of surface

fluxes in climate regimes with L-A interaction has a direct influence on
this variable. Furthermore, satellite temperature products are more
reliable than evapotranspiration products, since the thermal emission
measured by satellites is directly related to the LST, while for the es-
timation of terrestrial evapotranspiration several measured variables
and a mathematical model to combine them are needed (McCabe et al.,
2013; Martens et al., 2016).

In this study the daytime LST from MODIS level-3 product
MOD11A2 was used. This product is composed from the daily 1-kilo-
meter LST product (MOD11A1) and from the average value of clear-sky
LSTs during an 8-day window. The LST and Emissivity daily data are
retrieved at 1 km pixels by the generalized split-window algorithm
(Wan and Dozier, 1996).

The product’s Quality Band (Wan, 1999, 2006) was used to filter out
pixels with bad quality data. The area of South America was extracted
and re-gridded from 1 Km filtered data to 0.25° regular grid. MODIS
LST accuracy is of 1 K at 1 km resolution under clear sky conditions
(Wan, 1999) and has a precision of 0.75 K in the temperature range of
−35 °C to 75 °C (Zhou et al., 2014).

2.3. Models

Previous studies addressed different aspects of L-A interaction over
the continent (Sörensson, 2010; Sörensson and Menéndez, 2011;
Ruscica 2015; Ruscica et al., 2014, 2015, 2016; Spenneman and Saulo,
2015). They used several regional climate models (RCMs) as well as
uncoupled LSMs. Some of their results are summarized in Fig. 2,
showing in general strong L-A interaction over SESA. Two of these

models were used in the present study: RCA4 (Samuelsson et al., 2011),
and GLDAS-1 (Rodell et al., 2004) with the Noah LSM (version 2.7, Ek
et al., 2003).

The top SM layer from RCA4 (7 cm) and Noah (0–10 cm) were used.
The SM and temperature derived from models were averaged over 8-
days in order to be comparable with the LST composites.

2.4. L-A interaction metrics

L-A interaction can be represented by statistical metrics/indices,
quantifying the contribution that land surface has on the atmosphere. In
Fig. 2 four different indices have been used. The CS index (Koster et al.,
2004) quantifies the coupling between SM and any other atmospheric
variable, and it requires controlled model experiments. The L-A inter-
action indices λ (Notaro, 2008) and Γ (Zeng et al., 2010) quantify the
control of SM on precipitation and on evapotranspiration respectively
using long data series of monthly mean values from any source (models,
observations). The IΦ index (Dirmeyer, 2011) can be used for data series
with a temporal resolution down to 1-day and it quantifies the terres-
trial segment of the L-A interaction.

The variables and temporal scale of the datasets used in this study
determine that ITemp index is the most appropriate, mainly because of
the possibility of applying it on relatively short periods of time (9 years
restricted by AMSRE availability) and high temporal resolution (8-day
means restricted by MODIS). The ITemp index (where Temp highlights
that it quantifies the interaction between SM and temperature) is de-
fined as

= −
−

I β STD*Temp SM Temp SM (1)

where the STDSM is the total SM standard deviation, and βSM-Temp the
slope of the linear regression between SM and LST anomalies (i.e. re-
moving the mean value for each corresponding date). ITemp is calculated
over a total of 117 time values (13–eightday-means- per DJF x 9 DJFs
(2003–2011)) and for every grid point. This index quantifies the sen-
sitivity of surface variables to SM temporal variability. The product of β
and STD takes into account both the correlation between SM and
temperature and the potential for SM variations to result in large
temperature fluctuations. To retain only grid points with a robust SM-
LST relationship the following criteria were applied: 1) for each grid
point and time step, SM associated to values greater than 0.5 or with
VOD ≥0.8 were removed in order to mask out unreliable SM values; 2)
the calculation of βSM-Temp was performed only for grid points where
the sample size was equal or greater than 30; and finally 3) only grid
points with significant correlations (99% confidence interval, two tail t-
Test) between SM and LST anomalies were considered.

