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2 Instituto de Investigaciones Fisioló gicas y Ecoló gicas Vinculadas a la Agricultura, Facultad de Agronomı́a, Universidad de Buenos

Aires y Consejo Nacional de Investigaciones Cientı́ficas y Té cnicas, Buenos Aires 1417, Argentina

Review
The B-box (BBX) proteins are a class of zinc-finger tran-
scription factors containing a B-box domain with one or
two B-box motifs, and sometimes also feature a CCT
(CONSTANS, CO-like, and TOC1) domain. BBX proteins
are key factors in regulatory networks controlling
growth and developmental processes that include seed-
ling photomorphogenesis, photoperiodic regulation of
flowering, shade avoidance, and responses to biotic and
abiotic stresses. In this review we discuss the functions
of BBX proteins and the role of B-box motif in mediating
transcriptional regulation and protein–protein interac-
tion in plant signaling. In addition, we provide novel
insights into the molecular mechanisms of their action
and the evolutionary significance of their functional
divergence.

BBX proteins
The Arabidopsis (Arabidopsis thaliana) genome encodes
around 1500 transcription factors, 40% of which are spe-
cific to plants [1]. Zinc-finger transcription factors are a
relatively large family of transcription factors in plants
(circa 15% of the total), and these play a central role in
plant growth and development [1–3]. Zinc-finger proteins
contain zinc-finger domains that are stabilized by metal
ions including zinc and that have the property to interact
with DNA, RNA, or proteins [2]. A subgroup of zinc-finger
proteins, which contain one or two B-Box motifs predicted
to be involved in protein–protein interactions, are known
as BBX proteins. BBX proteins belong to a functionally
diverse family encoded by genes that are highly conserved
across all multicellular species including blue-green algae
and mosses [2,4–7]. In animals, the B-box domain is often
associated with proteins that contain RING (really inter-
esting new gene) and coiled-coil domains, which are
referred to as RBCC/TRIM (for RING, B-box, coiled-coil/
TRIPARTITE MOTIF) [8,9]. The RBCC/TRIM proteins
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play important roles in diverse cellular processes including
ubiquitination, protein trafficking, and transcriptional reg-
ulation [10,11]. By contrast, in plants, the B-box domain is
either found alone or together with the CCT domain [2,6].
These B-box-containing proteins interact with the coiled-
coil domain of other proteins to create a functional equiva-
lent to RBCC/TRIM [12,13]. For example, CONSTANS
(CO/BBX1) directly interacts with coiled-coil domain-con-
taining protein, SUPPRESSOR OF PHYA1 (SPA1) [12]. In
addition, CO and other BBX proteins interact directly with
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1),
another coiled-coil domain-containing protein [13–15].
Research on the physiological functions of BBX proteins
and their mechanisms of action have progressed substan-
tially since the first review was published [2], which was
mostly focused on the nomenclature of BBX proteins. Here
we highlight the importance of the B-box motif in the
regulation of transcription and in mediating protein–pro-
tein interaction, and overview the functions and molecular
mechanisms of BBX proteins in fine-tuning plant growth
and development.

Evolution and structural domains of BBX proteins
In Arabidopsis, BBX proteins are grouped into five struc-
ture groups depending on the presence of at least one B-
box domain and a CCT domain. The B-box domain con-
tains one or two B-box motifs of �40 residues in length.
The B-box can be divided into two types, B-box1 and
B-box2, based on their consensus sequence and the spa-
cing of zinc-binding residues [7,16–18]. In Arabidopsis, 21
of the 32 BBX proteins (BBX1–13 and BBX18–25) contain
two B-boxes in tandem, whereas 11 BBX proteins
(BBX14-BBX17 and BBX26-BBX32) contain one B-box
(Figure 1A). Similarly, in rice (Oryza sativa), 17 of the
30 BBX proteins contain tandem B-boxes in their N
termini [6]. The presence of B-box1 and B-box2 sequences
in both Arabidopsis and rice suggests that, in plants, the
B-box domain is largely conserved (Figure 1B). The con-
served residues in the B-box motifs have been shown to be
crucial in mediating protein–protein interactions and
transcriptional regulation [15,19–22]. Furthermore, a
phylogenetic study with 214 BBX proteins belonging to
12 plant species from green algae to dicots showed that
the B-box consensus sequences of each structure group
retained a common and conserved domain topology [7]. In
addition, comparative analysis of plant genomes suggests
that the B-box1 and B-box2 motifs likely originated
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Figure 1. Structural domains of B-box (BBX) proteins and their interacting partners. (A) Subfamily of 32 Arabidopsis BBX proteins showing domain organizations, protein

length, the structural group they belong to, and their interacting partners. Interacting partners in italics indicate that the functional relevance of the interaction has not yet

been demonstrated. (B) Consensus sequences of B-box1 and B-box2 motifs in Arabidopsis and rice. Conserved Cys (C) and His (H) residues involved in protein–protein zinc

ligation are indicated. Abbreviations: AGI, Arabidopsis Genome Initiative; CCT, CONSTANS, CO-LIKE and TOC1 motif; COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1;

