The first epidemic tegumentary leishmaniasis outbreak in the province of Misiones was recorded in 1998, in the locality of Puerto Esperanza. Phlebotominae collected in the region, previously or simultaneously to the outbreak (September 1993-December 1998) showed that the species Lutzomyia intermedia s. l. was prevalent (94%, n 6,150) at all the sites sampled with miniature light trap (10) and Shannon trap (3). L. pessoai, L. whitmani, L. migonei, L. shannoni, L. fischeri, L. misionensis, Brumptomyia avellari and B. guimaraesi were also captured. Sand fly distribution in time and space suggests that in the province of Misiones (1) the species already present before 1990 could give rise to the epidemic by the density/dispersal fluctuation of their local populations; (2) the abundance of L. intermedia s. l. was associated with environments with ecotones of primary-secondary vegetation, close to water bodies and with moderate human disturbance; (3) this species showed, towards the end of 1997, peaks of exceptional abundance, subsequent to rainfall peaks in 1996. This increase in abundance of potential vector sand fly populations close to houses with colonizable surroundings could have generated the 1998 epidemic outbreak.

Key words: Lutzomyia intermedia - Lutzomyia whitmani - vector ecology - leishmaniasis - Argentina

Meteorological data were obtained from the forest stations of APSA Libertad, INTA Cerro Azul and EBY Ituzaingó. APSA data were the only overplotted as the data did not show any significant differences among sources.

For their statistical analysis, monthly capture data, by station or by species, were transformed into proportions of total captures.

RESULTS

Phlebotominae (n = 6,150) were captured using light minitraps at the 10 sampled sites, and in 36.6% of the 232 nights/capture (Table I). L. intermedia was represented in 98.7% of the captures, with at least one individual in each of them. At Corpus station 91% of the 5,781 specimens of this species were captured (Table II). The annual collections and records of mean temperature and rainfall were plotted per site (Fig. 2). Mean temperature was relatively uniform over the year and during the years studied, with a minimum between June and July (May in 1995). Rainfall was trimodal in 1992-1994 and 1996, and bimodal in 1995, 1997 and 1998. In November 1994 and October 1996, accumulated monthly rainfall higher than 400 mm was recorded.

No specimens of Phlebotominae were captured between September 1993 and February 1994 at the stations sampled. In Montecarlo, Posadas and Ituzaingó (Fig. 2), maximum captures of L. intermedia took place in May-July and another capture, significantly more important, occurred in August 1995 (in Ituzaingó, in January and March 1996). Santa Tecla had more uniform captures during the study period, but again with a maximum in August 1995. Results in Corpus were qualitatively different from the others: from February 1996 to 1998 captures of L. intermedia s. l. exceeded 200 specimens/month in five occasions, reaching a maximum of 1,508 specimens in November 1997. Corpus presented captures in all months without a rainfall peak, except during the abnormal profile of 1997 (with rains in August).

The other collected species were L. pessoai, L. whitmani, L. migonei, L. shannoni, L. fischeri, L. misionensis, Brumptomyia avellari and B. guimaraesi.

<table>
<thead>
<tr>
<th>Species</th>
<th>Santa Tecla (%)</th>
<th>Corpus (%)</th>
<th>Others (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. intermedia</td>
<td>123 (32.5)</td>
<td>5,265 (98.1)</td>
<td>393 (97.1)</td>
</tr>
<tr>
<td>L. pessoai</td>
<td>7 (1.8)</td>
<td>19 (0.4)</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>L. fischeri</td>
<td>11 (2.9)</td>
<td>9 (0.2)</td>
<td>0</td>
</tr>
<tr>
<td>L. migonei</td>
<td>7 (1.8)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. shannoni</td>
<td>6 (1.6)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. misionensis</td>
<td>1 (0.3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L. whitmani</td>
<td>0</td>
<td>60 (1.1)</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>B. avellari</td>
<td>67 (17.7)</td>
<td>0</td>
<td>6 (1.5)</td>
</tr>
<tr>
<td>B. guimaraesi</td>
<td>157 (41.4)</td>
<td>13 (0.2)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>379 (100)</td>
<td>5,366 (100)</td>
<td>405 (100)</td>
</tr>
</tbody>
</table>