3. Results and discussion

3.1. L-A interaction in models

The summer terrestrial-segment of L-A interaction over South
America is shown in Fig. 2. RCMs include two versions of the RCA
model and a multi-model ensemble from the CLARIS-LPB project (ENS,
Boulanger et al., 2011). LSMs include two versions of Noah (version 2.7
and 3.3) corresponding to GLDAS-1 and 2.0 respectively and the
MERRA-Land reanalysis (Reichle et al., 2011). Some of these results are
already published as RCA4-CS in Ruscica et al. (2015); RCA3E-CS in
Sörensson and Menéndez (2011); GLDAS 2.0-λ in Spennemann and
Saulo (2015) and ENS-Γ Zeng in Ruscica et al. (2016). Novel combi-
nations between models and indices are MERRAL-λ, RCA4-Γ, GLDAS-
2.0-Γ, MERRAL-Γ and RCA4-IΦ.

Despite using different methodologies the region of SESA highlights
in all cases but one (MERRAL-λ combination). Thus, SESA shows to be a
robust model-based hotspot of L-A interaction during summer. Next, L-
A interaction spatial patterns based on satellite products are explored to
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answer the question 1) mentioned in introduction.

3.2. L-A interaction in satellite products

The ITemp index, described in Section 2.4, is calculated using the SM
products from AMSRE-LPRM and LST from MODIS for summers of
2003–2011 (Fig. 3a). The strongest hotspots are localized in three large
areas of the continent: the xeric shrubland region in Northeastern Brazil
(NeB), SESA and Puna (Fig. 1b). Thus, the satellite L-A interaction
shows an agreement over SESA and NeB with the results in Fig. 2. Puna
hotspot lies on high and complex topography where data can present
considerable uncertainties for SM retrieval (Ferguson et al., 2012;
Abelen et al., 2015) as well as for models (e.g. Stensrud, 2007). Other
smaller and lower intensity hotspots can be seen in central Brazil
(Cerrado region), southern Chile (Valdivian Rainforest) and north-
western corner of the continent (Fluvial herbaceous wetlands). Fig. 3b
and c display the two components of ITemp; slope and variability (Eq.
(1)). The sign of the resulting index is provided only by the slope, while
the intensity of the interaction is related both to the slope and to the
variability of SM.

Both SESA and NeB show high variability (STD SM > 5), and steep
slopes (β < −0.6). However, NeB shows larger areas with extremely
high variability (STD SM > 7), possibly related to the marked pre-
cipitation interannual variability (Zhou and Lau, 2001), while SESA
shows larger areas with extremely steep slope (−0.8 > β > −1)

indicating high sensitivity of temperature anomalies to SM anomalies.
Although NeB is a robust hotspot, it will be not analyzed in this paper.

One important thing to remark is that the satellite ITemp involves top
soil layer SM and LST, which is not the case for the L-A interactions
derived from models (Fig. 2) where some results used top- and other
used whole column SM and 2-m temperature or surface fluxes is used
instead of LST. On one hand, in a model, the SM of the whole column
(2–8 m depending on model and region) influences on the 2-m tem-
perature and surface fluxes, while there is no such physical coherence
between AMSRE-LPRM SM and MODIS LST. On the other hand, in the
coupled models, 2-m temperature and surface fluxes are determined by
the interaction between the low atmospheric conditions and the SM, so
they also depend on parameterizations of the atmospheric boundary
layer, convection, etc. Furthermore, SM in coupled models is mainly
driven by simulated precipitation that has its own biases. In the case of
uncoupled models, SM is driven by observed near-surface atmospheric
variables such as precipitation, radiation and winds. In this case, the 2-
m temperature and surface fluxes depend strongly on these forcing
data. Considering all these differences and the independency between
satellite and model derived L-A interaction estimations, the hotspot
location agreement is an encouraging result.

To examine the sensitivity of L-A interaction to the AMSRE band (C
or X) used for the derivation of SM, Fig. 4a and b show the ITemp index
for both bands, and Fig. 4c shows the difference between them over
SESA. Given the fact that SM is masked to avoid unreliable retrievals

Fig. 3. a) Interaction Index (ITemp) calculated for AMSRE-LPRM SM (X-band) and LST MODIS; b) Slope of the linear correlation between SM and LST anomalies (99% confidence interval,
two tail t-Test); c) Temporal variability of SM, measured through Standard Deviation (STD) of absolute values series.

