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Abstract

Irregularities in the amplitude and period are characteristic of both normal and pathological sustained vowels; they are a product of
perturbations inherent in the phonation process. Their analysis provides useful diagnostic information for several vocal pathologies, and
their accurate modelling has been shown to improve the quality of synthesized voice. In this work, we propose the application of mul-
tifractal analysis for the characterization of amplitude and period fluctuations in sustained vowels. Using a combination of high order
statistics, this signal processing tool generalizes previous approaches and provides a rich description of the fluctuation in the regularity of
the data. Our results suggest that both amplitude and period fluctuations show a multifractal behavior, independent of the gender of the
speaker. We also analyze the problem of classification between healthy and nonhealthy speakers as an example to show the usefulness of
multifractal attributes. We conclude that amplitude and period sequences of sustained vowels should be analyzed and modelled by the
multifractal paradigm.
� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Irregularities in the amplitude and period are character-
istic of the normal voice as a product of perturbations
inherent in the phonation process. Despite the fact that
they are more evident in the presence of voice disorders,
some degree of irregularity is seen even in nonpathological
stable conditions (Titze, 1995; Bonilha and Deliyski, 2008).
These perturbations occur in an unpredictable fashion and
are usually concealed or modulated in the speech records
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(Leong et al., 2013). It is currently believed that perturba-
tions arise from a combination of neurological, biomechan-
ical, aerodynamic and acoustic sources, throughout the
speech production system (Titze, 2000). Additionally, it
has been argued that perturbations have different dynamics
in pathological and nonpathological voices (Baken and
Orlikoff, 2000; Velasco Garcı́a et al., 2011). Therefore,
acoustical parameters quantifying these disturbances have
become useful instruments in voice screening, pathology
detection and vocal therapy.

Amplitude and period sequences (denoted as AS and
PS, respectively, from now on) are generally composed of
identifiable structures presenting short- and long-term
behavior (Silva et al., 2009; Fraj et al., 2012). In particular,
short-term structures carry the complete information
related to period and amplitude perturbations, consisting
of random cycle-to-cycle fluctuations known as jitter and
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shimmer, respectively (Titze and Liang, 1993; Titze, 1995).
It has been recently shown that both AS and PS provide
valuable information about the speaker itself – e.g. iden-
tity, gender or mood (Low et al., 2011, 2010) – or related
to the physiology of the speech production system – e.g.
vocal folds dynamics (Fraile et al., 2012). As a conse-
quence, theoretical models and biomedical tools have been
developed and successfully used in a wide variety of appli-
cations, like enhancement of the perceptual quality of syn-
thesized voices in communication systems (Ruinskiy and
Lavner, 2008), synthesis of expressive voices in human–
computer interfaces and entertainment technology
(Govind and Prasanna, 2013), identification of speakers
in security systems (Farrus and Hernando, 2009), and sim-
ulation of pathological voices under controlled conditions
(Schlotthauer et al., 2010), among many others.

Many different models have been used for AS and PS.
Gaussian models with an adjustable jitter or shimmer fac-
tor have recently been used for neutral voice transforma-
tion in emotional speech synthesis (Cabral and Oliveira,
2006), fundamental frequency estimation (Schlotthauer
et al., 2010) and for voice synthesis with high perceptual
quality (Alzamendi et al., 2013). Further, Gaussian mixture
models have been considered for jitter analysis in emo-
tional speech (Wang et al., 2006). More complex strategies,
which consider the correlation of the sequences, have been
based on auto-regressive (AR) and auto-regressive moving
average (ARMA) models (Schoentgen and De
Guchteneere, 1995; Endo and Kasuya, 1996; Schoentgen
and De Guchteneere, 1997). A jitter-bank based approach
to characterize the relative amplitude and correlation in PS
and a stochastic model of shimmer, suitable for naturally
hoarse voice synthesis, has been proposed in Ruinskiy
and Lavner (2008). Also, models based on stochastic differ-
ence equations have been proposed in Schoentgen (2001),
and used for hoarse voice synthesis (Fraj et al., 2009;
Fraj et al., 2012) and for training voice pathologists
(Dejonckere et al., 2011; Manfredi et al., 2011). Recently,
we have proposed a new method for modelling PS
extracted from real voices, combining state-space methods
and structural time series analysis (Alzamendi et al., 2015).
Non-linear models have also been considered in Zhang
et al. (2005). Finally, scale-invariant statistically
self-similar processes have also been used for the synthesis
of sustained vowels with an improved quality (Aoki and
Ifukube, 1999).