EMF1, EMBRYONIC FLOWER 1; GmBBX64, Glycine max BBX64; HOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1; HPPBF1, H-PROTEIN PROMOTER

BINDING FACTOR 1; HYH, HY5 HOMOLOG; HY5, ELONGATED HYPOCOTYL 5; ND, not determined. RCD1, RADICAL-INDUCED CELL DEATH1; SERK1, SOMATIC

EMBRYOGENESIS RECEPTOR-LIKE KINASE 1; SPA1, SUPPRESSOR OF PHYA-105; VP, valine-proline motif. See Refs. [95,96].
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from segmental duplications and internal deletion events
[7].

The CCT domain is a basic motif of 42–43 amino acids
with functional roles in some BBX proteins [12,23,24].
Sequence alignments of BBX proteins suggest that the
CCT domain is also highly conserved [7]. In Arabidopsis,
17 of the 32 BBX proteins (BBX1–17) have a CCT domain
2

close to their C termini [25]. Structure groups I (BBX1–6)
and II (BBX7–13) have two B-boxes and a CCT domain,
whereas proteins of structure group III (BBX14–17) have
one B-box and a CCT domain (Figure 1A) [2,7]. Similarly, in
rice, 17 of the 30 BBX proteins contain the CCT domain [6].
The CCT domain has important functions in transcriptional
regulation and nuclear protein transport [12,13,26–28]. An



Review Trends in Plant Science xxx xxxx, Vol. xxx, No. x

TRPLSC-1140; No. of Pages 11
example of this is the CCT domain of CO, which has been
shown to be crucial in mediating the expression of FLOW-
ERING LOCUS T (FT) by directly binding to its promoter
[24]. Furthermore, nuclear localization signals (NLSs) con-
sisting of a short amino acid sequence as part of the CCT
domain play a central role in the BBX protein localization to
the nucleus [13,23,27,28]. In addition to the B-box and CCT
domains, some BBX proteins contain a valine-proline (VP)
motif of six amino acids, with the consensus sequence G-I/V-
V-P-S/T-F in their C termini (Figure 1A). The VP motif is
very close to the CCT domain, separated by 16–20 amino
acids, and is important for the interaction with COP1
[23,29]. It has been suggested that the evolution of BBX
proteins was constrained by the conservation of amino acid
sequences in the two B-boxes, but has radiated variation
into NLSs, VP, and other novel motifs [7,30].

The presence of BBX genes in the genome of different
species from algae to monocots and dicots clearly suggests
an ancient origin [7,31]. Most green algae have a single B-
box motif. However, the presence of two B-box motifs in the
unicellular green alga Chlamydomonas suggests that the
B-box duplication event has taken place much before land
colonization of plants, at least 450 million years ago,
probably in the upper Silurian period [7,32]. The rapid
expansion of BBX proteins during the course of evolution,
and the fact that they are highly conserved across the plant
kingdom, suggest that BBX proteins might have played
crucial roles in the adaptation of land plants [7].

