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Abstract
Justification Logic (JL) is a refinement of modal logic in which assertions of knowledge and belief are accompanied by
justifications: the formula � s�A states that s is a ‘reason’ for knowing/believing A. We study the computational interpretation
of JL via the Curry–Howard isomorphism in which the modality � s�A is interpreted as: s is a type derivation justifying the
validity of A. The resulting lambda calculus is such that its terms are aware of the reduction sequence that gave rise to them.
This serves as a basis for understanding systems, many of which belong to the security domain, in which computation is
history-aware.
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1 Introduction

This article is concerned with the computational interpretation of Justification Logic (more precisely,
the initial Justification Logic system introduced under the name of Logic of Proofs) [4–6] (JL).
JL is a refinement of modal logic in which assertions of knowledge and belief are accompanied by
justifications: the modality � s�A states that s is a ‘reason’ for knowing/believing A. The starting point
of this work is the observation that if s is understood as a typing derivation of a term of type A, then
a term of type � s�A should include some encoding of s. If this typing derivation is seen as a logical
derivation, then any normalization steps applied to it would produce a new typing derivation for A.
Moreover, its relation to s would have to be made explicit in order for derivations to be closed under
normalization (in type systems parlance: for Subject Reduction (SR) to hold). This suggests that the
computational interpretation of JL should be a programming language that records its computation
history. This work is an attempt at making these ideas precise.

1.1 JL and Hypothetical JL

In JL proofs are represented as combinatory terms (proof polynomials). Proof polynomials are
constructed from proof variables and constants using two operations: application ‘·’and introspection
‘!’. The usual propositional connectives are augmented by a new one: given a proof polynomial s and
a proposition A build � s�A. The intended reading is: ‘s is a proof of A’. The axioms and inference
schemes of JL are as follows where, in this work, we restrict the first axiom to minimal logic rather
than classical logic:

A0. Axiom schemes of minimal logic in the language of JL
A1. � s�A⊃A “verification”
A2. � s� (A⊃B)⊃ (� t �A⊃� s ·t �B) “application”
A3. � s�A⊃� !s�� s�A “introspection”
R1. ��A⊃B and ��A implies ��B “modus ponens”
R2. If A is an axiom A0-A3, and c is a proof constant, then

��c �A
“necessitation”
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2 JL and audited computation

Figure 1. Failure of SR for the naive modal introduction scheme.

In [3] a Natural Deduction presentation of this minimal fragment of JL is studied. It is based on
work on judgemental reconstruction [18] of intuitionistic S4 [13–15]; judgements are introduced in
which a distinction is made between propositions whose truth is assumed from those whose validity
is assumed. Moreover, the notion of proof code is incorporated:

�;��A |s.

This judgement reads as: ‘proof code s is evidence that A is true, assuming validity of hypothesis in
� and truth of hypothesis in �’. In such hypothetical judgements with proof codes, evidence s is
a constituent part of it without which the proposed reading is no longer possible. Its importance is
reflected in the following introduction scheme for the modality, where ‘·’stands for an empty context:

�;·�A |s
�I0

�;��� s�A |!s
.

This scheme internalizes logical derivations of validity: If s is evidence that A is unconditionally
true, then it is true that s is a proof of A. The new witness to this fact is registered as the evidence
!s. The ‘!’ operator is reminiscent of that of proof polynomials. However, in our article, proof terms
such as s encode Natural Deduction derivations and thus are no longer the proof polynomials of JL.

Unfortunately, the system which includes �I0 is not closed under substitution of derivations. Eg.
the derivation in Figure 1 (left) would produce, after a step of normalization, the derivation of Figure 1
(right) where π3 is obtained from π1, π2 and an appropriate substitution principle (see Section 2.2).
The latter derivation is invalid since proof codes sa

t (replace all free occurences of a in s by t)
and (λaA.s)·t do not coincide. SR may be regained, however, by introducing a judgement stating
compatibility of proof codes, where e below is called a compatibility code1 or, more suggestively,
trail and is witness to the compatibility between the derivations denoted by the proof codes s and t:

�;��Eq(A,s,t) |e (1)

together with a new scheme:

�;��A |s �;��Eq(A,s,t) |e
Eq

�;��A | t
.

Examples of trails are r(s) if Eq(A,s,s) is proved using reflexivity, ba(s1,s2) (for appropriate proof
codes s1 and s2) if Eq(A,s,t) is proved using β-equality, app(e1,e2) if s and t encode eliminations
of implication and Eq(A,s,t) is proved by proving the compatibility of the arguments to these

1They are essentially ‘proof terms’ in rewriting theory [25, Ch. 8].
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eliminations (with e1 and e2), and t(e1,e2) if it is proved using transitivity. Details are provided in
Section 2.2, however, the interested reader can take a peek at Figure 3.

Normalization of derivations gives rise to numerous instances of Eq. These may be permuted past
any inference scheme except a box introduction �I0, as may be easily verified from the full set of
inference schemes introduced in Section 2. This suggests a modified introduction scheme for �:

�;·�A |s �;·�Eq(A,s,t) |e
�I1

�;��� t �A | t

and a normalization procedure over canonical derivations where occurrences of Eq are permuted
until they reach the innermost instance �I1 at which point they permute to the upper right-hand
hypothesis (cf. Section 3). This procedure spells out a natural notion of locality of trails given in
terms of scope: trails are local to the innermost box introduction scheme. The resulting system,
may be shown strongly normalizing and confluent by applying properties of higher-order rewrite
systems [3].

Although the resulting system in which reduction and their corresponding trails are confined
to local computation units is satisfying from a purely logical point of view, from a programming
language point of view it would be desirable for trails themselves to be reifiable. We are aware of
two such examples. The first is the need to inspect trails in order to determine whether access to
resources is granted or not [1] (see Section 1.2). Another is a study on information confidentiality
based on incorporating permissions into the information flow analysis and then using history-based
access control to determine the current available permissions [7]. Both examples modify the control
flow of the program depending on the inspection of trails. We therefore incorporate trail inspection
and perform an analysis of normalization in the resulting logical system. Normalization in this
extended setting suggests how to approach non-trivial operations, such as trail variable renaming
and trail persistence, of the run-time environment of programming languages modelled on these
ideas, that must be taken into account in order to obtain sound implementations (in the sense that SR
is upheld). Access to trails is achieved through trail variables together with an associated recursion
scheme:

α :Eq(A)∈� �;·;·�T B |θ
TI

�;�;��B |αθ

.

Here � is a context of trail variables. T B is a fixed mapping from trail constructors (e.g. r,ba,app,t)
to logical propositions while θ is a mapping from trail constructors to proof codes, parameterized
over a proposition B. This mapping is such that if c is a trail constructor, then θ (c) is the proof code
associated with the proposition T B(c). Some sample defining cases, where “�” stands for definitional
equality, are T B(ba)�B, the type of the branch of the recursor in case that a β-step took place and
T B(app)�B⊃B⊃B, the type of the branch of the recursor in case a reduction step took place under
an application. Full details are developed in Section 2.

Finally, the local (as mentioned above) scope of trail variables is reflected in the, now final,
introduction scheme for �. In this scheme, the proof code �.t binds all free occurrences of the trail
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variables in � and the context �′ of the judgement in the conclusion allows weakening of trail
variables:

�;·;��A |s �;·;��Eq(A,s,t) |e
�I

�;�;�′ ���.t �A |�.t
.

The associated principal reduction is when an instance of TI is used in a derivation of the top left
judgement of �I (see Section 3).