All the techniques that were mentioned above amount
to a monofractal analysis of the data. This means that real-
izations of those stochastic models are characterized by a
local regularity exponent which is constant in time. The
dynamics of this kind of data can be fully characterized
by second order statistics. However, this simple framework
does not necessarily capture the full complexity of AS and
PS. It is now known that a better description of the singu-
lar behavior of the data can be achieved by the joint anal-
ysis of all statistical moments in the framework of
multifractal analysis (Jaffard et al., 2014). This framework
allows the description and modelling of data for which a
local regularity exponent changes drastically with time,
thus providing richer possibilities for analysis and mod-
elling. As far as the authors know, there have been no pre-
vious analysis to determine which kind of framework
should be used to model AS and PS data.

Multifractal analysis allows to measure information
encoded in the fluctuations of the data. It is traditionally
based on a measure of the local regularity provided by
the Hölder exponent. Rather than focusing on the value
that the Hölder exponent takes on each time instant, mul-
tifractal analysis provides a global description of the distri-
bution of the Hölder exponent throughout the data by
means of a multifractal spectrum. Its practical estimation
is tied to the use of a specific multiresolution quantity
through a multifractal formalism (Riedi, 2003). Among
the many multiresolution quantities that have been pro-
posed in the literature, the wavelet leaders (Jaffard, 2004;
Jaffard et al., 2007, 2014) benefit from a solid theoretical
background and excellent practical performance.
Multifractal analysis has been widely used in a large variety
of fields, including but not limited to turbulence
(Lashermes et al., 2008), finance (Calvet and Fisher,
2001), climatology (Lovejoy and Schertzer, 2013), art
investigation (Abry et al., 2013), and biomedical data such
as heart beat (Ivanov et al., 1999; Leonarduzzi et al., 2010;
Doret et al., 2011), fMRI (Ciuciu et al., 2012) and thermog-
raphy for cancer detection (Gerasimova et al., 2014).

In light of the previous discussion, the goal of the pre-
sent contribution is to investigate the application of multi-
fractal analysis to AS and PS of sustained vowels. We
concentrate on this vocal emissions because they are usu-
ally considered in clinical practice for speech assessment.
We hypothesize that the use of models which better take
into account the rich complexity present in both sequences,
might improve the quality of voice synthesis and provide
more detailed information to voice analysts. In particular,
the aim of this contribution is twofold. First, to assess
whether AS and PS data actually show scale-invariant
and multifractal characteristics. Second, to provide an
example of the benefits that the incorporation of multifrac-
tal characteristics could provide over the use of only
monofractal attributes. To that end, we provide an exam-
ple of discrimination between healthy and nonhealthy
voices.

We start with a brief review of wavelet leader multifrac-
tal analysis in Section 2, followed by a description of the
database we used and the experimental setup in
Section 3. Then, in Section 4 we discuss the results that
we obtained. First, we analyze records of normal voices
from a large database to determine if AS and PS dynamics
indeed show a scale invariant (Section 4.1) and a multifrac-
tal behavior (Section 4.2). Then, in Section 4.3, we provide
a particular example of how the information provided by
multifractal analysis can be used to classify between
healthy and nonhealthy voices. Finally, in Section 5, we
present the conclusions of this work.
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2. Multifractal analysis and wavelet leaders

In this section, we provide a brief review of the main
concepts of wavelet leader multifractal analysis. For fur-
ther details, we refer the interested reader to e.g. Jaffard
(2004) and Wendt et al. (2007, 2009).

2.1. Local regularity and multifractal spectrum

Let X ðtÞ; t 2 R, be a locally bounded function or the
sample path of a stochastic process. Then, X is said to
locally belong to CaðtÞ, with a 2 R and a P 0, if there exists
a constant K > 0 and a polynomial P tðtÞ such that
j X ðt þ aÞ � P tðt þ aÞ j6 K j aja. The Hölder exponent is
defined as hðtÞ ¼ supfa : X 2 CaðtÞg and measures the local
regularity of X. Indeed, the closer hðtÞ is to 0, the more
irregular X ðtÞ is.

Typically the function hðtÞ is extremely erratic and is not
of much use itself. Therefore, rather than analyzing the
fluctuations of hðtÞ as a function of time, multifractal anal-
ysis is concerned with the global distribution of the values
that the Hölder exponent can take on. This notion is for-
malized in terms of the multifractal spectrum DðhÞ, defined
as DðhÞ ¼ DimHft 2 R : hðtÞ ¼ hg, where DimH denotes
the Hausdorff dimension. Loosely speaking, DðhÞ provides
information on the proportion of points in X with Hölder
exponent h. For further details, the reader is referred to
e.g. Riedi (2003), Jaffard (2004), and Jaffard et al. (2014)
and references therein.

In practice, however, the multifractal spectrum cannot
be reliably computed from its definition. On the contrary,
a procedure that allows its estimation from easily measur-
able quantities must be used. This procedure is called a
multifractal formalism. A particular version, the wavelet
leader multifractal formalism, is described in the following
sections.

