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Empirical mode decomposition (EMD) is an adaptive (data-driven) method to decompose non-linear and 
non-stationary signals into AM-FM components. Despite its well-known usefulness, one of the major EMD 
drawbacks is its lack of mathematical foundation, being defined as an algorithm output. In this paper we 
present an alternative formulation for the EMD method, based on unconstrained optimization. Unlike 
previous optimization-based efforts, our approach is simple, with an analytic solution, and its algorithm 
can be easily implemented. By making no explicit use of envelopes to find the local mean, possible 
inherent problems of the original EMD formulation (such as the under- and overshoot) are avoided. 
Classical EMD experiments with artificial signals overlapped in both time and frequency are revisited, and 
comparisons with other optimization-based approaches to EMD are made, showing advantages for our 
proposal both in recovering known components and computational times. A voice signal is decomposed 
by our method evidencing some advantages in comparison with traditional EMD and noise-assisted 
versions. The new method here introduced catches most flavors of the original EMD but with a more 
solid mathematical framework, which could lead to explore analytical properties of this technique.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Empirical Mode Decomposition (EMD) [1] is an adaptive
method introduced to analyze non-linear and non-stationary sig-
nals. It consists in a local and fully data-driven separation of a 
signal in fast and slow oscillations. At the end of the decomposi-
tion, the original signal can be expressed as a sum of amplitude 
and frequency modulated (AM–FM) functions called intrinsic mode 
functions (IMFs) plus a final trend either monotonic or constant. 
However, EMD experiences some problems, such as the presence of 
oscillations of very disparate amplitude in a mode, or the presence 
of very similar oscillations in different modes, named as mode mix-
ing (an interesting strategy to alleviate noise-related mode mixing 
can be found in [2]). Besides this issue, one of its major draw-
backs is the lack of mathematical framework, being defined as an 
algorithm output.
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Several efforts have been made in order to provide some math-
ematical foundations for EMD. Deléchelle et al. [3] estimated the 
envelopes by solving a parabolic differential equation. Xu et al. [4]
modified the envelope definition to obtain one with a simple an-
alytical expression, by which the variations of the extrema in the 
iterative procedure are investigated in detail to reveal the nature of 
the sifting process. Hawley et al. [5] replaced the cubic spline in-
terpolations for trigonometric interpolations when estimating the 
envelopes. Thanks to that, they derive some interesting properties 
and convergence guarantees, although the results significantly dif-
fer from those of classical EMD. Daubechies et al. [6,7] compared 
EMD with wavelet theory by using a special case of reassignment 
called synchrosqueezing.

A different approach, based on optimization theory, has recently 
aroused the interest of the EMD scientific community. B. Huang 
and Kunoth [8] replaced the explicit interpolation through extrema 
for solving an optimization problem to estimate the envelopes. 
However, they keep an envelope-related approach. No explicit en-
velope is estimated by Oberlin et al. in [9]. They search for a 
local mean in a specific B-spline space subject to some symme-
try constraints on the amplitude of the modes. In a similar way, 
Pustelnik et al. [10,11] minimized the difference between a signal 
and its local mean plus mode subject to smoothness, symmetry 
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and quasiorthogonality requirements, based on a multicomponent 
variational analysis.

In this paper, we propose a new approach for EMD based on 
optimization, with the goal of mimic EMD. Unlike those above 
mentioned, here we present an unconstrained optimization prob-
lem, with a unique analytic solution. This results in the following 
benefits:

• This approach may help to better understand some properties 
of EMD.

• The explicit computation of envelopes to find the local mean 
is not needed, in contrast to algorithm-based EMD.

• The proposed method provides an analytical and easily im-
plemented closed solution, unlike previous optimization-based 
efforts that need iterative algorithms to solve the optimization 
problem.

• The use of explicit spline interpolations is avoided.
• The number of parameters to be tuned has been reduced to 

only one, in contrast to other optimization-based proposals 
where several parameters are needed.

• The computational cost is similar to the cost of EMD. On the 
contrary, other optimization-based methods are tens of times 
slower than EMD.

The paper is organized as follows. We recall the basic principles 
of EMD in Section 2. In Section 3 we present our new uncon-
strained optimization approach to EMD. Experiments and results 
with both artificial and real signals are introduced and discussed 
in Section 5. Conclusions are presented in Section 6.

2. Empirical mode decomposition

The main idea on EMD is to iteratively subtract the local mean 
from a signal (or residue) to obtain the zero local mean AM–FM 
components called intrinsic mode functions or simply modes. From 
this perspective, the slow oscillation is considered the local mean 
(trend) while the mode is the fast one. If x is the signal to be de-
composed, the EMD algorithm can be summarized as follows [1]:

1. Set k = 0 and find all extrema of r0 = x.
2. Interpolate between minima (maxima) of rk to obtain the 

lower (upper) envelope emin (emax).
3. Compute the mean envelope m = (emin + emax)/2.
4. Compute the IMF candidate dk+1 = rk − m.
5. Is dk+1 an IMF?

• Yes. Save dk+1, compute the residue rk+1 = x − ∑k+1
i=1 di , k =

k + 1, and treat rk as input data in step 2.
• No. Treat dk+1 as input data in step 2.