Functions of the B-box domain
Although the functions of the B-box domain in animals
were established some time ago [8–11], in plants they have
only now begun to be unraveled. Recent studies suggest
that the B-box domain plays a crucial role in the regulation
of transcription, and in mediating heterodimer formation
both within and outside the BBX protein family [15,19–22].
At least four BBX proteins (BBX21, 22, 24, 25) physically
interact with transcription factor ELONGATED HYPO-
COTYL 5 (HY5) [15,19–21], and three (BBX22, 24, 25)
interact with HYH (HOMOLOG OF HY5) transcription
factors [20,22]. The fact that site-directed mutations in the
B-box motifs converting aspartic acid to alanine completely
impede the interaction with HY5 suggests a crucial role of
this motif in mediating BBX interaction with HY5, and also
with HYH – as documented for BBX24 [15,19–21]. Very
recent studies suggest that BBX proteins also interact
within other family members as seen for BBX32–BBX21
and BBX32–GmBBX62 [21,33]. Interestingly, site-directed
mutations in the B-box motif together with computational
approaches suggest that the B-box motif of BBX32, and
conserved cysteines and aspartic acids residues outside but
close to B-box domain, are necessary for the interaction
with GmBBX62 [21]. Furthermore, point mutations in the
B-box domain of BBX21 also reduce the transcriptional
activation of CHI (CHALCONE SYNTHASE) promoter
[19], whereas mutations in the BBX22 B-box motif reduce
the activation of both CHI and CAB1 promoters, as demon-
strated in transient expression studies [20]. Interestingly,
a point mutation on the B-box domain of BBX25 increases
HY5-mediated transcriptional activation of the BBX22
promoter suggesting an indirect and negative action of
BBX25 on the expression of BBX22 through the physical
interaction with HY5 [15]. Similarly, BBX32 indirectly
reduces HY5 transcriptional activity through a protein–
protein interaction with BBX21 [33]. Collectively, these
lines of evidence suggest that B-box domains play crucial
roles in mediating protein–protein interactions and in the
regulation of transcription.

BBX proteins in seedling photomorphogenesis
BBX proteins are involved in seedling de-etiolation, con-
trolling hypocotyl growth, anthocyanin production, chlor-
ophyll accumulation, lateral root growth, and cotyledon
unfolding (Figure 2A; Table 1). Specifically BBX4, BBX20,
BBX21, and BBX22 promote photomorphogenesis
[19,20,23,34,35] whereas BBX18, BB19, BBX24, BBX25,
and BBX32 suppress photomorphogenesis [15,33,36–38].
bbx4 mutant seedlings show long hypocotyls only in red
light [23], whereas bbx20 mutant seedlings show long
hypocotyls in red and blue light [35], and bbx21 and
bbx22 mutant seedlings show long hypocotyls under red,
far-red, and blue light [19,20]. These results suggest that
BBX proteins act in photomorphogenesis downstream of
the phytochrome and cryptochrome pathways. By contrast,
bbx24, bbx25, and bbx32 mutant seedlings develop short
hypocotyls in red, far-red, and blue light, suggesting that
they suppress photomorphogenesis irrespective of the
photoreceptor type [15,33,37]. Furthermore, BBX18- and
BBX19-overexpressing lines have longer hypocotyls than
wild type plants under red and far-red continuous light,
whereas bbx18 and bbx19 mutant seedlings develop hypo-
cotyls similar to those of wild type plants, suggesting that
they play redundant functions during de-etiolation [38].
Also, MISREGULATED IN DARK10 (BBX23/MIDA10), a
member of structure group IV, represses apical hook
unfolding in dark-grown seedlings [39]. Using a micro-
based approach and functional characterization of mida
mutants, it was demonstrated that BBX23 is involved in
one of the PIF3 branches of signaling that inhibit photo-
morphogenesis in the dark [39].

BBX proteins are involved in both cooperative and antag-
onistic interactions for the regulation of seedling photomor-
phogenesis. By genetic analysis, it was demonstrated that
BBX21 enhances the functions of both BBX20 and BBX22,
and suppresses the function of BBX32 [19,33,35]. BBX32
physically interacts with BBX21 and reduces HY5-mediated
transcriptional activity [33]. Interestingly, BBX21 and
BBX22 directly interact with HY5, and enhance its activity
[19,20,34]. Furthermore, the epistatic interaction between
BBX24 and BBX25 suggests that they enhance each other’s
function, but also that they can work independently to
regulate seedling photomorphogenesis [15]. Both BBX24
and BBX25 suppress HY5 function by forming inactive
heterodimers with HY5, thereby reducing the transcrip-
tional activity of HY5 on target genes such as CHI and
CHS [15]. This clearly indicates that BBX24 and BBX25
act as transcription corepressors of HY5 [15], and likely of
HYH [22]. All these findings suggest that BBX proteins play
opposite functions in the same physiological process:
whereas BBX21 and BBX22 are transcriptional coactiva-
tors, BBX24 and BBX25 are corepressors of the action of
HY5. Epistatic analyses between BBX proteins and COP1
3
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Figure 2. B-box (BBX) proteins are involved in seedling photomorphogenesis. (A) BBX proteins modulate seedling development by integrating light signals perceived by

phytochrome and cryptochrome photoreceptors through the COP1 and HY5 signaling pathway. BBX4 integrates red light signals, BBX20 integrates red and blue light

signals, and the other BBX proteins integrate red, far-red and blue light signals. BBX4, BBX20, BBX21, and BBX22 promote photomorphogenesis by suppressing COP1