Following this informal discussion of hypothetical JL (JLh), we next briefly describe its term
assignment λh, the calculus of audited units, through an example. The formal presentation of JLh is
given in Section 2.

1.2 A calculus of audited units

We describe a sample program in λh that modelsAbadi and Fournet’s [1] mechanism for access control
based on execution history. First we recall the mechanism itself. Proposed as an enhanced alternative
to Java stack-inspection, it consists in controlling access to objects depending on which functions
were invoked previously in time. Each function is (statically) assigned a set of permissions. At any
moment, the current set of permissions is computed by taking the intersection of the permissions of
all function calls in the history of the computation. For example, assuming we have untrusted user-
defined function bad, trusted user-defined function eraseFile, a system function Win32Delete that
deletes a file and that eraseFile calls Win32Delete, we might have the following assigned permissions
to each of these: perms(bad) � ∅, perms(Win32Delete) � {FileIOPerm} and perms(eraseFile) �
{FileIOPerm}. Here the function called bad has no permissions, whereas eraseFile is assigned
the permission to perform file input/output. The only valid executions of a program involving the
above-mentioned functions is when bad was never invoked.

In λh computation which is to be audited takes place in so-called audited (computation) units
which are typed using �I. Such expressions are of the form !α1,...,αn

e M where M is the body, e the
trail of computation having produced M and αi, i∈1..n, the trail variables that are used for consulting
the computation trail. The scope of these variables is M. The expression e is part of the run-time
environment, hence not explicitly declared by the programmer, and is local to the audited unit in the
sense that different audited units will have their own trails. Consider the following top-level function:

eraseFile .= !αλaStr .if FileIOPerm∈αϑ then Win32Deletea
else securityException; (2)

This audited unit uses only one trail variable, namely α. Also, the trail e is not depicted since, as
mentioned, it is not necessary for the programmer to specify it given that it will be maintained by the
run-time system. We mention its existence all the same since it will appear during the term reduction
process. The body of the audited unit consists of a function which, once it has been supplied with an
appropriate argument for a of string type, either deletes the file if it has the appropriate permission
(FileIOPerm) or raises an exception if it does not.

The trail variable α supplies the function with access to the computation trail which will be extant
when it is evaluated. Evaluation of trail variables inside an audited unit consists in first looking up
the trail and then immediately traversing it, replacing each constructor of the trail with a term of
the appropriate type.2 The mapping ϑ that replaces trail constructors with terms is called a trail

2In the same way as one recurs over lists using fold in functional programming, replacing nil and cons by appropriate
terms.
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replacement. All instances of trail inspection are thus written αϑ where α is a (local) trail variable
and ϑ a trail replacement. In our example, the trail replacement should produce the intersection
of the permissions of all functions invoked during the history of the computation. It thus takes
the form:

ϑ(r)=ϑ(ti) � ∅
ϑ(s)=ϑ(abs) � λaN.a

ϑ(t)=ϑ(app)=ϑ(let) � λaN.λbN.a∩b

ϑ(trpl) � λ�a �N.a1 ∩ ..∩a11
ϑ(ba)=ϑ(bb) � ∅

ϑ(deff ) � {perms(f)}
.

Here N is the type of natural numbers; λ�a �N abbreviates λaN

1 .....λaN

11, 11 being the total number of trail
constructors in λh; the expressions r,ba,app,t, etc., are the trail constructors (cf. Section 2.1) which
are maintained by the run-time system. In particular, deff is registered in the trail when an unfolding
of the user-defined function f takes place. Therefore, as we will see, evaluation of FileIOPerm∈αϑ

shall return false if e includes the trail constructor defbad.
We revisit this example in Section 4.2 in order to illustrate its reduction behaviour, once the formal

definitions of λh are in place.

1.3 Contributions and related work

We develop a proof theoretical analysis of a λ-calculus which produces a trail of its execution. This
builds on ideas stemming from JL, a judgemental analysis of modal logic [13–15, 18] and Contextual
Modal Type Theory [23]. More precisely, we argue how a fragment of JL whose notion of validity
is relative to a context of trail variables may be seen, via the Curry–Howard interpretation, as a type
system for a calculus that records its computation history.

S. Artemov introduced JL in [4–6]. For Natural Deduction and Sequent Calculus presentations
consult [3, 5, 12]. Computational interpretation of proofs in JL is studied in [2, 3, 10]; however,
none of these address computation trails. From a type theoretic perspective, we should mention the
theory of dependent types [8] where types may depend on terms, in much the same way that a type
� s�A depends on the proof code s. However, dependent type theory lacks a notion of internalization
of derivations as is available in JL.

Contributions of JL towards mobile code interpretations of intuitionistic S4 [17, 19–22] have
also been explored. The result is a calculus of certified mobile units in which a unit consists of
mobile code and a certificate [10]. The type system guarantees that when these mobile units are
composed to form new ones, the certificates that are constructed out of those of the composed units, are
correct.

Finally, a computational interpretation via the Curry–Howard isomorphism for JL, that is
based on classical logic and including the plus proof polynomial constructor, has been developed
too [11].

1.4 Structure of the article

Section 2 introduces JLh. Section 3 studies normalization in this system. We then introduce a term
assignment for this logic in order to obtain a lambda calculus with computation history trails, λh.
This calculus is endowed with a call-by-value operational semantics and type safety of this semantics
w.r.t. the type system is proved. Section 5 addresses strong normalization. Finally, we conclude and
suggest further avenues for research. This work is a revision and extension of [9].

 by guest on N
ovem

ber 22, 2015
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[14:49 10/6/2015 exv037.tex] LogCom: Journal of Logic and Computation Page: 6 1–26

6 JL and audited computation

2 Hypothetical JL

JL is a modal logic of provability which has a sound and complete arithmetical semantics. This
section introduces JLh a Natural Deduction presentation for a fragment of JL, namely the restriction
of JL to minimal propositional JL without the ‘plus’ polynomial proof constructor. The inference
schemes we shall define give meaning to hypothetical judgements with proof codes �;�;��A |s
whose intended reading is: ‘s is evidence that A is true under validity hypothesis �, truth hypothesis
� and trail hypothesis �.’

We assume given term variables a,b,..., audited unit variables u,v,... and trail variables α,β,....
A proposition in JLh is either a propositional variable P, an implication A⊃B or a modality ��.s�A:

A ::=P|A⊃A| ��.s�A.

In ��.s�A, ‘�.’ binds all occurrences of trail variables in proof code s and hence may be renamed
at will. Contexts are given by the following grammar:

� ::= ·|�,u :A[�] Validity context
� ::= ·|�,a :A Truth context
� ::= ·|�,α :Eq(A) Trail context

.

Contexts are considered multisets; ‘·’ denotes the empty context. Variables in � are assigned a
type of the form Eq(A). The type Eq(A) in an assignment α :Eq(A) may informally be understood
as ∃x,y.Eq(A,x,y) (where x,y stand for arbitrary type derivations of propositions of type A) since
α stands for a proof of compatibility of two type derivations of propositions of type A about which
nothing more may be assumed. In the subexpression of a judgement of the form �;�;� we assume
all variables to be fresh. Proof codes are defined as:

s ::= a truth hypothesis
| λaA.s abstraction
| s ·s application
| 〈u;σ 〉 validity hypothesis
| �.s box introduction
| let(uA[�].s,s) box elimination
| αθ trail inspection

They bear witness to proofs of propositions, encoding instances of the inference schemes of JLh

which we shall introduce shortly. Proof codes rely on the following supporting notions:

Renaming σ ::= {α1/β1,...,αn/βn}
Trail replacement θ ::= {r/s,s/s,t/s,ba/s,bb/s,ti/s,abs/s,app/s,let/s,trpl/s} .