2.2. Wavelet coefficients and wavelet leaders

Let w0ðtÞ denote a compact support mother wavelet,
characterized by its number of vanishing moments, a posi-
tive integer Nw such that

R
R

tkw0ðtÞdt
¼ 0; 8k ¼ 0; 1; . . . ;Nw � 1, and

R
R

tNww0ðtÞdt – 0. The

mother wavelet is chosen such that the set

wj;kðtÞ ¼ 2�j=2w0ð2�jt � kÞ; j 2 N; k 2 N
� �

forms an

orthonormal basis of L2ðRÞ. The wavelet coefficients of a

signal X are defined as dX ðj; kÞ ¼ 2�j=2
R

R
X ðtÞwj;kðtÞdt (note

the use of the non conventional L1 norm that better
matches multifractal analysis). In practice, these inner
products are computed efficiently with the classical pirami-
dal recursive algorithm, using a suitable filter bank. For a
detailed introduction to wavelet analysis, the reader is
referred to e.g. Mallat (2009).

Let us denote the dyadic intervals with

kj;k ¼ ½k2 j; ðk þ 1Þ2 jÞ, the concatenation of 3 such intervals
as 3kj;k ¼

S
m2f�1;0;1gkj;kþm, and dðj; kÞ � dk. The wavelet
leader LX ðj; kÞ is defined from wavelet coefficients as a local
supremum, taken within a narrow time neighborhood of

t ¼ 2 jk at any finer scales 2j0 < 2 j (Jaffard, 2004; Wendt
et al., 2007): LX ðj; kÞ ¼ supk0 � 3k j dk0 j .

2.3. Wavelet leader multifractal formalism

The wavelet leader multifractal formalism allows to esti-
mate DðhÞ from easily computable global quantities termed
structure functions Sðq; jÞ, defined as

Sðq; jÞ ¼ 1

nj

Xnj

k¼1

Lq
X ðj; kÞ; ð1Þ

where nj is the number of leaders available at scale 2 j. That

is, Sðq; jÞ is the qth sample moment of LX ðj; kÞ at scale 2 j.
Assuming that the structure functions follow a

power-law behavior across the scales 2 j:

Sðq; jÞ ’ CLðqÞ2jfðqÞ; ð2Þ

it is well known that a Legendre transform of the scaling

exponents fðqÞ yields an (upper bound) estimate of the mul-
tifractal spectrum LðhÞ ¼ infqð1þ qh� fðqÞÞP DðhÞ, cf.
e.g. Riedi (2003) and Jaffard (2004).

It is important to emphasize that this estimation proce-
dure relies on the assumption that the model in Eq. (2)
holds. From a practical perspective, this means that the
data must be shown to exhibit such a behavior before this
analysis procedure can be used.

2.4. Log-cumulants

To avoid the computation of the function fðqÞ for all qs,
it has been proposed to make use of a polynomial expan-
sion (Delour et al., 2001; Wendt et al., 2007):

fðqÞ ¼
P

pP1cp
qp

p!
. Interestingly, it was shown that the coef-

ficients cp can be related to the cumulants of order p;CpðjÞ,
of the log-leader ln LX ðj; kÞ according to the linear
behaviors:

CpðjÞ ¼ c0;p þ cp ln 2 j; 8p P 1: ð3Þ

where the intercepts c0;p play no role in multifractal analy-
sis. Often, using only the first two cumulants yields a satis-
factory approximation for both fðqÞ � c1qþ c2q2=2 and

DðhÞ � 1þ ðh� c1Þ2=ð2c2Þ. The definition of cumulants
implies that if cp ¼ 0, then cp0 ¼ 0 for all p0 > p. For further
details, see e.g. Wendt et al. (2009) and Jaffard et al. (2014).

2.5. Monofractal and multifractal models

Monofractal models are defined as those where the
Hölder exponent takes on a constant value, i. e.
hðtÞ � H , where H is the so-called Hurst exponent.
Therefore, it is clear that the multifractal spectrum of
monofractal data collapses to a single point: DðHÞ ¼ 1
and DðhÞ ¼ �1 for h – H . The Legendre transform
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indicates that the scaling function of monofractal data is
linear: fðqÞ ¼ qH ; moreover, the log-cumulants satisfy
c1 ¼ H and cp ¼ 0 for p P 2.

On the contrary, the Hölder exponent of multifractal
models is an extremely erratic function of time, which takes
on many different values. Therefore, its multifractal spec-
trum has a broad support and its scaling function is not lin-
ear. This issue is further discussed in Section 4.2, and is
illustrated in Fig. 4 for real voice data.