function. BBX4 and BBX20 directly interact with COP1, whereas BBX21 and BBX22 colocalize with COP1 in nuclear speckles. BBX21 and BBX22 directly interact with HY5

and enhance its functions, inhibiting hypocotyl growth and increasing pigment accumulation. At the same time, HY5 enhances the functions of BBX21 and BBX22 (double

arrows). Furthermore, BBX21 enhances the functions of both BBX20 and BBX22 to inhibit hypocotyl growth. By contrast, BBX18, BBX19, BBX24, BBX25, and BBX32 inhibit

seedling photomorphogenesis. BBX24 and BBX25 directly interact with HY5 and COP1, suppressing HY5 function and enhancing COP1 action. By a negative feedback

mechanism, COP1 degrades both BBX24 and BBX25. BBX32 directly interacts with BBX21, forming inactive heterodimers and reducing HY5 transcriptional activity, thus

showing antagonistic functions with HY5. (B) Under UV-B light, the UVR-8 photoreceptor absorbs UV-B light and activates COP1, which in turn modulates the expression of

many UV-B-responsive genes through HY5-dependent and -independent pathways. BBX24 is part of a negative feedback mechanism of the UV-B pathway. UV-B increases

BBX24 expression in a COP1-dependent manner, and BBX24 directly interacts with HY5, reducing the transcriptional activity of HY5. Furthermore, RCD1 negatively

regulates BBX24 action. Numbers in parentheses indicate relevant references. Abbreviations: COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; CRYs, CRYPTOCHROMES;

HY5, ELONGATED HYPOCOTYL 5; PHYs, PHYTOCHROMES; RCD1, RADICAL-INDUCED CELL DEATH1.UV-B, ULTRAVIOLET-B radiation; UVR8, UV RESISTANCE LOCUS 8.
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have shown that BBX4, BBX20, BBX21, and BBX22 repress
COP1 function, whereas BBX24 and BBX25 enhance COP1
function [15,19,20,23,35,36]. Interestingly, BBX4, BBX20,
BBX24, and BBX25 directly interact with COP1 [23,29,35],
whereas BBX21 and BBX22 are recruited by COP1 into
nuclear speckles [19,20]. In addition, COP1 ubiquitinates
and degrades BBX22 in dark conditions [20,40]. The stabi-
lity of BBX proteins appears to be transient. In fact, BBX22
4

has a half-life of 20 minutes in the dark and 60 minutes in
the light [40]. Very recently it has been shown that BBX20
undergoes COP1-mediated degradation in the dark, sug-
gesting that it is also a downstream target of COP1 [35].
Further, both BBX24 and BBX25 are degraded by COP1 as
part of a feedback regulatory mechanism [15,36]. In addi-
tion, the stability and accumulation of BBX proteins depend
on the activity of the circadian clock [37]. In fact, light and



Table 1. Functions of BBX proteins in Arabidopsis and crop species

Plant species AGI Number BBX

name

Other

names

Input

signal

Physiological role Mode of

regulation

Refs

Arabidopsis (Arabidopsis

thaliana)

AT5G15840 BBX1 CO Light Flowering in LD Positive [51]

Light Stomatal opening Positive [80,81]

AT5G15850 BBX2 COL1 Light Circadian clock Positive [59]

Cold Abiotic stress response ND [82]a

ABA, cADPR Abiotic stress response ND [71]a

AT3G02380 BBX3 COL2 Light Circadian clock Positive [59]

ABA, cADPR Abiotic stress response ND [71]a

AT2G24790 BBX4 COL3 Light Photomorphogenesis Positive [23]

Light Flowering in LD and SD Negative [23]

Light Shoot branching Positive [23]

Light Lateral root development Positive [23]

AT5G57660 BBX6 COL5 Light Flowering in SD Positive [58]

JA Flower development ND [83]a

Cold Abiotic stress response ND [72]a

AT3G07650 BBX7 COL9 Light Flowering in LD Negative [57]

Fungi pathogen Biotic stress response ND [84]a

Cold Abiotic stress response ND [72]a

AT4G15250 BBX9 JA Flower development ND [83]a

AT2G47890 BBX11 COL13 OPDA Biotic stress response ND [73]a

ABA, cADPR Abiotic stress response ND [71]a

Cold Abiotic stress response ND [72]a

AT1G28050 BBX13 ABA, cADPR Abiotic stress response ND [71]a

AT1G25440 BBX15 Cold Abiotic stress response ND [72]a

AT1G73870 BBX16 COL7 Low R:FR Shoot branching Negative [66]