L: Lutzomyia; B: Brumptomyia

Fig. 1: capture sites by CDC miniature light trap in the province of Misiones (A-F) and Corrientes (H-J), Argentina, 1993-1998. A: Montecarlo; B: Corpus; C: Candelaria; D: Zaiman; E: Mártires; F: Itaembé; G: Santa Tecla; H: Ituzaingó; I: Villa Olivari; J: Ita-Ibaté.
These species were found together with *L. intermedia* on 24 occasions, and only in two captures, those made at Santa Tecla and Posadas (Mártires Stream), *B. guimaraesi* and *L. pessoai* were found alone. Captures of *L. intermedia* simultaneously with other species were customary in Corpus and Santa Tecla (Table I), but only occurred once in Mártires (*L. pessoai*), Itaembé (*L. whitmani*), Candelaria and Ituzaingó (*B. avellari*).

Using the modified Shannon trap in Eldorado, on the banks of the Paraná river, without any records of previous cases, and in Cerro Azul, with historical records, no Phlebotominae were obtained. On the other hand, in Andresito, in a thickly forested periodidic close to a recent human case, 35 Phlebotominae, 23 *L. intermedia* s. *l.* (65.7%) (male: female 1:1), 9 *L. whitmani* (25.7%) (male: female 1:2) and 3 females of *L. shannoni* (8.6%) were captured.

DISCUSSION

Phlebotominae are cited by 11 species in the literature for the provinces of Misiones and Corrientes, captured mainly between 1947 and 1951 (Bejarano & Duret 1950, Castro 1959a,b, Del Ponte 1960, Borda et al. 1998). Six of these species are reported in this study; another four of them (*L. longipalpis*, *L. quinquefer*, *L. monticola* and *L. cortelezzii*) were collected after 1998 (unpublished), and the other two, cited for single specimens from 1948, were not found (*L. pascalei*, *L. alphabetic*). Captures of *L. fischeri*, *B. avellari* and *B. guimaraesi* are recent (Spinelli et al. 1999); the rarity of the first and the little attraction for light and null anthropophily of *Brumptomyia* (Young & Arias 1992), would be the cause of their absence in previous records.

The presence of *L. intermedia* was observed throughout the year, showing peaks in later autumn (1994), others of higher magnitude associated to relatively scarce rainfall (1995, 1996, 1997, March - 1998), and maximum peaks related to exceptional rainfall in the season or in the previous years (1996 and 1997). Regarding the lower thermic amplitude and the more temperate winter of Misiones, the annual pattern was consistent with that obtained for this species in the focus of leishmaniasis in the province of Salta. In this latter, abundance was associated to temperate seasons with moderate rain, to the years after one of exceptional precipitation, and to the fact that the risk of transmission of leishmaniasis is higher in autumn (Salomón 1997).

The historical area of dispersion of Phlebotominae in Misiones has suffered, in the last decades, an intense process of deforestation and reforestation, as well as environmental modifications due to dam construction, both phenomena associated in the literature with vector concentration, microfoci of parasite circulation and epidemic outbreaks (Lainson 1989, Gomes et al. 1990, Mott et al. 1990, Walsh et al. 1993, Tolezano 1994). Captures were carried out on environment associated with the gallery forest of the Paraná river or smaller streams and in ecotones between the primary forest and deforested areas, where the concentration/abundance of vectors could be increased by periodic inundations (Salomón 1997). In the greatly modified environment with open vegetation (Montecarlo, Candelaria, Posadas) few captures were obtained (the most productivity being obtained in the residual forest of Candelaria and Itaembé), with peaks in dry winters. Unseasonal peaks in Ituzaingó could be due to anthropic action or to a non-recorded local meteorological phenomenon. In the less modified environment or transitional environment with thick vegetation (Corpus, Santa Tecla) the captures were more numerous, and because there was very little human interference the meteorological variables could be better observed. The better preserved forest and the greater distance from human settlements could explain the higher magnitude of the captures in Corpus. The abundance of *B. guimaraesi* in Santa Tecla requires a focal investigation into potential host dynamics and spacial distribution.