A renaming σ is a bijective map over trail variables. A trail replacement is a mapping θ from the
set of trail constructors to proof codes. Free truth variables of s (fvT(s)), free validity variables of s
(fvV(s)) and free trail variables of s (fvTrl(s)) are defined as expected.

2.1 Inference schemes

The meaning of hypothetical judgements with proof codes is given by the axiom and inference
schemes of Figure 2 and determine the JLh system. We briefly comment on the schemes. First note
that � and (hence also) � are affine hypothesis whereas those in � are intuitionistic (cf. Rem. 4).
The axiom scheme Var states that judgement ‘�;�;��A |a’ is evident in itself: if we assume a
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Figure 2. Inference schemes for hypothetical judgements with proof codes.

is evidence that proposition A is true, then we may immediately conclude that A is true with proof
code a. Similarly, the assumption that A is valid allows us to conclude that it is true, as indicated by
mVar. However, since the validity of A depends on trail assumptions �, they must be renamed to
fit the current context. The schemes for introduction and elimination of implication need no further
explanation. The introduction scheme for the modality has already been motivated in the introduction.
The compatibility code e of �I can take one of the following forms, where trpl(e1,...,e10)3 is usually
abbreviated trpl(e):

e ::= r(s) reflexivity
| s(e) symmetry
| t(e,e) transitivity
| ba(aA.s,s) β

| bb(uA[�].s,�.s) β�

| ti(θ,α) trail inspection
| abs(aA.e) abstraction compatibility
| app(e,e) application compatibility
| let(uA[�].e,e) let compatibility
| trpl(e1,...,e10) replacement compatibility

The set of compatibility code constructors is denoted C�{r,s,t,ba,bb,ti,abs,app,let,trpl}.
The schemes defining the judgement (1) are given in Figure 3. There are four proof code

compatibility axioms (EqRefl, Eqβ, Eqβ� and EqTI) and six inference schemes (the rest). The
axioms are used for recording principal contractions (Section 3) at the root of a derivation and schemes
EqAbs, EqApp, EqLet and EqTI enable the same recording inside subderivations. Regarding trail
inspection (EqTI in Figure 3) recall from the introduction that we append each reference to a trail
variable with a trail replacement. Therefore, the trail replacement has to be accompanied by proof
codes, one for each term that is to replace a trail constructor. The proof code for each of these proofs
is grouped as θ and is called a proof code trail replacement: �;·;·�T B |θ which is a shorthand for

3We have dropped the code for top-level function declarations used in the introduction, hence there are a total of 10.
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Figure 3. Schemes defining proof code compatibility judgement.

�;·;·�T B(c) |θ (c), for each c∈C, where T B(c) is the type of term that replaces the trail constructor
c. These types are defined as follows:

T B(r) � B
T B(s) � B⊃B
T B(t) � B⊃B⊃B

T B(ba)=T B(bb) � B
T B(ti) � B

T B(abs) � B⊃B
T B(app) � B⊃B⊃B
T B(let) � B⊃B⊃B

T B(trpl) � B⊃ ...⊃B︸ ︷︷ ︸
10 copies

⊃B.

Note that there are no congruence schemes for the modality in Figure 3. This follows from our
discussion in the introduction motivating �I1, and consequently also �I. All instances of Eq resulting
from applications of principal contractions will be absorbed by the upper right hypothesis of �I, after
being permuted towards its innermost instance of �I (cf. Section 3.2; case Eq - �I).

Remark 1
It should be noted that the proof code s in a derivable judgement �;�;��A |s does not encode the
derivation of this judgement due to the presence of Eq. The term assignment for JLh is the topic of
Section 4.

2.2 Basic metatheoretic results

Some basic meta-theoretic results about JLh are presented next. The judgements in the statement of
these results are decorated with terms (such as M, N and Ma

N,t below) which may safely be ignored
for the time being since they are introduced in Section 4 when we discuss the term assignment for
JLh. The first result states that hypothesis may be added without affecting derivability.
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Lemma 2.1 (Weakening)
(1) If �;�;��M :A |s is derivable, then so is �′;�′;�′ �M :A |s, where �⊆�′, �⊆�′ and

�⊆�′.
(2) If �;�;��Eq(A,s,t) |e is derivable, then so is �′;�′;�′ �Eq(A,s,t) |e, where �⊆�′, �⊆�′

and �⊆�′.

The second and third results address two substitution principles. The first principle is about
substitution of truth variables. We abbreviate �1,�2 with �1,2. If �=�1,a :A,�3, we write �a

�2
for �1,2,3. Also, we write sa

t for the substitution of all free occurrences of a in s by t and define it as
follows (and similarly for ea

s ):

aa
s � s

ba
s � b

(λbA.t)
a
s � λbA.tas

(t1 ·t2)a
s � t1

a
s ·t2a

s
〈u;σ 〉a

s � 〈u;σ 〉
(�.t)a

s � �.t
let(uA[�].t2,t1)

a
s � let(uA[�].t2a

s ,t1
a
s )

(αθ )a
s � αθ

r(t)a
s � r(tas )

s(e)a
s � s(ea

s )
t(e1,e2)a

s � t(e1
a
s ,e2

a
s )

ba(bA.r,t)
a
s � ba(bA.ra

s ,tas )
bb(uA[�].r,�.t)

a
s � bb(uA[�].ra

s ,�.t)
ti(θ,α)a

s � ti(θ,α)
abs(bA.e)

a
s � abs(bA.ea

s )
app(e1,e2)a

s � app(e1
a
s ,e2

a
s )

let(uA[�].e1,e2)
a
s � let(uA[�].e1

a
s ,e2

a
s )

trpl(e)a
s � trpl(ea

s ).

Note that in the third clause of the definition of sa
t we assume that b has been renamed away from s.

Also, in the sixth clause, t is assumed to have no free occurrences of truth variables.

Lemma 2.2 (Subst. Principle for Truth Hypothesis)
Suppose �;�2;�2 �N :A | t is derivable and a :A∈�1.

(1) If �;�1;�1 �M :B |s, then �;�1
a
�2

;�1,2 �Ma
N,t :B |sa

t .
(2) If �;�1;�1 �Eq(B,s1,s2) |e, then �;�1

a
�2

;�1,2 �Eq(B,(s1)a
t ,(s2)a

t ) |ea
t .

The second substitution principle is about substitution of validity variables. Substitution of validity
variables in proof codes is denoted su

�.t . It is defined as follows:

au
�.s � a

〈u;σ 〉u
�.s � sσ

〈v;σ 〉u
�.s � 〈v;σ 〉

(λbA.t)
u
�.s � λbA.tu�.s

(t1 ·t2)u
�.s � t1

u
�.s ·t2u

�.s
(�′.t)u

�.s � �′.tu�.s
let(vA[�′].t2,t1)

u
�.s � let(vA[�′].t2u

�.s,t1
u
�.s)

(αθ )u
�.s � α(θ )u

�.s.

Note that Cu
s stands for the proposition resulting from replacing all occurrences of u in C with s; in

the second clause the domain of σ is �; and all trail variables in � are renamed by means of the
renaming σ . Also, in the last clause, (θ )u

�.s denotes the trail replacement where ((θ )u
�.s)(c)=θ (c)u

�.s,
for all c∈C.
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Lemma 2.3 (Subst. Principle for Validity Hypothesis)
Suppose judgements �1,2;·;�1 �M :A |s and �1,2;·;�1 �Eq(A,s,t) |e1 are derivable. Let ��
�1,u :A[�1],�2. Then:

(1) If �;�;�2 �N :C |r, then �1,2;�;�2 �Nu
�1.(M,t,e1) :Cu

�1.t
|ru

�1.t
.