2.6. Practical estimation

As studied in details in Wendt et al. (2007, 2009), the
estimation of fðqÞ (resp., cp) can be performed by linear
regression of log2Sðj; kÞ (resp., ðlog2eÞCpðjÞ) against

log22 j ¼ j:

fðqÞ ¼
Xj2

j¼j1

wjSðq; jÞ; ð4Þ

cp ¼ ðlog2eÞ
Xj2

j¼j1

wjCpðjÞ; ð5Þ

where CpðjÞ are the standard sample cumulant estimators.
The weights wj are computed using the standard formula

wj ¼ bjðY 0j� Y 1Þ= Y 0Y 2 � Y 2
1

� �
, with

Y i ¼
P

j2jj
ibj; i ¼ 0; 1; 2. The coefficients bj reflect the con-

fidence granted to each scale in the regression.
In the case of monofractal processes, the traditional esti-

mator for the Hurst exponent is based on the scaling func-
tion computed from wavelet coefficients. Let

SðjÞ ¼ 1

nj

Xnj

k¼1

jdj;kj2:

Then the Hurst exponent can be estimated by means of the
linear regression:

H ¼
Xj2

j¼j1

wjSðjÞ; ð6Þ

where the weights wj satisfy the same constraints than
before. For more details on this classical estimator, the
reader is referred to e.g. Abry et al. (2003, 2000).

2.7. Uniform Hölder exponent and fractional integration

Both the definition of the Hölder exponent (Section 2.1)
and of the wavelet leaders (Section 2.2) require the data X

to be locally bounded. This requirement is equivalent to the
condition that the minimum regularity hm ¼ inf thðtÞ must
be non-negative (Wendt et al., 2009; Jaffard et al., 2014),
which can be easily verified in practice by using an estimate
based on wavelet coefficients (cf. Wendt et al., 2009; Jaffard
et al., 2014):
hm ¼ lim
j!�1

supkjdðj; kÞj
j

: ð7Þ

Therefore, if hm P 0, then X is locally bounded and the
multifractal formalism can be applied.

If this condition is not met, the problem can be circum-
vented by performing a fractional integration of order
c P hm on the data before performing the analysis. The
effect of this procedure is to shift the multifractal spectrum
of the integrated data: DcðhÞ ¼ Dðh� cÞ (Wendt et al.,
2009; Jaffard et al., 2014; Abry et al., 2013). Therefore,
all estimations can be safely performed on the integrated
data and then the spectrum can be shifted back.

To avoid the painful process of fractional integration, it
has been proposed in Wendt et al. (2009) to use a pseudo

fractional integration in the wavelet domain, which amounts
to computing the wavelet leaders from the modified wave-

let coefficients dcðj; kÞ ¼ 2jcdðj; kÞ. Contrary to fractional
integration, this procedure is straightforward to implement
in practice, and has been shown to provide equivalent
results (Wendt et al., 2009; Abry et al., 2013; Jaffard
et al., 2011).

3. Experimental setup

3.1. Database

Our study was performed using the Disordered Voice
database, recorded at the Massachusets Eye and Ear
Infirmary, and provided by KayElemetrics Corp
(Massachusetts Eye and Ear Infirmary MEEI Voice and
Speech Lab, 2009). The database contains records of the
sustained vowel /a/ from 53 normal speakers and 653 talk-
ers suffering from a variety of organic, neurological, psy-
chogenic or traumatic vocal disorders. Clinical
information for each record is provided, gathering the
results of clinical trials and the opinion of experts. Voice
samples from nonhealthy subjects were recorded in a
soundproof booth, at a sampling rate of 25 kHz and 16
bit quantization (Massachusetts Eye and Ear Infirmary
MEEI Voice and Speech Lab, 2009). The subjects were
asked to produce a sustained phonation of the vowel /a/
at a comfortable pitch and loudness (Parsa and Jamieson,
2000). Samples from normal subjects were recorded at
KayElemetrics in equivalent acoustic conditions
(Massachusetts Eye and Ear Infirmary MEEI Voice and
Speech Lab, 2009). Normal speakers were not examined
for voice disorders, but none of them had a history nor
complaints of such disorders (Parsa and Jamieson, 2000).
We made use of the subset of 175 nonhealthy speakers
listed in Parsa and Jamieson (2000). This subset was chosen
to include subjects with similar age distribution, and a bal-
anced male and female ratio. Moreover, it has been widely
used in several studies, cf. e.g. Markaki and Stylianou
(2011), Henrı́quez et al. (2009), and Arias-Londono et al.
(2011). Descriptive statistical information about the
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analyzed subjects can be found in Parsa and Jamieson
(2000), and is reproduced in Table 1 for convenience.
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Fig. 1. Obtention of amplitude and period sequences. Sample voice record
and illustration of the definition of analyzed sequences. Ak and P k stand
for the kth sample of AS and PS respectively.
3.2. Amplitude and period sequence extraction