The literature records isolations of *L. (V.) braziliensis* from *L. whitmani*, *L. intermedia*, *L. migonei* and *L. pessoai* (Young & Arias 1992). Captures in Andresito allow one to obtain a profile of anthropophagic species at a site of transmission prior to the outbreak, simultaneously with captures with the light trap. The prevalent species was *L. intermedia*, followed by *L. whitmani*. *L. intermedia* was considered as a possible vector of *L. (V.) braziliensis* during recent outbreaks in modified environments; *L. whitmani* has been its primary vector, responsible for the traditional sporadic transmission, and associated with work in the forest (Lainson & Shaw 1979, Gomes et al. 1990, Pereira & Hoch 1990, Rangel et al. 1990, 1992, Stolf et al. 1993, Gomes 1994, Queiroz et al. 1994, Tolezano 1994, Salomón 1997, Salomón & Zaidemberg 1997).

Results of sand fly captures have been evaluated from historical, meteorological, anthropic and microecological

TABLE II

Lutzomyia intermedia captured by CDC miniature light trap, by locality in Misiones and Corrientes provinces, Argentina, September 1993 - December 1998

<table>
<thead>
<tr>
<th>Location</th>
<th>Total Females (%)</th>
<th>Specimens/day</th>
<th>Positive traps (%)</th>
<th>Days sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montecarlo a</td>
<td>181</td>
<td>80.1</td>
<td>5</td>
<td>30.6</td>
</tr>
<tr>
<td>Posadas b</td>
<td>111</td>
<td>69.4</td>
<td>1.5</td>
<td>25.3</td>
</tr>
<tr>
<td>Ituzaingó c</td>
<td>101</td>
<td>79.2</td>
<td>1.9</td>
<td>17</td>
</tr>
<tr>
<td>Santa Tecla</td>
<td>123</td>
<td>77.2</td>
<td>3.1</td>
<td>52.5</td>
</tr>
<tr>
<td>Corpus</td>
<td>5,265</td>
<td>84.4</td>
<td>188</td>
<td>89.3</td>
</tr>
<tr>
<td>Total</td>
<td>5,781</td>
<td>83.6</td>
<td>24.9</td>
<td>36.6</td>
</tr>
</tbody>
</table>

a: traps at Montecarlo and Candelaria included; b: traps at Mártires, Itaembé and Zaiman included; c: traps at Ituzaingó, Villa Olivari and Ita-Ibaté included.
variables. In conclusion, the fauna of Phlebotominae of the province of Misiones has not suffered qualitative changes at a macrogeographical level, which would lead to an epidemic outbreak. However, metapopulations of already present species can colonize new environments or even become extinct which would modify their local density and spacial distribution. *L. intermedia*, possible vector of *L. (V.) braziliensis*, was the prevalent species in the captures in Misiones, and its abundance was associated with thickly forested environments of primary secondary ecotones and the proximity of bodies of water. These conditions can be heightened or nullified by microecological characteristics provoked by anthropic activity. *L. intermedia*, in proper environments, showed peaks of exceptional abundance, subsequent to rainfall peaks in the previous season/year, as has already been observed in the epidemic focus of the northwestern Argentina (Salomón 1997). This phenomenon, observed in Misiones towards the end of 1997, if it occurred in vector populations infected with *Leishmania* close to a human settlement, with ecological conditions which allowed colonization of the surroundings of the house, could have generated the 1998 epidemic outbreak.

REFERENCES