(2) If �;�;�2 �Eq(C,s1,s2) |e2, then �1,2;�;�2 �Eq(Cu
�1.t

,s1
u
�1.t

,s2
u
�1.t

) |e2
u
�1.t

.

Remark 2
In this substitution principle, substitution of u :A[�1] requires not only a derivation of �1,2;·;�1 �M :
A |s, but also its computation history �1,2;·;�1 �Eq(A,s,t) |e1. This logical requirement is reflected
in the form of trail persistence in the programming language (cf. Definition 4.1, in particular the clause
for 〈u;σ 〉).

The last ingredient we require before discussing normalization is the following lemma which
is used for computing the results of trail inspection. Similarly to the trail replacement θ already
introduced we shall also make use of a mapping ϑ from trail constructors to terms: eϑ produces a
term by replacing each trail constructor in e by its associated term via ϑ . An example of such a trail
replacement was given in the introduction (cf. Section 1.2). Note that although we refer to both θ

and ϑ as trail replacements, eθ produces a proof code (rather than a term) by replacing each trail
constructor in e with its associated proof code via θ . If ϑ agrees with θ , then they may be used for
eliminating a trail e.

Lemma 2.4
�;·;·�ϑ :T B |θ and �;·;��Eq(A,s,t) |e implies �;·;·�eϑ :B |eθ .

3 Normalization

Normalization equates derivations and since JLh internalizes its own derivations by means of
proof codes, normalization steps must explicitly relate proof codes in order for SR to hold.
Normalization is modelled as a two step process. First a principal contraction is applied, then a
series of permutation conversions follow. Principal contractions introduce witnesses of derivation
compatibility. Permutation conversions standardize derivations by moving these witnesses to the
innermost � introduction scheme. They permute instances of Eq past any of the inference schemes
in {⊃ I,⊃E,�E,Eq,TI}. Eq just above the left hypothesis of an instance of �I is composed with the
trail of the corresponding unit (cf. end of Section 3.2). In this sense, instances of �I determine the
scope of the audited unit.

3.1 Principal contractions

There are three principal contractions (β, β� and TI-contraction), the first two of which rely on the
substitution principles discussed earlier.

3.1.1 Case β

The first replaces a derivation of the form:
π1

�;�1,a :A;�1 �B |s
⊃ I

�;�1;�1 �A⊃B |λaA.s

π2

�;�2;�2 �A | t
⊃E

�;�1,2;�1,2 �B | (λaA.s)·t
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JL and audited computation 11

by the following, where π3 is a derivation of �;�1,2;�1,2 �B |sa
t resulting from π1 and π2 and the

Substitution Principle for Truth Hypothesis:

π3

π1

�;�1,a :A;�1 �B |s

π2

�;�2;�2 �A | t

�;�1,2;�1,2 �Eq(B,sa
t ,(λaA.s)·t) |ba(aA.s,t)

Eq
�;�1,2;�1,2 �B | (λaA.s)·t

.

3.1.2 Case β�

The second contraction replaces:

π1

�;·;��A |s

π2

�;·;��Eq(A,s,t) |e1
�I

�;�1;�1 ���.t �A |�.t

π3

�,u :A[�];�2;�2 �C |r
�E

�;�1,2;�1,2 �Cu
�.t |let(uA[�].r,�.t)

with the following derivation where π4 is a derivation of �;�1,2;�1,2 �Cu
�.t | tu

�.t resulting from π1,
π2, π3 and the Substitution Principle for Validity Hypothesis followed by weakening (of �1 and �1):

π

π1

�;·;��A |s

π2

�;·;��Eq(A,s,t) |e1

π3

�,u :A[�];�2;�2 �C |r
Eqβ�

�;�1,2;�1,2 �Eq(Cu
�.t,r

u
�.t,let(uA[�].r,�.t)) |bb(uA[�].r,�.t)

Eq
�;�1,2;�1,2 �Cu

�.t |let(uA[�].r,�.t)

.

3.1.3 Case TI
TI-contraction models audit trail inspection. Consider the following derivation, where �1 ⊆�2,
�′ ⊆� and the branch from the depicted instance of TI in π1 to its conclusion has no instances of �I:

α :Eq(A)∈�1

�π2

�;·;·�T B |θ
TI

�;�;�1 �B |αθ···· π1

�′;·;�2 �A |s

π3

�′;·;�2 �Eq(A,s,t) |e
�I

�′;�′;�′ ���2.t �A |�2.t

.

The above depicted instance of TI in π1 is replaced by the following derivation where π4
is obtained from all the �π2 and π3 by resorting to Lemma 2.4 and weakening (Lemma 2.1).
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12 JL and audited computation

Also, �;·;�2 �Eq(A,s,t) |e is obtained from �′;·;�2 �Eq(A,s,t) |e by weakening (Lemma 2.1).

π4

�;�;�1 �B |eθ

�;·;�2 �Eq(A,s,t) |e

�π2

�;·;·�T B |θ
EqTI

�;�;�1 �Eq(B,eθ,αθ ) | ti(θ,α)
Eq

�;�;�1 �B |αθ

.

3.2 Permutation conversions

As for the permutation conversions, they indicate how Eq is permuted past any of the inference
schemes in {⊃ I,⊃E,�E,Eq,TI}.

3.2.1 Case ⊃ I
In the first case, Eq permutes past ⊃ I by replacing:

π1

�;�,a :A;��B |s

π2

�;�,a :A;��Eq(B,s,t) |e
Eq

�;�,a :A;��B | t
⊃ I

�;�;��A⊃B |λaA.t

with the following where π3 is a derivation of �;�;��A⊃B |λaA.s obtained from π1 and ⊃ I:

π3

π2

�;�,a :A;��Eq(B,s,t) |e
EqAbs

�;�;��Eq(A⊃B,λaA.s,λaA.t) |abs(aA.e)
Eq

�;�;��A⊃B |λaA.t

.

3.2.2 Case ⊃E
There are two permutation conversions associated with the ⊃E inference scheme depending on
whether the instance of Eq is the last scheme in the left or the right hypothesis. In the former, the
permutation conversion consists in replacing:

�;�1;�1 �A1 ⊃A2 |s
�;�1;�1 �Eq(A1 ⊃A2,s,t) |e Eq

�;�1;�1 �A1 ⊃A2 | t �;�2;�2 �A1 |r
⊃E

�;�1,2;�1,2 �A2 | t ·r
with the derivation:

�;�1;�1 �A1 ⊃A2 |s
�;�2;�2 �A1 |r ⊃E

�;�1,2;�1,2 �A2 |s ·r
π1

EqApp
�;�1,2;�1,2 �Eq(A2,s ·r,t ·r) |app(e,r(r))

Eq
�;�1,2;�1,2 �A2 | t ·r

,
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JL and audited computation 13

where π1 is:

�;�1;�1 �Eq(A1 ⊃A2,s,t) |e

�;�2;�2 �A1 |r
EqRefl

�;�2;�2 �Eq(A1,r,r) |r(r)
EqApp

�;�1,2;�1,2 �Eq(A2,s ·r,t ·r) |app(e,r(r))

.