Fig. 4. a) L-A interaction Index (ITemp) calculated for AMSRE-LPRM SM (X-band) and LST MODIS; (99% confidence interval, two tail t-Test); b) as in a) but for C band; c) Absolute
difference between SM band X-band C. Red (blue) grid points show areas where L-A interaction is higher (lower) for C-band SM than for X-band. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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due to dense vegetation, it is interesting to notice that for both bands
similar areas are masked out. This is not trivial, since VOD depends not
only of the vegetation biomass, but also on the relation between the
sizes of the vegetation elements and the wavelength of the emitted
microwave.

For both bands, ITemp has its maximum values in the central-
southern part of SESA (e.g. Pampa Húmeda, Uruguay and a small part
of southern Brazil). The maximum located in the northwestern corner of
the domain should be taken with caution because of its complex to-
pography (Fig. 1a). Except for some isolated grid points surrounded by
masked areas, there is only one large region with negative values which
coincides with an unmasked permanent water body (Yaciretá dam) and
the large wetland Esteros de Iberá, probably influencing the results.

The difference in the ITemp index between C and X-band (Fig. 4c)
shows a strong resemblance with the ecoregions in Fig. 1b. The ITemp of
X-band shows maximum values over Espinal, Pampas and Chaco Hú-
medo. These regions are characterized by: lower VOD compared to
Chaco Seco (Espinal), seasonally variant VOD following the crop cycle
(Pampas) or comprise wetlands or regularly flooded areas (blue in
Fig. 4c). On the other hand, ITemp of C-band shows higher values over
the dryer ecoregions of Chaco Seco and Monte.

The differences between the SM(X) and SM(C) dynamical range
address the sensitivity of ITemp which is related to the type of ecoregion.
In turn, the ecoregion defines the range of biomass density and wetness,
both key parameters for the performance of the retrieval algorithm of
the SM product used in this analysis.

As mentioned previously, model simulations show more sensitivity
of surface fluxes to SM when anomalously dry conditions prevail. To
analyze if L-A interaction based on satellite products, shares this
characteristic, ITemp is applied separately to anomalously dry and wet
summers. The relative (%) mean seasonal SM anomalies were calcu-
lated to define wet and dry summers for the two AMSRE-LPRM bands
and for the LSM Noah GLDAS-1 and the RCM RCA4. Two summers with
dry and two summers with wet anomalies over the hotspot region of
SESA were selected from the 2003–10 period (Fig. 5a, 2011 was ex-
cluded due to the simulated RCA4 period). Second, the precipitation
mean seasonal anomalies were also calculated (Fig. 5b), as a way to
evaluate the consistency of SM derived dry and wet summers. Finally,
ITemp was applied to the 2-summer temporal series of SM and LST (T2m
for RCA4) for each database (Fig. 5c).

In general, satellite and modeled SM anomaly spatial patterns co-
incide between them and with precipitation anomaly patterns
(Fig. 5a–b). The extreme drought of 2008-9 summer is observed with
AMSRE and GLDAS-1, but is less evident in RCA4. This could be due to
overestimated precipitation by RCA. On the other hand, all datasets
show a marked positive (wet) anomaly during the summer of 2009–10.
The largest difference between the two AMSRE-LPRM products is ob-
served on the dry summer of 2005-06, where precipitation showed a
larger resemblance with X-band than with C-band.

The satellite and modeled ITemp spatial patterns for wet and dry
summers are displayed in Fig. 5c. The dry ITemp spatial patterns show
considerable more grid points and higher values compared to the wet
events, which is more evident for the satellite products, and in general
the satellite ITemp shows higher intensity compared to modeled ITemp.

The AMSRE ITemp hotspot for the dry summers strongly resembles
the 2008–09 SM anomaly pattern, which is also evident for the dry
anomalies on the western part of the domain for the wet 2002–03
event, while regions with wet anomalies show no significant L-A in-
teractions. On the contrary, RCA shows L-A hotspots also for wet SM
anomalies, although with lower intensity compared to the dry anoma-
lies. The GLDAS-1 ITemp hotspot is not so strongly related with the dry
and wet SM anomalies, especially the hotspot of dry summers does not
resemble the spatial extension of the very dry 2008–09 summer.
Nevertheless, the location of the maximum values of ITemp from GLDAS-
1 and AMSRE show some similarities. The ITemp differences might be
related to the different depths of the top SM used by the models, the

sensitivity of AMSRE X and C-bands to vegetation, the 2 m temperature
used in RCA4 instead of the LST, and potential model parameterizations
uncertainties representing the L-A interactions.