We obtained PS from the voice records by means of
Praat (Boersma and Weenink, 2013), a widely used soft-
ware for objective voice analysis. Praat uses a short-term
analysis procedure, where pitch periods are obtained from
waveform-matching methods. This technique consists in
the estimation of the location of fixed points in the glottal
cycle where two consecutive waveforms look maximally
similar by means of autoregressive analysis (Boersma,
1993, 2009). These locations are called pitch marks. Then,
we computed pitch periods as the difference between pitch
marks. Finally, we computed the amplitudes as the differ-
ence between the maximum and minimum values on each
period, following the guidelines in Titze (2000). Fig. 1 illus-
trates the definition of pitch marks, AS and PS.
3.3. Analysis parameters

We performed the wavelet leader multifractal analysis
using the MATLAB toolbox WLBMF, developed by members
of the SiSyPhe group, ENS-Lyon, France (Wendt et al.,
2007), freely available at www.irit.fr/Herwig.
Wendt/software.html. We used a compactly supported
Daubechies mother wavelet. Given that the analyzed voice
data is short, we chose the number of vanishing moments
Nw ¼ 2 in order to minimize the support of the wavelet
and, therefore, the number of octaves polluted by border
effects. This choice is perfectly legitimate since the analyzed
data never showed regularity smoother than h ¼ 1.
Furthermore, we observed no high-order trends superim-
posed to the data, rendering the detrending power provided
by the wavelet acceptable. We also checked that results
were consistent when Nw was increased.

An a priori analysis of the data, using the estimator in
Section 2.7, showed very disparate values of the uniform
Hölder regularity hm, in particular between healthy and
nonhealthy data (this is further discussed in Section 4.3).
It was found that most representative records (male and
female, AS and PS healthy and nonhealthy) are character-
ized by hm > �1. Records which did not satisfy this condi-
tion showed poor fits for the linear model in Eq. (7); they
were considered as outliers and not influential in the selec-
tion of the integration order. Therefore, following the
guidelines in Jaffard et al. (2014), we performed a
Table 1
Analyzed subjects: descriptive statistics. Statistics for number, age and length of

Group Number Age (year

Male Female Male

Healthy 20 33 38.8 ± 8.3
Nonhealthy 70 103 41.8 ± 9.3
pseudo-fractional integration of the same order c ¼ 1 to
all data before carrying out the multifractal analysis.

We performed all linear regressions setting the weights
bj � 1, that is, using ordinary unweighted regressions.

4. Results and discussion

4.1. Evidence of scaling

As a first step in our analysis, we verified the existence of
a scaling behavior in both AS and PS. As we mentioned in
Section 2.3, the presence of scaling is the main hypothesis
the data must be shown to meet in order to enable a valid
application of the multifractal formalism.

Fig. 2 shows (black lines) log2Sðq; jÞ and log2ðeÞCpðjÞ
(Eqs. (1) and (3)), for selected choices of the orders q and
p, for the AS of a single selected speaker (record
GPC1NAL). 95% bootstrap-based confidence intervals
are shown in red lines (cf. e.g. Wendt et al. (2007) for
details on how this confidence intervals are computed.)
There is evidence of a very clear linear behavior in a wide
range of scales, j 2 ½2; 5�, for all cases. In fact, this behavior
comprises almost the entire range of scales available from
the wavelet decomposition. Blue lines show the linear fits
obtained in each case, displaying a perfect fit with the data
in the selected scaling range and suggesting an excellent
agreement between the data and the theoretical model of
scale invariance. Fig. 3 shows equivalent results for the
PS of the same speaker. Again, the data display an excel-
lent scaling behavior.

A theoretical requirement on multifractal models is that
the range of scales where the scale invariance is observed
must be the same for all statistical orders, i. e., q in the case
analyzed records, for healthy and nonhealthy subject, and for each gender.

s) mean ± std Length (samples) mean ± std

Female Male Female

34.2 ± 7.7 433 ± 69 710 ± 106
37.4 ± 8.1 116 ± 25 185 ± 46
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of Sðq; jÞ or p in the case of CpðjÞ. This is indeed the case in
Figs. 2 and 3, where the scaling range j 2 ½2; 5� is appropri-
ate for both Sðq; jÞ and CpðjÞ, for all statistical orders, and
for both sequences. This last remark might have an
interesting physiological interpretation, since it seems to
suggest that the physiological mechanisms responsible for
the scale invariance operate on the same time scales to con-
trol both the amplitude and the pitch of the voice.
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We checked that the scaling range j 2 ½2; 5� was a good
choice in all the records in the database. Therefore, we
adopted it for the estimation procedures used to obtain
the results that follow.
4.2. Evidence of multifractal behavior

Having studied in Section 4.1 the evidence of scaling
behavior in AS and PS, and having showed that both
sequences are amenable to the application of the multifrac-
tal formalism, we proceed in this section to answer the
question of whether multifractal analysis is a relevant tool
to model and/or analyze this kind of data.