In the latter the permutation conversion consists in replacing:

�;�1;�1 �A1 ⊃A2 |r

�;�2;�2 �A1 |s �;�2;�2 �Eq(A1,s,t) |e
Eq

�;�2;�2 �A1 | t
⊃E

�;�1,2;�1,2 �A2 |r ·t
with the derivation:

�;�1;�1 �A1 ⊃A2 |r
�;�2;�2 �A1 |s ⊃E

�;�1,2;�1,2 �A2 |r ·s
π1

EqApp
�;�1,2;�1,2 �Eq(A2,r ·s,r ·t) |app(r(r),e)

Eq
�;�1,2;�1,2 �A2 |r ·t

,

where π1 is:

�;�1;�1 �A1 ⊃A2 |r
EqRefl

�;�1;�1 �Eq(A1 ⊃A2,r,r) |r(r) �;�2;�2 �Eq(A1,s,t) |e
EqApp

�;�1,2;�1,2 �Eq(A2,r ·s,r ·t) |app(r(r),e)

.

3.2.3 Case �E
For the same reasons that there are two permutation conversions associated with ⊃E, there are also
two associated with �E. The first consists in replacing:

�;�1;�1 ���.s1 �A |s2
�;�1;�1 �Eq(��.s1 �A,s2,r) |e Eq

�;�1;�1 ���.s1 �A |r �,u :A[�];�2;�2 �C | t
�E

�;�1,2;�1,2 �Cu
�.s1

|let(uA[�].t,r)

with:
π1

�E
�;�1,2;�1,2 �Cu

�.s1
|q

π2
EqLet

�;�1,2;�1,2 �Eq(Cu
�.s1

,q,q′) |e′
Eq

�;�1,2;�1,2 �Cu
�.s1

|let(uA[�].t,r)

,

where q is the proof code let(uA[�].t,s2) and π1 is:

�;�1;�1 ���.s1 �A |s2 �,u :A[�];�2;�2 �C | t
�E

�;�1,2;�1,2 �Cu
�.s1

|let(uA[�].t,s2)
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14 JL and audited computation

and π2 is the following derivation where q′ is let(uA[�].t,r), e′� let(uA[�].r(t),e):

�;�1;�1 �Eq(��.s1 �A,s2,r) |e

�,u :A[�];�2;�2 �C | t
EqRefl

�,u :A[�];�2;�2 �Eq(C,t,t) |r(t)
EqLet

�;�1,2;�1,2 �Eq(Cu
�.s1

,q,q′) |e′
.

The second permutation conversion associated with �E consists in replacing:

�;�1;�1 ���.r �A |s

�,u :A[�];�2;�2 �C | t1
�,u :A[�];�2;�2 �Eq(C,t1,t2) |e Eq

�,u :A[�];�2;�2 �C | t2
�E

�;�1,2;�1,2 �Cu
�.r |let(uA[�].t2,s)

with the derivation:

�;�1;�1 ���.r �A |s �,u :A[�];�2;�2 �C | t1
�E

�;�1,2;�1,2 �Cu
�.r |let(uA[�].t1,s) π1

Eq
�;�1,2;�1,2 �Cu

�.r |let(uA[�].t2,s)

,

where, π1 is:

π2 �,u :A[�];�2;�2 �Eq(C,t1,t2) |e
EqLet

�;�1,2;�1,2 �Eq(Cu
�.r ,q,q′) | let(r(s),uA[�].e)

,

where q�let(uA[�].t1,s) and q′�let(uA[�].t2,s) and π2 is:

�;�1;�1 ���.r �A |s
EqRefl

�;�1;�1 �Eq(��.r �A,s,s) |r(s)
.

3.2.4 Case Eq
In this case the derivation:

�;�;��A |r �;�;��Eq(A,r,s) |e1
Eq

�;�;��A |s �;�;��Eq(A,s,t) |e2
Eq

�;�;��A | t

is replaced by:

�;�;��A |r

�;�;��Eq(A,r,s) |e1 �;�;��Eq(A,s,t) |e2
EqTrans

�;�;��Eq(A,r,t) | t(e1,e2)
Eq

�;�;��A | t

.
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3.2.5 Case TI
This case is depicted as follows where c is some fixed trail constructor:

α :Eq(A)∈�

�;·;·�T B(c) |r
�;·;·�Eq(T B(c),r,θ (c)) |e Eq

�;·;·�T B(c) |θ (c) �;·;·�T B(d) |θ (d) d ∈C\c
TI

�;�;��B |αθ

is replaced by:

α :Eq(A)∈� �;·;·�T B |θ ′
TI

�;�;��B |αθ ′
α :Eq(A)∈� �;·;·�Eq(T B(c),θ ′(c),θ (c)) |ec ∀c∈C

EqRpl
�;�;��Eq(B,αθ ′,αθ ) | trpl(e)

Eq
�;�;��B |αθ

,

where

• θ ′(c)�r and θ ′(d)�θ (d), for all d ∈C s.t. d �=c; and
• ec�e and ed�r(θ (d)), for all d �=c.

3.2.6 Case Eq - �I
Finally, the conversion that fuses an occurrence of Eq just above the left hypothesis in an instance
of �I with the trail of the corresponding unit is also coined, by abuse of language, permutation
conversion. It replaces:

�;·;��A |r �;·;��Eq(A,r,s) |e1
Eq

�;·;��A |s �;·;��Eq(A,s,t) |e2
�I

�;�;�′ ���.t �A |�.t

with:

�;·;��A |r

�;·;��Eq(A,r,s) |e1 �;·;��Eq(A,s,t) |e2
EqTrans

�;·;��Eq(A,r,t) | t(e1,e2)
�I

�;�;�′ ���.t �A |�.t

4 Term assignment

Computation by normalization is non-confluent, as one might expect (audit trail inspection affects
computation), hence a strategy is required. This section introduces the call-by-value λh-calculus. It
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16 JL and audited computation

Figure 4. Typing schemes for λh.

is obtained via a term assignment for JLh. Recall from Section 2 that ϑ in TTI is a mapping from
trail constructors to terms. The syntax of λh terms is:

M ::= a term variable
| λaA.M abstraction
| M M application
| 〈u;σ 〉 audited unit variables
| !�e M audited unit
| letuA[�]beM inM audited unit composition
| αϑ trail inspection
| e�M derived term.

The greyed expressions are part of the run-time syntax and hence not available to the programmer.
We occasionally drop the type decoration, A[�] above, in audited unit composition for readability.
The term constructors for audited units and trail inspection have already been encountered in the
introduction. The term 〈u;σ 〉 is an audited unit variable which, when replaced by an audited unit,
shall be subject to the substitution σ (which we recall is a trail variable renaming). The term
letuA[�]beM inN is called audited unit composition; we refer to M as its argument and N its body.
The expression e�M denotes a term M with suspended trail e; this trail will be permuted using
permutative conversions to the innermost enclosing audited unit, as shall be made clear from the
operational semantics.

4.1 Typing schemes and operational semantics

The typing judgement �;�;��M :A |s is defined by means of typing schemes. These are obtained
by decorating the inference schemes of Figure 2 with terms. A term M is said to be typable if there
exists �,�,�,A,s s.t. �;�;��M :A |s is derivable. The typing schemes are presented in Figure 4.
We often resort to the instance of TBox in which s= t and e=r(s); in this case we omit e altogether
and write !�M. Also, note that the scheme TEq incorporates the trail e into the term assignment.
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The operational semantics of λh is specified by a binary relation of typed terms called reduction.
This requires two substitution operations: one for substituting term (truth) variables and one for
audited unit (validity) variables. Since terms may be decorated with trails, substitution (both for truth
and validity hypothesis) replaces free occurrences of variables with both terms and evidence.