Fig. 5d shows a specific designed numerical experiment with RCA
(Ruscica et al., 2015), focusing on the L-A interaction sensitivity be-
tween dry and wet summers, which motivated the previous analysis.
The satellite and model ITemp sensitivity to dry and wet events are in
line with the strong L-A interaction sensitivity found by the author’s,
but a direct comparison between extension and intensity of the hotspot
is not possible since another dry summer was used (1988–89) and a
different methodology was applied.

Based on our analysis, both land surface models and satellite pro-
ducts identify similar patterns of relative mean seasonal anomalies of
top SM and, dry soil conditions establish a stronger sensitivity of LST to
SM in satellite products and in model simulations compared to wet
conditions.

An interesting result observed in this study is that satellite L-A in-
teractions are stronger compared to the modeled ones (GLDAS-1 and
RCA4). This particular behavior is opposite to the results obtained by
Hirschi et al. (2014). They observed a lower intensity in the satellite L-A
interactions using monthly lagged correlations between satellite SM
and the hottest month, compared with a SM proxy (i.e. Standardized
Precipitation Index, SPI) and GLDAS-1 surface and root zone SM si-
mulations. Although Hirschi et al. (2014) caution about the fact that the
L-A interaction metric used could be influenced by the different sensors
used over the period of study (1979–2010); from our perspective the
opposite results (i.e. satellite stronger/weaker L-A interaction compared
to models) are related with the different time scales used in both studies
(SM 8-days mean vs. monthly means) and the L-A interaction metrics
(simultaneous vs. monthly lagged). Since surface SM shows a more
rapid response to precipitation and temperature (e.g. hours, days) than
root-zone SM, we consider that using satellite surface SM products for
L-A interaction estimations based on ∼weekly and simultaneous basis
are more suitable than on monthly and lagged estimations.

4. Conclusions

This study addresses two main subjects related to the assessment of
summer L-A interaction based on satellite products. The first one is how
well the combined use of AMSRE SM and MODIS LST products re-
presents the L-A interaction spatial patterns over SESA, as defined by
the L-A interaction metric considered in this work, and the second one
is its behavior under dry and wet conditions.

First, a spatial pattern comparison of the L-A interaction derived
from SM and LST satellite products against coupled and uncoupled
models using different metrics was performed. The different metrics,
temporal scales and independent datasets (i.e. models and satellite
products) highlight the region of SESA as a strong L-A interaction
hotspot, showing consistency in L-A interaction among satellite pro-
ducts and models.

As the L-A interaction calculation of this study uses the AMSRE-
LPRM SM product, a band sensitivity analysis was performed over
SESA. Both C and X-band were used to calculate the terrestrial segment
of the L-A interaction, showing an agreement in the L-A hotspot loca-
tion. However, the intensity values showed to be sensitive to the band,
an issue which is presumably related to the different eco-region char-
acteristics present in this area.

When dry and wet summers were compared, a larger spatial extent
and an intensification of the L-A interaction for dry events were ob-
served when the satellite products were used. This behavior was also
observed in the model-based L-A interaction mainly over the Pampas
ecoregion (central part of SESA), showing a physical consistency be-
tween model and the satellite derived L-A interaction. The possibility of
following L-A interaction patterns based on the use of satellite products
derived from measured physical variables, such as brightness tem-
peratures in the microwave and thermal infrared region, is encouraging
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and promising. In addition, based on the surface SM more rapidly
variations compared to root zone SM, the time scale used within the L-A
interaction metric is an important factor to be considered.

For this application (L-A interaction), the need of a consistent and
long enough time series of SM satellite products has limited the use of
existing L-band passive microwave systems. Nevertheless, the differ-
ences observed in intensity under dry conditions (satellite vs. models)
and in the spatial extent when comparing dry vs. wet L-A from previous
studies, deserves further analysis based on L-band satellite SM products
which are less sensitive to vegetation optical depth combined with
more complex LSMs including for example interactive carbon cycle and
a higher vertical discretization of the soil.

This study is a meeting point and a first collaboration between re-
mote sensing and climate modeling communities of Argentina, in a
region with the highest agricultural and livestock production of the

continent, but with an important lack of in-situ SM observations
availability.
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