6. Continue until the final residue rK satisfies some predefined 
stopping criterion.

At the end, the signal x can be expressed as

x =
K∑

i=1

dk + rK , (1)

where each mode dk admits well-behaved Hilbert transforms. The 
refinement process carried out to ensure that the mode dk is ac-
tually an IMF is the so-called sifting process. Further details can be 
found in [1].

The symmetry of the modes’ envelopes resides on the IMF def-
inition. To be considered an IMF, a function must fulfill two con-
ditions: (i) the number of extrema and zero crossings are equal or 
differ at most by one; and (ii) the mean between the upper and 
lower envelope is zero for all the signal duration.
Some of the main characteristics of the EMD are its multiscale 
and local nature. The local scale is defined as the interval be-
tween successive extrema. The number of extrema of the modes 
decreases as k increases. Although one may give “spectral” inter-
pretation of the modes, it must be emphasized that this applies 
only locally. The automatic selection of the local highest frequency 
content cannot be achieved by a predetermined subband filtering; 
it rather corresponds to an adaptive (data-dependent) time-variant 
filtering [12]. When decomposing fractional Gaussian noise (fGn), 
EMD acts on average as a dyadic filter bank [12,13].

3. EMD as an unconstrained non-linear convex optimization 
problem

Notice that, in the original EMD algorithm, the local mean is 
defined as the mean of the envelopes, which are obtained by 
interpolating through local extrema (usually with cubic splines). 
Therefore, from the second mode onwards, all of them are sums of 
splines. We must get rid of the envelopes, so we propose here a 
different approach to obtain the local mean. Previous efforts have 
focused their attention on the smoothness of the local mean [14]
(even restricting their search to a spline subspace [9]). In those ap-
proaches, the IMF-likeness of the modes is not considered on the 
objective function but in the form of inequality constraints, where 
the corresponding bounds have to be set. However, the IMF con-
ditions are the heart of EMD and the sifting process is carried out 
until the mode is close enough to an IMF, so the original signal is 
the sum of IMFs plus a final trend. For this reason, our proposal 
focuses on the IMF-likeness of the modes.

Let us return to the IMF definition in Section 2. It is clear that 
condition (ii) cannot be satisfied without fulfilling condition (i), so 
it is enough to pursuit condition (ii). We consider this issue in a 
similar fashion to Oberlin et al. [9] and Pustelnik et al. [10]. Let 
tk[l], 1 ≤ l ≤ L, with L the number of local extrema, be the loca-
tions of the local extrema of the signal (or residue) under study. 
If we consider these points as estimations of the local extrema lo-
cations of the k-th mode (dk), for 2 ≤ l ≤ L − 1, we can define the 
inner product

pk
tk[l] dk = dk(tk[l]) + dk(tk[l + 1])�−

l + dk(tk[l − 1])�+
l

�+
l + �−

l

, (2)

where �+
l = tk[l + 1] − tk[l], �−

l = tk[l] − tk[l − 1], dk is a column 
vector and pk

tk[l] is the tk[l]-th row of a matrix Pk . Then, the only 
non-zero elements of the tk[l]-th row of Pk are

Pk(tk[l], tk[l]) = 1, (3a)

Pk(tk[l], tk[l − 1]) = �+
l

�+
l + �−

l

, (3b)

Pk(tk[l], tk[l + 1]) = �−
l

�+
l + �−

l

. (3c)

It should be emphasized the fact that matrix P k has as many rows 
as the length of dk . Rows not involved in (2) are zeros, because 
there are no local extrema at that positions. The goal of (2) is to 
compare the signal (or residue) at each extrema with the corre-
sponding linear interpolation between its two adjacent extrema. 
Smaller values of (2) would mean that dk locally (around tk[l]) bet-
ter satisfies the IMF condition (ii). The minimization of ||P kdk||2
would contribute, at least globally, to the fulfillment of the IMF 
conditions. As it was pointed out by Pustelnik et al., matrix P is a 
“...linear operator which models the penalization imposed on d at each 
location tk[l]” [10]. It must be noticed that, in this approach, the 
IMF conditions are not evaluated over the whole time span of the 
signal but only on its local extrema.
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Given a signal x, we can define our quest for a first mode by 
searching for a local mean (or approximation) a which minimizes 
||P 1(x −a)||2. A solution to this problem is x = a, of course undesir-
able. However, this solution is not unique since P may be singular. 
Because of that, we must regularize our problem. To favor smooth 
solutions, we choose a second-order Tikhonov regularization [15]. 
With this in mind, we can formulate the following optimization 
problem:

(P) min
a

||P (x − a)||2 + λ||Da||2︸ ︷︷ ︸
f (a)

,

with its unique solution at

∇a f = −2P T P (x − a) + 2λDT Da = 0 ⇒
⇒ P T Pa + λDT Da = P T P x

a∗ = (P T P + λDT D)−1 P T P x, (4)

where x is the signal, a the estimated local mean, D the second-
order difference matrix, || · || is the Euclidean norm and λ > 0 the 
regularization parameter used to control the trade-off between the 
smoothness of a and the IMF-likeness of the mode d = x − a.