Definition 4.1 (Substitution of truth and validity variables)
We write Ma

N,t for substitution of truth variables and Mu
�.(N,t,e) for substitution of validity variables

(similar notions apply to substitution in propositions, proof code and trails). Note that ‘�.’ in
�.(N,t,e) binds all free occurrences of trail variables from � which occur in N , t and e.

aa
N,s � N

ba
N,s � b

(λbA.M)
a
N,s � λbA.Ma

N,s
(PQ)a

N,s � Pa
N,s Qa

N,s
〈u;σ 〉a

N,s � 〈u;σ 〉
(!�e M)

a
N,s

� !�e M

(letubeM1 inM2)a
N,s � letubeM1

a
N,s inM2

a
N,s

(αθ )a
N,s � αθ

(e�M)a
N,s � ea

s �Ma
N,s

bu
�.(N,t,e) � b

(λbA.M)
u
�.(N,t,e) � λbA.Mu

�.(N,t,e)
(PQ)u

�.(N,t,e) � Pu
�.(N,t,e)Qu

�.(N,t,e)
〈u;σ 〉u

�.(N,t,e) � eσ�Nσ

〈v;σ 〉u
�.(N,t,e) � 〈v;σ 〉

(!�′
e′ M)

u

�.(N,t,e)
� !�′

e′u
�.t

Mu
�.(N,t,e)

(letvbeP � letvbePu
�.(N,t,e)

inQ)u
�.(N,t,e) in Qu

�.(N,t,e)
(αϑ)u

�.(N,t,e) � αϑu
�.(N,t,e)

(e′�M)
u
�.(N,t,e) � e′u

�.t�Mu
�.(N,t,e)

.

These definitions, in turn, rely on: (i) su
�.t which traverses the structure of s replacing 〈u;σ 〉u

�.s
with sσ and (ii) eu

�.t which traverses the structure of e until it reaches one of r(r1),ba(aA.r1,r2) or

bb(vA[�′].r1,�
′.r2) in which case it resorts to substitution over the ris. Of particular interest is the

fourth defining clause of the definition of Mu
�.(N,t,e). Note how it substitutes 〈u;σ 〉 with eσ�Nσ ,

thus (i) propagating the history of N and (ii) renaming the trail variables of N so that they make sense
in the new host unit.

We say that a term M reduces to a term N if the reduction judgement �;�;��M →N :A |s is
derivable. In most cases we write M →N for the sake of readability. In order to define reduction we
first introduce two intermediate notions, namely principal reduction (�→) and permutation reduction
(�). The former corresponds to principal contraction and the latter to permutation conversions of
the normalization procedure. The set of values are as follows:

V ::= a|〈u;σ 〉|λaA.M |!�e V .

Note that !�e V is a value only if the body is value. Evaluation contexts are represented with letters
E,E ′, etc:

E ::= �|EM |V E
| letuA[�]beE inM |!�e E
| α{c1/V ,...,cj/V ,cj+1/E,...}

.

Definition 4.2 (Principal Reduction)
Principal reduction ( �→) is defined by the following reduction rule:

M ⇀N
,

E[M] �→E[N]
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where ⇀ is the union of the following binary relations:

�;�1,a :A;�1 �M :B |s �;�2;�2 �V :A | t
βV

�;�1,2;�1,2 � (λaA.M) V ⇀ ba(aA.s,t)�Ma
V ,t :B | (λaA.s)·t

�;·;��V :A |r �;·;��Eq(A,r,s) |e1 �,u :A[�];�2;�2 �N :C | t
βV
�

�;�1,2;�1,2 �O⇀P :Cu
�.s |let(uA[�].t,�.s)

α :Eq(A)∈� �′;·;·�ϑ :T B |θ �⊆�′ �;·;��F [αϑ] :A |r �;·;��Eq(A,r,s) |e
IV

�;�;�′ �!�e F [αϑ]⇀!�e F [ ti(θ,α)�eϑ] :��.s�A |�.s

,

where, in βV
� , O�letuA[�]be!�e V inN and P� bb(uA[�].t,�.s)�Nu

�.(V ,s,e). In the rule IV , the
auxiliary contexts F , described below, are defined as:

F ::= �|F M |V F
| letuA[�]beF inM
| α{c1/V ,...,cj/V ,cj+1/F,...}

.

Moreover, the hole in F has type B. Finally, trail replacement ϑ in IV is of the form {c1/V ,...,c10/V},
where ci, i∈1..10, stand for each of the trail constructors in C.

Comments on principal reduction follow. Note that reduction under the audited unit constructor
is allowed. Contexts F differ from E by not allowing holes under the audited unit constructor.
Each of the three principal reduction rules produce a trail of its execution. In accordance with our
discussion in the introduction, βV

� replaces all occurrences of 〈u;σ 〉 with eσ�Vσ , thereby correctly:
(i) preserving trails and (ii) renaming trail variables so that they now refer to their host audited
computation unit.

Regarding permutation reduction, the original rules obtained from the normalization procedure are
the contextual closure of the first group of rules depicted in Figure 5. Type decorations in compatibility
codes as well as the typing information of each of the subterms have been omitted for the sake of
readability. Also, the trail replacement ϑ in the last rule is {c1/M1,...,ci/Mi,...,c10/M10}. These
rules are easily proven to be terminating. However, they are not confluent. As an example, consider
the term (e1�M)(e2�N). Application of the first rule yields app(e1,r(t2))�(M (e2�N)) where
t2 is the proof code of the type derivation of e2�N in (e1�M)(e2�N). Likewise, application of
the second yields app(r(t1),e2)�((e1�M)N) where t1 is the proof code of the type derivation
of e1�M in (e1�M)(e2�N). The reader may verify that these terms are not joinable. As a
consequence we complete these rules with those in the second group depicted in Figure 5.

Definition 4.3 (Permutation reduction)
Permutation reduction,�, is defined by the contextual closure of the reduction axioms of Figure 5.
Contextual closure here means reduction is allowed inside any subexpression of a term, including
trails.

Proposition 4.1
� is terminating and confluent.

Termination may be proved automatically by using AProVE [16]. Confluence follows by checking
local confluence and resorting to Newman’s Lemma.
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Figure 5. Permutation reduction rules.

Remark 3
The fact that these reduction rules are defined over typed terms is crucial for confluence. Indeed, the
system is not confluent over the set of untyped terms. For example, t(r(s),r(t)) reduces to both r(s)
and r(t). However, in a typed setting t(r(s),r(t)) typable implies s= t.

Definition 4.4 (Reduction)
Let� stand for permutation reduction to (the unique) normal form. Reduction (→) is defined over
terms in permutation-reduction normal form as �→◦�, where ◦ denotes relation composition.

We summarize the relations introduced in this section:

�→ principal reduction
� permutation reduction
� permutation reduction to normal form
→ reduction

4.2 Access-control example revisited

We now revisit our example, this time placing the focus on the following two salient features of λh:
trail update and substitution of audited units.