Fig. 4 shows fðqÞ and DðhÞ for the AS (top row) and PS
(bottom row) of a selected healthy subject. Red lines indi-
cate bootstrap-based 95% confidence intervals. It can be
easily seen that fðqÞ deviates from the linear behavior of
an “equivalent” monofractal process (that is, with
H ¼ c1), illustrated with blue dashed lines. In both cases
fðqÞ shows a downward concavity characteristic of multi-
fractal processes. Equivalently, DðhÞ shows a wide support
that does not collapse to a single point, as indicated by the
confidence intervals of the extreme points which, despite
being wide, do not overlap. Blue crosses show the spectra
for the equivalent monofractal process. The differences
between the “\-shaped” estimated spectra and the
monofractal one are evident. These results allow to see
how a monofractal process would fail to capture the full
complexity of AS and PS for this speaker, and suggest that
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the analysis should be based on the multifractal paradigm
instead.

Fig. 5 reports the results of the estimation of multifrac-
tal attributes on all healthy subjects in the database. It
shows boxplots of c1 (left) and c2 (right) for AS (top) and
PS (bottom), separately for male subjects, female subjects
and all subjects grouped together. Points outside the
99.3% normal coverage were considered outliers, and are
reported with red ‘+’ signs. Table 2 summarizes the statis-
tics of those estimations. It can be seen that boxes for c2 are
all below the value c2 ¼ 0, suggesting that, in fact, c2 – 0
for both AS and PS, and therefore multifractal models
should be preferred over monofractal ones to study these
sequences. To further support this claim, we performed,
for all cases, Wilcoxon sign-rank tests with the null hypoth-
esis H 0 : c2 ¼ 0 against the double sided alternative
H 1 : c2 – 0. This nonparametric procedure tests the null
hypothesis that the sample comes from a population with
a symmetric distribution with a given median. This test
was chosen because an elementary analysis of probability
plots, not reported here, indicated that the distributions
of the estimators were not normal. The results of the tests
are reported in Table 3, and clearly state that, with a high
confidence, both AS and PS show a multifractal behavior,
for both male and female subjects, as well as for all subjects
grouped together.

Further analysis of Fig. 5 and Table 2 reveals that c1 and
c2 take on remarkably similar values for AS and PS.
Table 4 shows the p-values of Wilcoxon sign-rank tests
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Table 2
Healthy subjects: statistics. Statistics for estimates of c1 and c2, for male
(M) and female (F) subjects.

Mean Std Min Max

M AS c1 0.0917 0.204 �0.242 0.572
c2 �0.0609 0.0607 �0.176 0.0907

PS c1 0.127 0.193 �0.181 0.600
c2 �0.0770 0.0348 �0.140 �0.0215

F AS c1 0.316 0.204 �0.126 0.766
c2 �0.0141 0.0807 �0.139 0.295

PS c1 0.253 0.187 �0.118 0.821
c2 �0.0480 0.0618 �0.217 0.111

Table 3
Healthy subjects: tests. p-values for Wilcoxon sign-rank tests with the null
hypothesis H 0 : c2 ¼ 0 against the double sided alternative H 1 : c2 – 0, for
male (M), female (F), and all (A) subjects.

M F A

AS 9.02E�4 3.79E�2 1.65E�4
PS 5.96E�5 2.66E�4 3.76E�8

Table 4
Healthy subjects: tests. p-values for the double sided sign-rank test with
H 0 : cAS

p � cPS
p ¼ 0, where p ¼ 1; 2.

M F

c1 0.958 0.304
c2 0.614 0.0261

Table 5
Healthy subjects: tests. p-values for the double sided rank-sum test with
H 0 : cM

p ¼ cF
p , where p ¼ 1; 2.

c1 c2

AS 4.33E�4 1.24E�2
PS 2.84E�2 3.57E�2
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with the null hypothesis H 0 : cAS
p � cPS

p ¼ 0 against the two

sided alternative H 0 : cAS
p � cPS

p – 0, with p ¼ 1; 2. The tests

fail to reject, at a 5% confidence level, the null hypothesis
for c1 on both genders. However, the null hypothesis is
rejected for c2 on female subjects. These results indicate
that the dominant regularity, as measured by c1 and by
classical monofractal models, is similar on both sequences.
On the contrary, the multifractality, measured by c2, seems
to be different for the sequences of female subjects. This
evidence seems to suggest that the dominant
scale-invariant physiological phenomena that control the
vocal folds have the same manifestation in amplitude and
period fluctuations, but that secondary contributions might
be different. This result emphasizes the need to replace
monofractal models by a multifractal analysis that can pro-
vide a full characterization of the singular behavior of data.

Moreover, both c1 and c2 seem to have larger values for
females than for males, suggesting that, in the studied data-
base, female voices are more regular and have less variabil-
ity than male ones. To formalize this claim, we performed
Wilcoxon rank-sum tests to assess whether there was a sta-
tistically significant difference between multifractal attri-
butes of male and female subjects. This non-parametric
procedure is used with two related variables to test the null
hypothesis that they have the same distribution. Results are
shown in Table 5. It can be seen that in all cases the null
hypothesis is rejected at a 5% confidence level, confirming
that the multifractal behavior of both sequences is depen-
dent on the gender of the speaker. Moreover, the p-value
for c1 computed from the amplitude sequences is remark-
ably small, suggesting that this multifractal attribute might
be particularly useful for the discrimination between male
and female voices.