Using problem (P) and its closed solution given by (4) we can 
formulate the following algorithm:

Algorithm 1
1: Choose λ > 0.
2: Define the second-order difference matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎤
⎥⎥⎥⎥⎥⎦ .

3: Assign a0 = x (signal).
4: for k = 1, 2, . . . do
5: Construct the matrix Pk , according to (2), by using the local extrema from 

ak−1.
6: Calculate the local mean ak

M1 = (P k)T P k + λDT D (5a)

M2 = (P k)T P k (5b)

ak = M−1
1 M2 ak−1 (5c)

7: Calculate the mode dk = ak−1 − ak .
8: end for

In the above algorithm we perform only one “sifting” iteration 
(steps 5 to 7 for a fixed k) for each mode extraction. However, it is 
possible to use more iterations.

Matrix Pk makes this method adaptive (data-driven) and local, 
with local extrema as characteristic points. A comment regarding 
the regularization parameter must be done. As λ tends to infin-
ity, the approximation a becomes affine. However, according to our 
studies, the here presented method behaves robust to the choice 
of λ. In order to study its influence, in our first experiment, in 
Section 5.1, we will explore different values for this parameter. 
Thereafter, despite being in very different situations, we will al-
ways use the same value λ = 1. Objective methods to choose the 
regularization parameter, such as the L-curve method or Morozov’s 
discrepancy principle could be employed, but such options involve 
an expensive computational cost.

Regularization process is crucial for the problem to be solvable. 
Since matrix P (we drop the index k for the sake of simplicity) 
may be not invertible, as it occurs in most cases, it is essential to 
add the penalization term to the optimization problem. Because of 
that, a unique solution is achieved since symmetric matrix P T P +
λDT D is positive definite:

yT (P T P + λDT D)y = yT P T P y + λyT DT D y

= (P y)T P y + λ(D y)T D y > 0 ,∀y �= 0, (6)

due to N (P ) ∩N (D) = {0}: D y = 0 only for linear functions y, for 
which P is null (no local extrema) and it would make no sense to 
even formulate problem (P). Therefore it is only necessary for λ to 
be positive. However, a very small value of λ (i.e., λ → 0) will lead 
to a large condition number, and results might be inaccurate.

In order to efficiently solve the matrix inversion involved in 
(5c), we must explore the particular structure of matrix M1. For 
a signal of length N , matrix DT D has 5N − 6 nonzero elements 
and matrix P T P has 5L entries which are nonzero, but L of those 
elements are on the main diagonal. Then, the nonzero elements of 
matrix P T P + λDT D are

5N − 6 + 4L ≤ 9N − 6 < 9N, (7)

hence the proportion of nonzero elements is bounded by 9/N , 
which means that this matrix is sparse. Another important feature 
for this matrix is being band diagonal, with a matrix bandwidth 
of bw = maxl(t[l] − t[l + 2]) [16]. Sparsity of matrices P and D is 
exploited in the implementation and a significant amount of com-
putational time is saved.

Let us take a deeper look at (5). Since symmetric matrix 
M2 = (Pk)T Pk has non-zero columns only on the extrema loca-
tions (tk[l]-th columns), the product � = M−1

1 M2 has exactly L
non-zero columns. Because of that, we can write

ak = �ak−1 =
L∑

l=1

φtk[l] ak−1(tk[l]), (8)

where φtk[l] stands for the tk[l]-th column of � and ak−1(tk[l]) is 
the signal (or residue) evaluated at its local extrema. Therefore, the 
local mean ak is in the subspace created by the non-zero columns 
of �, and the values of the signal at its local extrema are the co-
efficients. This “sparse” representation of ak is consistent with the 
original formulation for EMD, where the local mean only depends 
on the locations of the local extrema and the values of the signal 
at those points.

Every method that uses local extrema of the signal to estimate 
those of the extracted component may need some form of sifting. 
If some of the mode extrema are hidden (they do not appear in the 
composed signal), these can be revealed after one round of sifting 
[17,18]. Then, the proto-IMF would have more extrema than the 
original signal, and matrix P (constructed from the extrema of the 
original signal) would not be able to model the penalization on it. 
A new matrix P would need to be constructed, and a new trend 
extraction would be performed. In our particular case, sifting may 
also help the method to work properly.

Two different strategies for stopping the sifting process (steps 5 
to 7 for a fixed k) will be used in this work. Such as in traditional 
EMD, one may use a fixed number of sifting iterations [19,20]. 
However, it may be also interesting to use a variable number of 
iterations, especially for real signals. Then, an objective stopping 
criterion is needed. Since no envelope is computed, it is not possi-
ble to apply a local/global criterion, like the one proposed in [21], 
to check IMF condition (ii). Nevertheless, an energy-based crite-
rion could be used to decide whether or not the mode dk has zero 
mean. In those cases, following [20], we use

z = ||â(i+1)

k ||2
||d(i)||2

, (9)

k
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where â(i+1)

k stands for the local mean computed from the i-th 
candidate for the k-th mode d(i)

k (the proto-IMF after i iterations 
of sifting), with the recommended value of z = 10−4 [20]. A Mat-
lab toolbox for the proposed method is available on our website 
(www.bioingenieria.edu.ar/grupos/ldnlys).