Trail update. Consider the modification of the right-hand side of (2) (from the introduction) that
reads !α

r((λaStr .s1)·s2)
M, where M is:

(
λaStr .ifFileIOPerm∈αϑ thenWin32Deletea elsesecurityException

)
“..\passwd′′ .
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It differs in two ways w.r.t. the right-hand side of (2). First the body M of the audited unit is an
application rather than an abstraction. Second, rather than using the shorthand !αM (see beginning of
Section 4.1) the full notation reflecting the implicit trail has been displayed, namely: r((λaStr .s1)·s2).
This trail asserts that (λaStr .s1)·s2 is the code of a typing derivation for M and should be considered
compatible with itself; Str is the type of strings. It reflects that no computation has taken place since
it does not have occurrences of trails of β-steps, as we now describe. A β-step of computation from
!α
r((λaStr .s1)·s2)

M produces:

!α
t(ba(aStr .s1,s2),r((λaStr .s1)·s2))

ifFileIOPerm∈αϑ

thenWin32Delete “..\passwd′′
else securityException

. (3)

The trail of the audited unit has been updated to reflect the reduction step that took place.
In t(ba(aStr .s1,s2),r((λaStr .s1)·s2)), the expressions aStr .s1,s2 and (λaStr .s1)·s2 are encodings
of typing derivations for (λaStr .ifFileIOPerm∈αϑ thenWin32DeleteaelsesecurityException),
‘..\passwd’ and M, resp. The β-step ba(aStr .s1,s2) states that the typing derivation s1 where all
free occurrences of a have been replaced by s2 should be considered compatible with (λaStr .s1)·s2;
the trail constructor t asserts transitivity of compatibility.

This account of the process of updating the trail while computing is slightly abridged; it is actually
developed in two stages as discussed above: a principal contraction, which produces the trail,
followed by a number of permutative conversions, which transports the trail to its innermost enclosing
audited unit constructor.

Substitution for audited units. Let us return to our initial example eraseFile (2). How do we
supply the name of the file to delete? Clearly we cannot simply apply eraseFile to a string since it
is not an abstraction (indeed, it is an audited unit). We require some means of extracting the value
computed by an audited unit. This is accomplished by audited unit composition letuA[�]beM inN .
As seen above, it evaluates as follows, determining a β�-step. First evaluate the argument M until
a value !α1,...,αn

e V is obtained (note the V under the modal term constructor). Then replace the free
occurrences of u in the body N with V . In addition, the following actions are performed, as dictated
by the proof theoretical analysis developed in Section 3:

(1) e is copied so that trails are correctly persisted; and
(2) all free occurrences of α1,...,αn in V are renamed with the trail variables of the (innermost)

audited unit in which u resides.4 Hence, the reason why trail variables u are accompanied by a
trail variable renaming.

Returning to our example, consider the following top-level declarations:

eraseFile .= !αλaStr .ifFileIOPerm∈αϑ then Win32Deletea else securityException;
cleanup .= !βλaStr .eraseFile β a;
bad .= !γ cleanup γ “..\passwd′′;

where, as in the last two clauses above, we write f �β �N to abbreviate letu= f in 〈u; �α/ �β〉 �N assuming

that f .=!�αe λ�a:�A.M. Reduction from the term !δbad δ will eventually produce:

!δe ifFileIOPerm∈δϑ thenWin32Delete“..\passwd′′ elsesecurityException. (4)

4These two items illustrate how the reduction behaviour of letuA[�]beM inN differs from the standard computational
interpretation of some modal logics [14, 15, 24].
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Trail e will include three instances of a bb trail constructor reflecting three β�-steps and the
deferaseFile, defcleanup and defbad trail constructors reflecting three top-level function unfoldings.

Evaluation of the condition FileIOPerm∈δϑ will thefore return false, given that ϑ(defbad)�
{perms(bad)}=∅, and a security exception is raised.

Remark 4
Finally, a remark on trail variables. They are affine in the sense that at different points in time during
the execution process, they denote different terms given that the computation trail varies. Therefore,
they should a occur at most once in a program (this is not a limitation since as many trail variables as
necessary are available). From a logical point of view, failure to treat variables as affine renders the
equational theory inconsistent. This is witnessed by the scheme EqTI, by taking two different proof
codes e1 and e2 (representing two different trails).

4.3 Safety

This section addresses SR and Progress. Progress states that if a typable and closed term is not yet
a value, then the term is the source of a reduction step. Together, these two properties determine
safety of reduction w.r.t. the type system. SR follows from the fact that the reduction rules originate
from proof normalization. The exception are the second group of rules of Figure 5 for which type
preservation may be proved separately. We therefore have:

Proposition 4.2 (Subject Reduction)
�;�;��M :A |s and M →N implies �;�;��N :A |s.

Before addressing Progress we introduce some auxiliary notions. A term is inspection-blocked if
it is of the form F[αϑ]. A term M is tv-closed if fvT(M)= fvV(M)=∅, where recall from above that
fvT(M) is the set of free truth variables of M and fvV(M) the set of free validity variables of M. It is
closed if it is tv-closed and fvTrl(M)=∅, fvTrl(M) being the set of free trail variables of M.

Lemma 4.3 (Canonical forms)
Assume ·;·;��V :A |s. Then,

(1) If A=A1 ⊃A2, then V =λaA1 .M for some a,M.
(2) If A=��′.t �A1, then V =!�′

e V ′ for some e,V ′.

Proposition 4.4
Suppose M is in permutation reduction-normal form, is typable and tv-closed. Then (1) M is a value
or; (2) there exists N s.t. M �→N or; (3) M is inspection-blocked.

Since a closed term cannot be inspection-blocked:

Corollary 4.5 (Progress)
Suppose M is in permutation reduction normal form, is typable and closed. Then either M is a value
or there exists N s.t. M →N .

5 Strong Normalization

We address SN for reduction. In fact, we shall prove SN for a restriction of reduction. The restriction
consists in requiring that M in the principal reduction axiom βV

� not have occurrences of the audited
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computation unit constructor ‘!’5. In order to develop our proof, we introduce the notion of full
reduction which lifts the value restriction in βV and βV

� of Definition 4.2; and allows more general
evaluation contexts for all three axioms. The evaluation contexts are extended as follows:

D ::= �|λaA.D|DM |MD
| letuA[�]beD inM |letuA[�]beM inD|!�e D
| e�D
| α{c1/M,...,cj/M,cj+1/D,...}

.

Definition 5.1 (Full Principal Reduction)

Full principal reduction (
f�→) is defined by the following reduction scheme:

M
f

⇀N

D[M] f�→D[N]
,

where
f

⇀ is the union of the following binary relations:

�;�1,a :A;�1 �M :B |s �;�2;�2 �N :A | t
β

�;�1,2;�1,2 � (λaA.M) N
f
⇀ ba(aA.s,t)�Ma

N,t :B | (λaA.s)·t

�;·;��M :A |r �;·;��Eq(A,r,s) |e1 �,u :A[�];�2;�2 �N :C | t
β�

�;�1,2;�1,2 �O
f
⇀P :Cu

�.s |let(uA[�].t,�.s)

α :Eq(A)∈� �′;·;·�ϑ :T B |θ �⊆�′ �;·;��C[αϑ] :A |r �;·;��Eq(A,r,s) |e
I

�;�;�′ �!�e C[αϑ] f
⇀!�e C[ ti(θ,α)�eϑ] :��.s�A |�.s

,

where, in β�, O�letuA[�]be!�e M inN and P� bb(uA[�].t,�.s)�Nu
�.(M,s,e). The auxiliary

contexts C used in the rule I are also extended as follows:

C ::= �|λaA.C |CM |MC
| letuA[�]beC inM |letuA[�]beM inC
| α{c1/M,...,cj/M,cj+1/C,...}
| e�C

.

As before, the type of the hole in C is B.

Definition 5.2 (Full reduction)

Full reduction (
f→) is defined as the union of full principal reduction (

f�→) and permutation reduction
(�).