Since all analyzed groups are homogeneous in age, cf.
Table 1, no dependence on age has been observed in the
results. However, it would be interesting to perform the
analysis on a larger database, with a wider age range, to
asses whether regularity of AS and PS remains constant
with age or not.

Results in this section clearly state that multifractal
paradigm should be preferred over the monofractal one
for modelling AS and PS. This would allow, for instance,
the synthesis of such sequences for their use in voice syn-
thesizers. We hypothesize that the use of multifractal
sequences, with changes in regularity over time, would
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allow the synthesis of more natural-sounding voices. Also,
from the analysis perspective, multifractal analysis pro-
vides a collection of parameters ffðqÞ; cp; hmg that could
be used for diagnostic purposes. This issue is further
explored in Section 4.3.
4.3. Application to nonhealthy voices

In this section, we provide some preliminary results
intended to illustrate the possibilities that multifractal anal-
ysis could bring to the automatic detection of pathologies
from voice records.

We studied records from healthy subjects as well as from
patients suffering from different pathological conditions, as
described in Section 3. For the sake of space we only report
results for PS of female subjects, but we have verified a sim-
ilar performance for male subjects and both sequences. The
database included 32 healthy and 86 nonhealthy female
speakers.

Fig. 6 shows the scaling exponents (left) and the multi-
fractal spectra (right) computed from a selected healthy
record (record DFP1NAL, blue crosses) and a selected
nonhealthy record (record PLW14AN, red circles), each
one representative of its class. In both cases, estimations
were performed using the same scaling range j 2 ½3; 6�,
and a pseudo fractional integration of order c ¼ 1. Both
spectra are clearly different, with the healthy spectrum
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being slightly narrower and shifted towards higher regular-
ity than the nonhealthy case. Moreover, the nonhealthy
spectrum’s support is completely included in ð�1; 0�, indi-
cating that all singularities have negative regularity expo-

nents. On the contrary, all singularities for the healthy
subject have positive regularity exponents only. This
behavior was consistently observed in all nonhealthy sub-
jects that we considered, and is analyzed in greater depth
later on.

In order to study the classification power provided by
multifractal features, Fig. 7 shows c1 vs c2 (left), c1 vs hm

(middle) and c2 vs hm (right) for healthy (blue crosses)
and nonhealthy (red circles) speakers. Two clusters, corre-
sponding to each one of the categories can be easily
observed in all cases. In particular, attributes c1 and hm

seem to provide the greatest separation between the classes
(middle plot). On the contrary, c2 does not seem to provide
useful information and seems to be unable to distinguish
between the two classes; this is not surprising considering
that the estimation of c2 is known to be difficult on short
signals.

To further assess whether there exist statistically signif-
icant differences between the multifractal indices for
healthy and nonhealthy records, we have used the
Wilcoxon rank-sum test. Results are shown in Table 6.
Clearly, all three indices show significant differences, mean-
ing that the presence of the pathology under analysis
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Table 6
Healthy and nonhealthy subjects: tests. p-values for the non-parametric
Wilcoxon rank-sum tests with the null hypothesis H 0 : hH ¼ hNH against
the alternative H 1 : hH – hNH , for h 2 fc1; c2; hmg.

c1 c2 hm

p 2.03E�10 1.99E�2 3.80E�7
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modifies the distribution of all attributes. c2 appears to be
the least significant attribute, in concordance with the
behavior we have observed in Fig. 7.

Furthermore, to evaluate the possibility of classifying
between healthy and nonhealthy subjects, we performed
linear discriminant analysis (Bishop, 2006) on the triplet
ðc1; c2; hmÞ. This procedure generates a linear discriminant
function, using a linear combination of the analyzed vari-
ables, that provides the best discrimination between the
two groups. First, this discriminant function is obtained
from a training sample of cases for which the membership
to each group is known. Then, it is applied to new samples
of unknown membership. We decided to use a simple clas-
sifier because we wanted to assess the power of the multi-
fractal features for classification. The use of more
sophisticated classification schemes, in combination with
other features, will be considered in a forthcoming work.
Moreover, we used the classical leave-one-out method to
perform the validation of the classifier: each one of the
available records was used as a validation sample, and
for each case the remaining records were used as the train-
ing set. In other words, each record was classified with a
classifier that was trained using all the other available
records. Results are reported in Table 7. It can be seen that
an excellent performance is achieved in the classification of
healthy subjects, where almost all cases are correctly con-
sidered to belong to the proper group. In the case of the
Table 7
Healthy and nonhealthy subjects: multifractal classifica
variables c1; c2 and hm, for healthy (H) and nonhealth