We will call our method UOA-EMD in what follows.

4. Related works

4.1. Optimization-based approaches to EMD

One of the first efforts in explaining EMD through optimization 
techniques is due to Meignen and Perrier [14]. This work was ex-
tended by Oberlin et al. in [9]. They found the local mean of a 
signal by solving the following problem:

(P2) min
a

||a(2)||2 s. t. a ∈ � ∩ Cak−1 ,

where � denotes the space of spline functions and Cak−1 denotes 
a constraint which imposes the symmetry of envelopes. Besides 
not having an analytical closed solution, the main drawback of this 
proposal is that it requires a first approximation a as a primer to 
the algorithm in order to involve a convex constraint. This approx-
imation a is found via explicit spline interpolation following the 
proposal in [22], which presents some problems in the presence 
of strong FM signals. It also needs two parameters to be set: the 
order of the spline space of functions and a tolerance α for the 
symmetry of the modes. The authors recommend an order of 6 or 
higher for the spline space and α = 0.05 for the tolerance. An im-
plementation of this method is available at http :/ /www-ljk.imag .
fr /membres /Thomas .Oberlin /EMDOS .tar.gz. It will be named as OS-
EMD, for optimization on splines, in what follows.

A multicomponent non-smooth convex optimization approach 
to EMD was introduced by Pustelnik et al. in [10], and it was more 
deeply explained in [11]. The optimization problem to be solved is 
the following:

(P3) min
a,d

||ak−1 − a − d||2, s.t.

⎧⎨
⎩

||Da||p
p ≤ ηk,

||Pkd||qq ≤ εk,

(∀ j < k), |〈d,d j〉| ≤ ζk, j,

where ηk > 0, εk > 0, ζk, j ≥ 0, p ≥ 1, q ≥ 1 and D is the first or 
second order derivative operator. Several parameters need to be set 
for this method: the bounds ηk , εk , and ζk, j , along with the norms 
p and q and the order of the derivative (matrix D). It must be 
noticed that this method does not guarantee the exact reconstruc-
tion of the data, since ||ak−1 − a − d||2 must be minimized but is 
not exactly zero. An implementation of this method is available 
at http :/ /perso .ens-lyon .fr /nelly.pustelnik /Software /Prox-EMD _v1.0 .
zip. Rather than solving the above described problem, the tool-
box solves the following one: mina,d ||ak−1 − a − d||p

p + c1||Da||qq +
c2||Pkd||rr . They replaced the constrained problem for the regu-
larized version and dropped the quasiorthogonality constraints. 
Because of that, it is not possible to reproduce the simulations 
from [10,11] since the parameters they reported were for the con-
strained problem. The default setting is: p = 2, q = 2, r = 1 and 
second order for the derivative. (Please notice that the norms p, q
and r of the toolbox differ from the norms p and q of the origi-
nal problem (P3).) In this case, the number of modes and values 
c1 and c2 are determined from the classical EMD decomposition of 
the data. This proposal will be named as Prox-EMD in what fol-
lows.

4.2. Other mode decomposition proposals

Peng and Hwang [23] proposed an adaptive operator-based sig-
nal separation method, where they introduced an equation of the 
same form as in (4), and the obtained components are in the null 
space of such operator (which plays the role of matrix P in our 
approach). Although they proposed two options for the operator 
(an integral operator and a differential one), some particular sig-
nals cannot be correctly separated into their components by this 
method, as the authors themselves have pointed out. We will see 
in Section 5.4 that the method here proposed is able to correctly 
decompose such signals.

The work from [23] was expanded by the same authors in [24]. 
Although this approach was an improvement, it is also much more 
complicated, involving an objective function with several terms. 
Also some parameters need to be carefully tuned. However, the 
main differences are the final goals of the methods. The propos-
als in [23,24] do not intend to emulate EMD, and because of that 
their operators do not take into account the specific IMF features. 
In contrast, in our approach operator P is constructed with EMD-
inspired features such as the symmetry of the modes. The proposal 
in [24] do not take into account a fine to coarse nature for their 
decomposition, and thus their goal significantly differs from that 
of EMD’s. Recursive algorithms are needed to solve it, with no an-
alytical solution available.

5. Experiments and results

In order to better understand the capabilities of the new ap-
proach introduced in this paper, in this section we revisit some 
classical experiments with artificial signals and compare our re-
sults with those obtained via traditional EMD. In addition, we 
present an experiment with real data comparing our results with 
traditional EMD and noise-assisted versions such as Ensemble EMD 
(EEMD) [20] and Complete EEMD with Adaptive Noise (CEEMDAN) 
[25,26].

5.1. One or two frequencies?

As first experiment we revisit the pioneer work by Rilling and 
Flandrin [17]. Let us define a sum of two tones

x(t;α, f ) = s1 + s2 = sin(2πt) + α sin(2π f t) (10)

with f ∈ (0, 1) and α > 0. Although simple, this model proved to 
be very effective in evaluating EMD performance. Our goal is to de-
duce (and then to measure) the performance of our method when 
applied to x. The fine to coarse nature of our proposal suggests that 
the first mode d1 must catch most of s1 (the fastest tone). We are 
interested in answering the following question: under what condi-
tions is d1 ≈ s1?