Low R:FR SAR Positive [66]

ABA, cADPR Abiotic stress response ND [71]a

AT2G21320 BBX18 DBB1a Light Photomorphogenesis Negative [37]

Flower development Positive [85]

GA Photomorphogenesis Positive [77]

ABA, cADPR Abiotic stress response ND [73]a

AT4G38960 BBX19 DBB1b Light Photomorphogenesis Negative [37]

ABA, cADPR Abiotic stress response ND [71]a

AT4G39070 BBX20 BZS1 Light Photomorphogenesis Positive [35]

Brassinosteriods Photomorphogenesis Negative [35,75]

Chitin Biotic stress response ND [74]a

AT1G75540 BBX21 STH2 Light Photomorphogenesis Positive [19]

Low R:FR SAR Negative [14]

AT1G78600 BBX22 STH3/LZF1 Light Photomorphogenesis Positive [20]

Light Chloroplast development Positive [38]

Low R:FR SAR Negative [14]

ABA, cADPR Abiotic stress response ND [71]a

AT4G10240 BBX23 MIDA10 Dark Skotomorphogenesis Positive [39]

AT1G06040 BBX24 STO Light Photomorphogenesis Negative [15,36,37]

Salt Abiotic stress response Positive [69]

UV-B Hypocotyl inhibition Negative [42]

Low R:FR SAR Positive [14,15]

Cold Abiotic stress response ND [72]a

AT2G31380 BBX25 STH Light Photomorphogenesis Negative [15,38]

Low R:FR SAR Positive [15]

AT5G54470 BBX29 Light, Cold Abiotic stress response ND [86]a

AT3G21150 BBX32 EIP6 Light Photomorphogenesis Negative [38,33]

Light Flowering in LD Negative [60]

OPDA Biotic stress response ND [73]a

Chitin Biotic stress response ND [74]a

Rice (Oryza sativa) Os06g0275000 OsBBX18 Hd1 Light Flowering in LD Negative [61]

Light Flowering in SD Positive [61]

Os09g0240200 OsBBX27 OsCO3 Light Flowering in SD Negative [62]

Os02g0610500 OsBBX5 OsCOL4 Light Flowering in LD and SD Negative [63]

Soybean (Glycine max L.) BBX32 Overexpression

in soybean

Grain yield Positive [79]

Barley (Hordeum vulgare) HvCO1 Circadian clock Flowering in LD and SD Positive [87]
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Table 1 (Continued )

Plant species AGI Number BBX

name

Other

names

Input

signal

Physiological role Mode of

regulation

Refs

Banana (Musa sapientum) MaCOL1 Chilling Abiotic stress response Positive [88]b

Fungi pathogen Biotic stress response Positive [88]b

Ethylene Fruit ripening Positive [88]b

Chrysanthemum

(variety Zhongshanzigui)

CgZFP1 Overexpression

in Arabidopsis

Abiotic stress response Positive [89]

Beetroot (Beta vulgaris) BvCOL1 Overexpression

in Arabidopsis

Flowering in LD Positive [90]

Grape (Vitis vinifera L.) VvCO Light Flowering Positive [91]b

VvCOL1 Light Bud dormancy Positive [91]b

VvZFPL Overexpression

in Arabidopsis

Abiotic stress response Positive [92]

Overexpression

in Arabidopsis

Photomorphogenesis Negative [92]

Potato

(Solanum tuberosum)

StCO Overexpression

in potato

Tuber formation Negative [93]

BBX1 Overexpression

in potato

Tuber formation Negative [94]

aData collected from microarray experiments; BBX functional characterization needs to be confirmed.

bData collected from expression experiments.

Abbreviations: ABA, abscisic acid; AGI, Arabidopsis Genome Initiative; BBX, B-box; Bv, Beta vulgaris; BZS1, bzr1–1D suppressor1-dominant (bzs1–D); cADPR, cyclic ADP-

ribose; Cg, Chrysanthemum grandiflorum; CO, CONSTANS; COL, CONSTANS LIKE; COP1, CONSTITUTIVE PHOTOMORPHOGENIC 1; CRYs, CRYPTOCHROMES; DBB1a and

DBB1b, double B-box 1a and double B-box 1b; EIP6, EMF1 interacting protein 6; EMF1, embryonic flower 1; Hd1, heading date 1; HY5, ELONGATED HYPOCOTYL 5; Hv,

Hordeum vulgare; JA, jasmonic acid; LD, long day photoperiod; LZF1, LIGHT REGULATED ZINC-FINGER 1; Ma, Musa acuminata; MIDA10, MIS-REGULATED IN DARK 10;