In the sequel, we write
rf�→ for the abovementioned restricted notion of reduction. That is,

f�→, where
β� has the additional assumption ‘M is !-free’. The proof is by contradiction and is developed in two

steps. The first shows that an infinite
f�→∪� reduction sequence must include an infinite number of

f�→I steps. The second, that
f�→I is SN.

5We currently have no proof for unrestricted reduction; however, we believe the result should hold.

 by guest on N
ovem

ber 22, 2015
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


[14:49 10/6/2015 exv037.tex] LogCom: Journal of Logic and Computation Page: 23 1–26

JL and audited computation 23

5.1 Step 1

We first note that
f�→β,β�

is SN. This can be proved by defining a translation S(•) on λh types that
‘forget’ the modal connective and a similar translation from terms in λh to terms of the simply typed
lambda calculus with constants and products (λ⊃,×) such that: (i) it preserves typability (Lemma 5.1);
(ii) it collapses terms related by permutation reduction (Lemma 5.2); and (iii) it maps full reduction to
reduction in the simply typed lambda calculus (Lemma 5.4). Since we already know that� is SN and
that reduction in the simply typed lambda calculus is SN, our result shall follow. For a proposition A,
S(A) is defined as follows; for contexts it behaves homomorphically producing multisets of labelled
hypothesis:

S(P) � P
S(A⊃B) � S(A)⊃S(B)

S(��.s�A) � S(A)

S(·) � ·
S(�,a :A) � S(�),a :S(A)

S(�,u :A[�]) � S(�),u :S(A)
.

The decoration of a typed term is the expression obtained from replacing every occurrence of the
trail lookup expression αϑ by αBϑ , where B is the result type of the lookup. We assume we have
a constant cB for each type B. For a term M, S(M) produces a term of the simply typed lambda
calculus:

S(a) � a
S(λaA.M) � λaS(A).S(M)

S(M N) � S(M)S(N)
S(〈u;σ 〉) � u
S(!�e M) � S(M)

S(letuA[�]beM inN) � (λuS(A).S(N))S(M)

S(αBϑ) � (λaS(T B).cB)S(ϑ)
S(e�M) � S(M)

,

where S(T B) abbreviates the product type 〈S(T B(c1)),...,S(T B(c10))〉 and S(ϑ) abbreviates the
product term 〈S(ϑ(c1)),...,S(ϑ(c10))〉. The translation of αBϑ above guarantees that trail inspection
maps to a β-step in λ⊃,×.

Lemma 5.1
If �;�;��M :A |s, then S(�),S(�)�S(M) :S(A).

The following result is verified by noticing that S(•) erases both evidence and the modal term
constructor in terms.

Lemma 5.2
If M�N , then S(M)=S(N).

The translation function S(•) permutes with both truth and validity substitution. Note that
S(M)a

S(N) and S(M)u
S(N) below, is substitution in the simply typed lambda calculus. The proofs

of these items is by induction on the structure of M; the third item resorts to the first one. Lemma 5.3
is required for Lemma 5.4.

Lemma 5.3
(1) S(Mσ )=S(M);
(2) S(Ma

N,t)=S(M)a
S(N); and

(3) S(Mu
�.(N,t,e))=S(M)u

S(N).
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Lemma 5.4

If M
f�→β,β�

N , then S(M)
λ⊃,×→ S(N).

The following result is a consequence of Lemma 5.2, Lemma 5.4 and Lemma 5.3.

Corollary

If M
β,β�→ N , then S(M)

λ⊃,×→ S(N).

We may thus conclude with the following result.

Proposition 5.5
f�→β,β�

∪� is SN.

Therefore, an infinite
f�→∪� reduction sequence must include an infinite number of

f�→I steps.

5.2 Step 2

Next we show that for
rf�→ this is not possible. More precisely, we show that in an infinite

rf�→∪�
reduction sequence, there can only be a finite number of

f�→I steps. This entails:

Proposition 5.6
rf�→∪� is SN. Hence λh, with the same restriction, is SN.

We now address the proof of the main lemma on which Proposition 5.6 relies (Lemma 5.8). We

introduce a family of weight functions which strictly decrease by each application of a
f�→I -step and

which decreases with each application of a
rf�→β,β�

-step or�-step. A word on notation: 〈〈 〉〉 is the
empty multiset; � is multiset union; and n�M is the union of the multiset 〈〈n〉〉 and M, for n∈N. We
use the standard multiset extension ≺ of the well-founded ordering < on natural numbers which is
also well-founded. For each n∈N we define Wn(M) as the multiset given by the following inductive
definition on M:

Wn(a) � 〈〈 〉〉
Wn(λaA.M) � Wn(M)

Wn(M N) � Wn(M)�Wn(N)
Wn(〈u;σ 〉) � 〈〈 〉〉

Wn(!�e M) � n∗W t(M)�Wn∗W t (M)(M)

Wn(letubeM inN) � Wn(M)�Wn(N)
Wn(αϑ) � ⊎

i∈1..10Wn(ϑ(ci))
Wn(e�M) � Wn(M)

,

where W t(M) is the number of free trail variables in M plus 1. Note that W t(e�M)�W t(M).
The weight functions informally count the number of trail variables that are available for look-up
in audited computation units. The principal reduction axiom β either erases the argument N or
substitutes exactly one copy, given the affine nature of truth hypothesis. However, multiple copies
of M can arise from β� reduction, possibly under ‘!’ constructors (hence our restriction in item 2
below). Finally, we must take into account that although a trail variable is consumed by I it also
copies the terms in ϑ (which may contain occurrences of the ‘!’ constructor). In contrast to β�,
however, the consumed trail variable can be used to make the copies of ‘!’ made by eϑ weigh less
than the outermost occurrence of ‘!’ on the left-hand side of I.

Lemma 5.7
(1) Wn((λaA.M)N)�Wn(Ma

N,t).
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(2) If M has no occurrences of the modal term constructor, then Wn(letuA[�]be!�e M inN)�
Wn(bb(uA[�].t,�.s)�Nu

�.(M,s,e)).

(3) Wn(!�e C[αϑ])�Wn(!�e C[ ti(θ,α)�eϑ]).
From these results follow:

Lemma 5.8

(1) M
rf�→β,β�

N implies Wn(M)�Wn(N);

(2) M
f�→I N implies Wn(M)�Wn(N); and

(3) M�N implies Wn(M)=Wn(N).

6 Conclusions

We have presented a proof theoretical analysis of a functional computation model that keeps track of its
computation history. A Curry–Howard isomorphism of an affine fragment of Artemov’s Justification
Logic yields a lambda calculus λh which models audited units of computation. Reduction in these
units generates audit trails that are confined within the computation units. Moreover, addition of
reification of trails yields a programming language where computation may inspect these local trails
and make decisions based on them while at the same time conserving a sound logical foundation.
We prove type safety for λh and strong normalization for a restriction of it.

There are a number of possible research directions. The first is to study type-inference for the
user syntax of λh. Another is to lift the restriction in the proof of strong normalization that M in the
principal reduction axiom β� does not have occurrences of the audited computation unit constructor
‘!’. Second, consider adding features (polymorphism, recursion, etc.) in order to obtain a language
closer to industrial scale ones. It would make sense to study audited computation in a classical setting
where, based on audit trail look-up, the current continuation could be disposed of in favour of a more
judicious computation. Finally, although examples from the security domain seem promising more
(eg. [7]) is needed in order to better evaluate the applicability of these ideas.
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