From Algorithm 1, we can see that d1 ≈ s1 is equivalent to 
a1 ≈ s2. If we apply (5c) to our signal x, we get

a1 = M−1
1 M2 x = M−1

1 M2 s1 + M−1
1 M2 s2, (11)

with M1, M2 depending on P 1, which is obtained from the ex-
trema of x. It becomes clear that a sufficient condition to separate 
the two tones (i.e. to get a1 ≈ s2) is

M−1
1 M2 s1 =

(
(P 1)T P 1 + λDT D

)−1
(P 1)T P 1s1 ≈ 0 (12)

and

M−1
1 M2 s2

=
(
(P 1)T P 1 + λDT D

)−1
(P 1)T P 1s2

=
(
(P 1)T P 1 + λDT D

)−1 (
(P 1)T P 1 + λDT D − λDT D

)
s2

=
(

I −
(
(P 1)T P 1 + λDT D

)−1
λDT D

)
s2

= s2 −
(
(P 1)T P 1 + λDT D

)−1
λDT Ds2 ≈ s2. (13)

http://www.bioingenieria.edu.ar/grupos/ldnlys
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Fig. 1. Separation of a sum of two tones. Criterion (14) is plotted in a 2-D image. Critical curves are superimposed as red [gray] dashed (α f = 1) and white dotted (α f 2 = 1). 
The black thick line for α f < 1 represents the cut-off frequency for which c(α, f ) = 0.5. In the images, color white means a value of 0 and color black means 1.
Rilling and Flandrin [17] demonstrated that if the product α f
is sufficiently smaller than 1, then the extrema from x are close 
to those of s1 and, since s1 is a pure tone with zero local mean, 
P 1s1 ≈ 0, satisfying (12). Also α f smaller than 1 ensures that the 
fourth derivative of s2 (i.e., DT Ds2) is small, and if λ is small too, 
(13) is satisfied.

Now we have an answer for the question stated above. For α f
small (α f < 1 is enough), and λ also small, the separation will 
be satisfactory and d1 ≈ s1. To measure our method performance, 
following [17], we propose to compute

c(α, f ) = ||d1(t;α, f ) − s1||
||s2|| , (14)

where d1(t; α, f ) stands for the first mode obtained from x(t; α, f )

and || · || the Euclidean norm. A zero value of c(α, f ) indicates a 
correct separation, while a value close to one occurs when the two 
tones are poorly separated.

Fig. 1 presents the results, with f ∈ (0, 1) and 10−2 ≤ α ≤ 102, 
for six values of λ. Signals of 2000 samples with a sampling fre-
quency of 200 Hz were used. The parameter f had 100 bins. The 
criterion (14) was evaluated over samples 501 to 1500. The re-
semblance with the results presented in [17] is remarkable. In the 
top row, two well-separated areas can be identified. For α f < 1
the two tones are perfectly separated, except for above a “cut-off” 
frequency fc ≈ 0.9 where it is impossible to separate the two com-
ponents, no matter the amplitude ratio. This result is consistent 
with our expectations that the two tones would be correctly sep-
arated if α f is small enough. On the other hand, for α f 2 > 1, the 
two tones are badly separated. Rilling and Flandrin [17] showed 
that, for this domain, the slowest tone is “dominant” with the ex-
treme rate of the signal equal to that of the low frequency one. 
Therefore, it seems logical that our method (such as traditional 
EMD) is unable to catch the fastest tone on its first mode if the ex-
trema from this tone are absent from the composed signal. There 
is a transition zone (sort of a “no-man’s land”) between the two 
mentioned domains where the separation performance seems to 
be mainly conditioned by the frequency ratio f . It is worth of 
mention that to reach a cut-off frequency fc ≈ 0.9 with EMD, it is 
necessary to perform over 100 sifting iterations [17]. In our case, 
we used only one iteration, and therefore the stopping criterion (9)
was not needed.

In the bottom row of Fig. 1, the results are still similar to 
the previous ones, but yet quite different. The two areas (and the 
transition zone) are still recognizable, but the cut-off frequency is 
smaller as λ increases. These results suggest that λ can be se-
lected from a wide range of values, evidencing the robustness of 
our method. In what follows, and for the sake of simplicity, we 
will use λ = 1, a value for which we got very good results in very 
different situations, as we will see in the next experiments.

5.2. Composites of AM–FM and non-linear oscillations

The first experiment in this subsection was performed on a sig-
nal very similar to one studied in [10]. It consists in a sum of a fast 
tone and a slow tone of different amplitudes and a Gaussian atom 
with a middle frequency, containing 1000 datapoints. In Fig. 2 we 
present the decomposition results obtained traditional EMD, Prox-
EMD, OS-EMD and the method here proposed UOA-EMD. In all 
cases, the number of modes K = 3 to decompose was assumed as 
known. The trade-off parameter for UOA-EMD was λ = 1, and only 
one sifting iteration for each component extraction was performed. 
To compare the results with the original signal components, we 
used the relative squared error (RSE)

RSEd(d̂) = ||d̂ − d||2
||d||2 , (15)

where d is a given signal and d̂ its estimation. Both Prox-EMD and 
OS-EMD were used on its default settings. For traditional EMD, we 
used the toolbox available at http :/ /perso .ens-lyon .fr /patrick.flandrin /
emd .html, with the default stopping criterion. Table 1 presents the 
RSEs and computational times for the four methods. For all three 
components, the errors for EMD and UOA-EMD are of compara-
ble magnitudes, while those of the other two methods are at least 
one order of magnitude higher. Computational times also ask for 
a deeper observation. The time for our method UOA-EMD is six 
times lower than EMD’s, and two orders of magnitude lower than 
those of the other two methods. (We ran all the simulations on a 
PC with an Intel(R) Core(TM) i7-4770K CPU @ 3.50 GHz.)