ND, no data (microarray data); OPDA, 12-oxo-phytodienoic; Os, Oryza sativa; PHYs, PHYTOCHROMES; R:FR, red-light to far-red-light ratio; SAR, shade avoidance response;

SD, short day photoperiod; St, Solanum tuberosum. STH, salt tolerant-homolog; STO, salt tolerant; UV-B, ULTRAVIOLET-B radiation; Vv, Vitis vinifera; ZFPL, zinc-finger

protein like; ZFP1, zinc-finger protein 1.
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the circadian clock tightly regulate BBX18, BBX19, BBX22,
BBX24, and BBX25 [37].

The low fluence rate of UV-B radiation induces photo-
morphogenic responses through the action of the ULTRA-
VIOLET RESISTANCE LOCUS 8 (UVR8) photoreceptor
[41]. Upon UV-B irradiation, UVR8 protein accumulates in
the nucleus and activates COP1, which in turn modulates
the expression of many UV-B-responsive genes both in HY5-
dependent and -independent manners, thereby inhibiting
hypocotyl growth in Arabidopsis seedlings. The bbx24
mutant is hypersensitive to UV-B and displays a dwarfed
phenotype [42]. BBX24 is involved in the negative regula-
tion of UV-B signaling, attenuating HY5 accumulation and
suppressing transcriptional activity, probably by forming
inactive heterodimers with HY5 [42]. Interestingly, BBX24
physically interacts with RADICAL-INDUCED CELL
DEATH1 (RCD1), another regulator of UV-B signaling that
inhibits the expression of BBX24 [43,44]. These results
suggest that BBX24 together with RCD1 are involved in
fine-tuning UV-B photomorphogenic responses through a
negative feedback mechanism [Figure 1B]. Furthermore, in
a transcriptome study of COP1-regulated genes under low
UV-B irradiation in Arabidopsis seedlings, it has been found
that BBX5 and BBX18 are promoted, whereas BBX7 and
BBX8 are repressed by COP1, suggesting that other BBX
proteins could be working in opposite directions within the
UV-B signaling pathway [45].

BBX proteins in flowering
Flowering is under the control of different signaling path-
ways that converge to create a robust seasonal response
[46]. Some BBX proteins are involved in the photoperiod
pathway of flowering (Figure 3, Table 1). In Arabidopsis,
flowering is significantly delayed in co mutant plants, and
6

CO-overexpression lines flower earlier than wild type
plants grown under long day conditions (LD) [47–49].
Under short day conditions (SD), co mutants flower at
the same time as wild type plants, whereas CO-overex-
pression transgenic lines flower early even in SD, suggest-
ing that the CO dosage is a limiting factor [47]. CO is a
central coordinator of light and clock inputs, triggering the
expression of FT [50,51]. CO promotes the expression of FT
by the binding of its CCT domain with the FT promoter on
the CO-responsive elements (CORE) and CCAAT-box ele-
ments [24,52,53]. Furthermore, CO directly interacts with
COP1 and SPA1 to SPA4 proteins through its CCT domain
[12,13]. SPA1 specifically targets CO in SD [12], whereas
COP1 targets CO both in SD and LD [13,54]. Full-length
CO also interacts with HIGH EXPRESSION OF OSMO-
TICALLY RESPONSIVE GENES1 (HOS1), which further
undergoes proteasome-mediated degradation [55]. HOS1
targets CO during the photoperiod, probably in a phyB-
dependent manner [55]. These observations are further
supported by the fact that cop1 and hos1 mutants flower
early both in SD and LD, whereas spa1 mutants flower
much earlier than wild type plants only in SD [12]. The fact
that HOS1 targets CO early in the day, and COP1 and
SPA1 during the night, demonstrates the existence of
multiple signaling pathways for ubiquitin ligases that
regulate CO protein abundance. Furthermore, two basic
helix-loop-helix (bHLH) transcription factors, FLOWER-
ING BHLH 1 (FBH1) and FBH2, bind to the CO promoter
through G- and E-box sequences and activate its expres-
sion in both LD and SD [56].