Group Pre

H

Count H 30
NH 21

% H 93.75
NH 22.1

Table 8
Healthy and nonhealthy subjects: monofractal classifi
the Hurst exponent H, for healthy (H) and nonhealth

Group Pre

H

Count H 27
NH 27

% H 84.38
NH 31.40
pathological group, one quarter of the nonhealthy samples
were incorrectly considered to be healthy. Further analysis
remains to be done to determine why these subjects show
such similar dynamics with respect to healthy ones.
Table 7 also reports several performance metrics computed
from the confusion matrix, further indicating the overall
acceptable performance of the classification procedure.

To assess the benefits provided by multifractal features
to discrimination between healthy and nonhealthy speak-
ers, we also performed the classification under a monofrac-
tal model setting. We used the Hurst exponent H,
estimated with Eq. (6), as a feature. Results are reported
in Table 8. Comparing with Table 7, it can be seen that
the use of features from a multifractal model improves
the number of true positives and negatives around a 10%,
with similar gains in sensitivity, specificity and accuracy,
and a 5% improvement in precision.

From this preliminary analysis we can conclude that the
information provided by multifractal analysis shows great
promise for the automatic detection of some voice patholo-
gies: an acceptable performance is achieved using only
three parameters and a simple classifier. Moreover, classifi-
cation performance is significantly improved with respect
to the one achieved using just a monofractal model. It
remains to be studied if the addition of multifractal attri-
butes improves state-of-the-art classification schemes, such
as the one proposed in Arias-Londono et al. (2011).

Results in Fig. 7 also suggest that hm is negative for non-
healthy records and positive for healthy ones. This distinc-
tion is very important from a modelling point of view. This
amounts to the fact that healthy sequences would need to
be modelled by a function whereas nonhealthy ones would
need to be modelled by a measure (Jaffard et al., 2007;
Arneodo et al., 1998). For instance, considering the
tion. Discriminatory analysis carried out using all
y (NH) subjects.

dicted group

NH

2 Sensitivity: 0.756
65 Specificity: 0.938

6.250 Precision: 0.970
77.90 Accuracy: 0.805

cation. Discriminatory analysis carried out using
y (NH) subjects.

dicted group

NH

5 Sensitivity: 0.686
59 Specificity: 0.844

15.62 Precision: 0.922
68.68 Accuracy: 0.729



Table 9
Healthy and nonhealthy subjects: tests. p-values for sign tests with
H 0 : hm P 0 against H 1 : hm < 0.

H NH

p 0.996 3.54E�10
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monofractal and Gaussian setting that was used in Aoki
and Ifukube (1999), this would mean that healthy
sequences would need to be modelled by fBm (as in Aoki
and Ifukube (1999)) and nonhealthy ones would need to
be modelled by fractional Gaussian noise (fGn). To further
analyze this point, we conducted a sign test on the values of
hm for both classes, with the null hypothesis H 0 : hm P 0
against the alternative H 1 : hm < 0. p-values are shown in
Table 9. They suggest that, in fact, the data support the
hypothesis that hm < 0 for nonhealthy records and hm > 0
for healthy ones. This result provides valuable insight for
the selection of the multifractal models that should be used
on each case.
5. Conclusions

In the present contribution we have proposed the use of
wavelet leader multifractal analysis to study voice period
and amplitude sequences obtained from real sustained
vowels. We have shown that both sequences indeed show
scaling, and that they have a multifractal behavior. This
expands on previous work where analysis was limited to
monofractal models, where a single parameter is enough
to characterize the regularity of the sample path. Instead,
we have successfully shown that both sequences should
be considered on the light of multifractal models. This pro-
vides a richer description of the sample’s regularity in terms
of a set of parameters, and therefore allows a better
characterization.

This change of framework could provide potential ben-
efits to the modelling scenario. It is known that the charac-
teristics of both sequences are related to the quality of
synthesized voices. Therefore, the use of multifractal mod-
els that accurately describe the changes in regularity of the
data could enhance the quality of synthesizers. This line is
currently under investigation.

We have also illustrated, by means of an example, that
the information provided by multifractal analysis could
be extremely useful for the discrimination between healthy
and nonhealthy voices. In fact, we showed that three mul-
tifractal attributes exhibited significant differences between
the two classes. The preliminary analysis reported here
needs to be continued by a more thorough study, and this
is also currently under investigation.

We must mention, however, that there is an important
caveat that limits the impact that this methodology could
have: the data length. Amplitude and period sequences are
typically short, since the length is limited by the amount of
time the speaker can sustain the phonation of a vowel. The
situation is even worse in the case of nonhealthy voices.
This limitation derives in estimators with a large variance
and, in consequence, in a decrease of discrimination power.
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