As a second experiment for this subsection, a signal very similar 
to one studied in [27] was decomposed via the four methods. The 
signal is a sum of three components: a “high frequency” triangular 
waveform with a slowly linearly increasing amplitude, a “middle 
frequency” tone with a quickly linearly decreasing amplitude, and a 
“low frequency” triangular waveform. As before, it consists of 1000
datapoints. Results are depicted in Fig. 3. Again, λ = 1 was used 
for UOA-EMD and only one sifting iteration was performed. RSEs 
and computational times can be appreciated on Table 2. The values 
resemble those of the previous example. The errors for EMD and 
UOA-EMD are of comparable magnitude and at least one order of 
magnitude lower than those of Prox-EMD and OS-EMD (with this 
difference increased to two order of magnitude for two Prox-EMD 

http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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Fig. 2. Sum of two tones and a Gaussian atom. The original signal x is on the top row, and its components are on the second row. On the following rows are the components 
extracted via traditional EMD, Prox-EMD, OS-EMD and UOA-EMD respectively.

Table 1
Sum of two tones and a Gaussian atom (1000 datapoints). Relative square errors and computational times for the four methods.

Relative square error Computational time (seconds)

x1(t) x2(t) x3(t)

EMD 2.30 × 10−3 2.42 × 10−2 3.70 × 10−3 0.0717
Prox-EMD 5.29 × 10−2 1.1615 5.88 × 10−1 3.1490
OS-EMD 1.19 × 10−2 1.59 × 10−1 9.39 × 10−2 7.0712
UOA-EMD 4.00 × 10−3 4.27 × 10−2 8.30 × 10−3 0.0110

Table 2
Sum of two triangular waveforms and an FM sinusoidal signal (1000 datapoints). Relative square errors and computational times for the four methods.

Relative square error Computational time (seconds)

x1(t) x2(t) x3(t)

EMD 1.50 × 10−2 8.10 × 10−3 8.00 × 10−4 0.0679
Prox-EMD 7.14 × 10−1 6.2173 2.05 × 10−1 3.0362
OS-EMD 4.06 × 10−1 7.366 2.53 × 10−1 5.4287
UOA-EMD 1.27 × 10−2 3.30 × 10−3 7.00 × 10−4 0.0104
components). Computational times are also similar to those of the 
previous example. UOA-EMD needed a sixth of time of EMD, and 
two orders of magnitude less than that needed for Prox-EMD and 
OS-EMD.

As a third and final experiment for this subsection, we ana-
lyzed a very similar signal to one used in [21]. It is a sum of two 
FM sinusoidal signals and a Gaussian atom, all three overlapped 
both in time and frequency. In order to test our method UOA-EMD 
for large data, the signal to decompose consists of a million dat-
apoints. The decompositions results can be seen in Fig. 4. As in 
previous examples, we used λ = 1 and one sifting iteration. Ta-
ble 3 presents both the RSEs and computational times. UOA-EMD 
achieved errors of one order of magnitude lower than EMD for 
all three components, and at least two orders of magnitude lower 
than that of Prox-EMD. The method OS-EMD did not accomplished 
the decomposition, printing an error message after almost 12 min-
utes of execution. Computational times deserve some comments. 
EMD needed a little more than one second, while UOA-EMD took 
almost three seconds. In contrast, Prox-EMD needed more than 47
minutes.

In this subsection we have illustrated with classical artificial 
signals our method’s capabilities, successfully decomposing signals 
with AM–FM components and non-linear oscillations overlapped 
in time and frequency. In all cases results are similar to those ob-
tained by EMD. Relative squared errors are of the same magnitude 
order. The computational cost of our method is similar to EMD’s. 
In contrast, the other two optimization-based methods achieved 
errors of at least one order of magnitude higher and times of at 
least two orders of magnitude higher. These differences were dra-
matically increased when a million-datapoint signal was analyzed.
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Fig. 3. Sum of two triangular waveforms and an FM sinusoidal signal. The original signal x is on the top row, and its components are on the second row. On the following 
rows are the components extracted via traditional EMD, Prox-EMD, OS-EMD and UOA-EMD respectively.

Fig. 4. Sum of two AM–FM signals and a Gaussian atom. The original signal x is on the top row, and its components are on the second row. On the following rows are the 
components extracted via traditional EMD, Prox-EMD, OS-EMD and UOA-EMD respectively.
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Table 3
Sum of two AM–FM signals and a Gaussian atom (one million datapoints). Relative square errors and computational times for the four methods.