At least a further three CO-LIKE (COL) proteins, BBX4,
BBX6, and BBX7, regulate flowering [23,57,58]. bbx4
mutant plants flower early under both SD and LD, sug-
gesting that the role of BBX4 in flowering is opposite to
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Figure 3. B-box (BBX) proteins regulate the photoperiodic pathway of flowering. Light and the circadian clock both coordinate CO/BBX1 activity, which triggers FT
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independent pathways. BBX6 induces flowering by enhancing CO expression under SD, whereas BBX7 suppresses flowering under LD by negatively regulating CO

expression. However, BBX32 negatively regulates flowering under LD probably in a CO-independent manner. BBX4 suppresses flowering in both LD and SD. CO
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that of CO [23]. bbx7 mutants also flower earlier than wild
type plants, whereas BBX7-overexpression lines delay
flowering in LD [57], suggesting that BBX7 represses
flowering probably by reducing the expression of CO and
FT [57]. By contrast, bbx6 mutant plants flower normally
under SD, but BBX6 overexpression induces early flower-
ing by promoting FT expression [58]. These results indicate
that BBX6 function is redundant with other flowering
regulators [58]. However, there are other COL proteins
with high homology to CO, such as BBX2 and BBX3, which
have no clear roles in flowering but which have been
reported to be important for the circadian clock function
[59]. In addition to COL proteins, BBX32 overexpression
suppresses flowering in LD [40]. The fact that bbx32
mutant plants respond to photoperiod in a similar manner
to wild type plants suggests that BBX32 negatively reg-
ulates flowering in a dose-dependent manner [60].

Similarly, Heading date1 (Hd1), the CO ortholog in rice,
promotes flowering in SD but inhibits it in LD [61]. Two
additional COL proteins, OsBBX27/OsCO3 and OsBBX5/
OsCOL4, are involved in the photoperiod pathway [62,63].
Whereas OsBBX27 represses flowering in SD, OsBBX5
inhibits flowering in both LD and SD [62,63]. Although
COL proteins have both distinct and overlapping functions,
their functions are highly conserved in the flowering
pathways of Arabidopsis, rice, and probably other crop
plants such as beetroot (Beta vulgaris), grape (Vitis vinifera
L.), and tomato (Solanum lycopersicum) (Table 1).

BBX proteins in shade-avoidance responses
The intimate connection between the photoreceptors path-
ways and shade-avoidance responses has been thoroughly
reviewed recently [64]. Reduction of the red/far-red (R/FR)
ratio by neighboring plants is a signal of future competi-
tion, and individuals respond early by increasing the
length of their vegetative structures to reach light for
photosynthesis. BBX proteins mediate cell elongation in
shaded environments [14,15,65,66]. Screening for mutants
with long hypocotyls under simulated canopy has shown
that BBX21/LHUS represses elongation growth specifi-
cally under shade [14]. Several BBX members of structure
group IV are involved in shade avoidance but with opposite
roles: BBX19, BBX21, and BBX22 inhibit, whereas BBX18,
BBX24, and BBX25 promote, hypocotyl elongation under a
low R/FR ratio [14,15,65]. BBX21 positively regulates the
expression of early shade-response genes such as PAR1,
HFR1, PIL1, and ATHB2 in the first hour of shade, but
later inhibits elongation growth. These results suggest
that BBX21 could be a component of a negative feedback
loop to avoid exaggerated elongation responses such as
7
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those occurring with HFR1 and PAR1 [14]. BBX21 and
BBX22 are involved in the COP1 signaling pathway
because bbx21 and bbx22 mutants partially restore the
shade-avoidance response in the cop1 background [14].
Furthermore, bbx24 mutant plants develop significantly
shorter hypocotyls under shade, and the bbx25 mutant
further enhances the bbx24 phenotype in a partially redun-
dant manner [15]. The short hypocotyl phenotype of the
bbx24 bbx25 double mutant under shade is completely
COP1-dependent because the bbx24 bbx25 cop1 triple
mutant resembles the cop1 phenotype [15], suggesting that
BBX proteins act in the COP1 signaling pathway under
shade. Similarly, BBX16 also promotes hypocotyl growth
under shade, probably acting as a positive transcriptional
regulator of PIL1 [65]. In addition, the overexpression of
BBX16 dramatically enhances the number of primary
rosette branches under high R/FR ratio [65].

BBX proteins in abiotic and biotic stresses
In addition to the functions of BBX proteins in growth and
development, some studies suggest that they are also
involved in signaling pathways induced by abiotic and
biotic stresses. For example, Arabidopsis BBX18 subex-
pressing lines have increased thermotolerance, whereas
overexpression lines have reduced thermotolerance [67].
The BBX18 expression was induced in plants exposed to a
2 h heat treatment at 42 8C [67]. Furthermore, BBX18
negatively regulates the expression of heat-responsive
genes such as DGD1, Hsp70, Hsp101, and APX2, thereby
reducing germination and seedling survival after the heat
treatment [67].