Relative square error Computational time (seconds)

x1(t) x2(t) x3(t)

EMD 2.04 × 10−2 2.40 × 10−2 5.67 × 10−2 1.1526
Prox-EMD 5.20 × 10−1 6.78 × 10−1 2.6531 2854
OS-EMD 1.1321* 5.35 × 108* 6.05 × 109* 711*

UOA-EMD 8.20 × 10−3 2.60 × 10−3 1.20 × 10−1 2.8793

* The algorithm did not accomplished the decomposition and printed an error message.

Fig. 5. Sifting process for the first mode of a wGn realization. The most noticeable points where the first mode candidate violates condition (i) are marked with circles. The 
method here proposed corrects those violations.
5.3. White Gaussian noise and equivalent filter banks

Here we explore an iterative scheme with our method on 
a 512-sample long white Gaussian noise (wGn) realization with 
N ∼ (0, 1). We perform sifting iterations until the weak-IMF con-
dition is satisfied (condition (i)) [28]. In Fig. 5 we illustrate the 
sifting process for the first mode. We used λ = 1. The most no-
ticeable points where the first mode candidate violates condition 
(i) are marked with circles; it can be observed that our method 
corrects those violations at the fifth iteration.

Extensive simulations with wGn were carried out in the past 
to assess EMD behavior. A quasi-dyadic filter bank structure was 
revealed when EMD was applied to wGn [12,13,27]. Same feature 
appears when wGn is analyzed by our method. Following Flan-
drin et al. [12], we calculated equivalent transfer functions for our 
method when applied to wGn. Five thousands wGn realizations 
were decomposed (λ = 1 and a fixed number of ten sifting iter-
ations) and the average behavior was estimated as in [12]:

Ŝk( f ) =
N−1∑

m=−N+1

r̂k[m] w[m] e−i2π f m, | f | ≤ 1

2
, (16)

with w[m] being a Hamming window, N the mode length, and

r̂k[m] = 1

J

J∑
j=1

⎛
⎝ 1

N

N−|m|∑
n=1

d j
k[n]d j

k[n + |m|]
⎞
⎠ , |m| ≤ N − 1 (17)
Fig. 6. Equivalent transfer functions Ŝk( f ), 1 ≤ k ≤ 7. 5000 wGn realizations were 
decomposed by our method and the average behavior was estimated according to 
(16) and (17), following [12].

is the average (over the J realizations) of the empirical estimates 
of the auto-correlation function where d j

k is the k-th mode of the 
j-th wGn realization. Results are depicted in Fig. 6. It can be ap-
preciated that they are very similar to those reported in [12,13]. 
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Self-similarity seems to emerge. In Fig. 7 we plot log2 f ∗
k vs. k, 

where f ∗
k = arg max f | Ŝk( f )|, and a linear fit is superimposed. The 

slope ρ = 1.53 of that fit verifies f ∗
k ∝ ρ−k and we can state 

(as in [12,27])

Ŝk′( f ) = Ŝk(ρ
k′−k f ) (18)

for k′ > k ≥ 2. It was shown in [29] that self-similarity coefficient 
ρ decreases as the number of sifting iterations increases. The rel-
atively low value for ρ obtained in our example (far from the 
quasi-dyadic case where ρ ≈ 2 for ten sifting iterations [13,29]) 
indicates that one sifting iteration of our method is equivalent to 
several iterations with EMD. This feature was already observed in 
Section 5.1.

5.4. Local narrow band signals decomposition

In the operator-based approach introduced in [23], the authors 
mentioned the inability of their method to separate the signal 
x(t) = sin(2t) − cos(4t)/3. We present in Fig. 8 the decomposi-
tion of such signal by the method here proposed and EMD. We 
used λ = 1 and two sifting iterations. Our method achieved RSEs 
of 1.24 × 10−2 and 1.40 × 10−3 for first and second mode respec-
tively. The RSEs for EMD were: 5.37 × 10−2 and 5.90 × 10−3.

The authors in [23] also stated that the signal x(t) = sin(2t) −
(1 + cos(4t))/4 + sin(8t) − cos(16t)/3 cannot be separated either 

Fig. 7. Positions of equivalent transfer functions maxima. The base 2 logarithm of 
f ∗
k is plotted against mode index k. Linear fit is superimposed and the estimated 

scaling factor is ρ = 1.53.
by their approach nor EMD. For this reason, they proposed a hy-
brid approach to perform this task. In contrast, our method is able 
to decompose x(t) by itself, with no further processing. It can be 
appreciated in Fig. 9 the decomposition results obtained by both 
EMD and the method here proposed. While our proposal retrieves 
the four components (except for an irrelevant DC offset in d3 and 
a3), EMD cannot separate the two slowest components in two dif-
ferent modes. Three sifting iterations were needed and, as in the 
previous examples, we used λ = 1 (in contrast to [23], where the 
regularization parameter value needed to be tuned for each single 
experiment).

5.5. Real data

When EMD deals with real data, it frequently experiences mode 
mixing problems, especially in noisy cases. Although Ensemble 
EMD (EEMD) [20] alleviates this problem, it creates new ones: the 
reconstructed signal (i.e. the sum of the modes) includes residual 
noise and the final averaging is not straightforward since differ-
ent realizations of signal plus noise may produce different number 
of modes. The Complete EEMD with Adaptive Noise (CEEMDAN) 
[25,26] solves this problem by computing a unique first residue 
(independent from the noise realization) and adding a particular 
noise at each stage. However, the selection of the optimal parame-
ters (amplitude of added noise and ensemble size) is still an open 
issue [30], and the ensemble methods cannot guarantee the fulfill-
ment of IMF conditions.

The new method here presented makes no use of added noise, 
so the exact reconstruction of the signal is not a problem. Also, its 
sifting iterations appear to be “stronger” (one of them is equivalent 
to several of EMD’s).

To illustrate the advantages of our method in real data, we de-
compose a voice signal (sustained /a/ vowel). We used λ = 1, the 
stopping criterion (9) with z = 10−4 (suggested value in [20]) and 
the number of sifting iterations not fixed but limited to a maxi-
mum of 30. Results are presented on left column of Fig. 10. For 
comparison purposes, we decomposed the same signal also via
EMD, EEMD and CEEMDAN. We used the same stopping criterion 
for EMD, with no limit for the sifting iterations. Both noise-assisted 
methods (EEMD and CEEMDAN) used the same parameters: 0.2 for 
the amplitude of the added noise [30] and 20 for the ensemble 
size; and also the same stopping criterion.

When analyzing a quasiperiodic signal as the one studied here, 
one may expect to extract quasiperiodic components. That is the 
case for the method here presented. On the first column of Fig. 10, 
the first two modes seem to extract most of the noise, while 
modes three to six seem to express most of the signal informa-
tion. Moreover, the sixth mode captures almost perfectly F0, the 
fundamental frequency of the voice signal (inverse of the distance 
Fig. 8. The signal x(t) = sin(2t) − cos(4t)/3 is on the top row. In second and third row are original signal components (black solid line), results with our method UOA-EMD 
(red [gray] solid line), and results with traditional EMD (black dashed line). Signal x(t) cannot be correctly decomposed by the proposal in [23].
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Fig. 9. The signal x(t) = sin(2t) − (1 + cos(4t))/4 + sin(8t) − cos(16t)/3 is on the top row. In second, third, fourth and fifth row are original signal components (black solid 
line), results with our method UOA-EMD (red [gray] solid line), and results with traditional EMD (black dashed line).

Fig. 10. Decomposition of a voice signal. Our method UOA-EMD seems to achieve the most regular decomposition and sixth mode catches F0 almost perfectly. EMD is not 
able to do so. EEMD’s seventh mode captures F0 quite well but misses the final cycle. CEEMDAN’s seventh mode captures F0.
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between successive glottal impulses). In contrast, EMD (second col-
umn of Fig. 10) presents mode mixing between modes two and 
three, and between modes three and four. Also, no EMD mode 
is able to catch F0. In third column of Fig. 10, EEMD’s modes 
three to seven are quite regular and quasiperiodic, although it can 
be observed positive minima and negative maxima in the fourth 
mode, in clear violation to IMF condition (i). Final trend is spread 
between modes nine to eleven because different realizations pro-
duced different number of modes. Besides these problems, the 
major drawback in this case is the reconstruction error, which is 
quite large for this ensemble size. CEEMDAN’s modes (last column 
of Fig. 10) are also quite regular, with mode four violating IMF 
condition (i). The results in this application are in clear favor of 
the method proposed in the present work.

6. Conclusions

We have proposed an alternative formulation for EMD. Our ap-
proach is based on an unconstrained problem, with a unique ana-
lytic solution and only one parameter is needed (λ) in the problem 
statement. An additional benefit for the user, is that the value of 
λ does not need to be perfectly fit because the results can be re-
fined by sifting, although λ = 1 seems to be a reasonable choice 
for most cases. Also, a key element such as matrix P is straightfor-
ward to construct. For these reasons our algorithm is simpler than 
previous approaches. Additionally, the results here presented can 
be easily reproduced, since analytic solution of the optimization 
problem has been derived.

The construction of the modes makes our method complete be-
cause their sum retrieves the original signal, in contrast to [11]
where the reconstruction is not guaranteed. Computational cost is 
similar to EMD’s. For some simulations, the cost was in favor of our 
method. We must remark that the cost of our proposal is at least 
two orders of magnitude lower than those of other optimization-
based methods (Pustelink et al. and Oberlin et al.).

By making no explicit use of envelopes to find the local mean, 
the method introduced in this paper avoids possible problems 
present in the original formulation of EMD, such as overshoot (un-
dershoot), i.e. global maximum (minimum) of the upper (lower) 
envelope greater (lesser) than global maximum (minima) of the 
signal [14]. As in traditional EMD, one must avoid to use an ex-
tremely large number of sifting iterations, in order to not over-
smooth the modes’ envelopes.

Summarizing, the new method here presented catches most 
flavors of the original EMD, with a more solid mathematical frame-
work, which could lead to shed light on analytical properties of 
EMD. It also works in a wide range of applications where other op-
timization approaches fail. Additionally, its application to real and 
simulated signals yields comparable or even better results than 
traditional EMD.
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