BBX24 is involved in salt stress signaling [68,69]. In
fact, BBX24 was originally isolated as a SALT-TOLER-
ANT (STO) protein in a screen aimed to identify Arabi-
dopsis cDNA clones that confer increased salt tolerance in
yeast (Saccharomyces cerevisiae) salt-sensitive calcineurin
mutants [68]. BBX24/STO cDNA complements the yeast
calcineurin-deficient mutant phenotype and enhances the
salt-tolerance capacity of wild type yeast [68]. Further, the
overexpression of BBX24 in Arabidopsis confers salt tol-
erance compared to wild type plants [69]. BBX24 trans-
genic plants exposed to a medium supplemented with 50
and 100 mM NaCl show a significant increase in root
length compared to wild type plants [69]. However,
BBX24 expression is not inducible by salt, suggesting that
the effects caused by BBX24 are likely to be indirect.
Interestingly, BBX24 interacts directly with H-protein
promoter binding factor1 (HPPBF-1), a salt-responsive
MYB transcription factor [69].

In addition, genome-wide expression analyses suggest
the probable involvement of BBX proteins in other stress
signaling responses. Absicic acid (ABA) phytohormone is
activated when plants are exposed to different stresses
[70]. Large-scale microarray studies show that BBX genes
are differentially expressed in response to ABA, cyclic
ADP-ribose (cADPR), and low temperatures [71,72]. Pre-
viously it was shown that cADPR is involved in an early
ABA signaling event [70]. However, the direct involvement
of BBXs in abiotic stress signaling pathways has to be
demonstrated.
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BBX proteins also participate in wounding and defense
responses (Table 1). In a microarray study comparing the
effects on wounding response in Arabidopsis plants treated
with jasmonic acid (JA), methyl jasmonate (MeJA), or the
cyclopentenone precursor of JA, 12-oxo-phytodienoic acid
(OPDA), it was found that BBX32 expression is upregu-
lated by OPDA, but not by JA or MeJA [73]. Another study
showed that BBX32 expression is also increased after a
short treatment with chitin, a substance found in the cell
walls of fungi and the exoskeleton of insects and nematodes
[74]. Chitin-responsive transcription factors are key ele-
ments in the ability of chitin to modify gene expression as
part of the plant defense reaction. In light of these obser-
vations, BBX32 seems to be involved in plant defense
pathways.

BBX proteins and hormonal signaling networks
Evidence for the role of BBX proteins in hormonal signal-
ing pathways is scarce. BZS1/BBX20 integrates signals
from brassinosteroids (BR) and light pathways [75].
BRASSINAZOLE RESISTANT 1 (BZR1), a positive tran-
scription factor, promotes hypocotyl growth by directly
binding to BBX20 and repressing its expression [74].
Interestingly, a GATA-binding zinc-finger protein
(GATA2) also inhibits hypocotyl growth by repressing
BR signaling action [76]. Therefore, it can be hypothesized
that BBX20 collaborates with GATA2 in mediating light
and BR crosstalk.

BBX18 is involved in the gibberellin (GA) signaling
pathway [77]. Molecular and phenotypic investigations
demonstrate that BBX18 promotes hypocotyl growth by
increasing bioactive GA levels. Indeed, BBX18 increases
the expression of GA3ox1 and GA20ox1 metabolic genes,
and suppresses the expression of GA2ox1 and GA2ox8
catabolic genes under light [77]. The antagonistic regula-
tion of light and GA in seedling de-etiolation and the
involvement of BBX proteins in the COP/HY5 signaling
pathway [78] suggest that BBX18 may act as an integrator
of both GA and COP1/HY5 pathways.

Furthermore, a microarray database obtained from rice
plants exposed to auxin, GA, and cytokinin treatments
showed that 11 BBX transcripts responded differentially
to the addition of the phytohormone, and most of them
harbor hormone-responsive cis-acting elements in their
promoters. These observations suggest the probable invol-
vement of OsBBX proteins in hormone signaling as tran-
scriptional regulators [6]. However, further investigations
are necessary to demonstrate clearly their role in hormone
signaling pathways.

Concluding remarks and future perspectives
Although significant progress has been made in under-
standing the functions of many BBX proteins in different
developmental responses in Arabidopsis, the roles of BBX
proteins have only now begun to be unraveled in other
plant species (Table 1). Our knowledge of the function of
BBX proteins is probably limited by the complexity and
modularity of the system and the relatively modest amount
of functional information available to date. However, this
review clearly establishes that BBX proteins constitute a
group of transcription factors whose members have oppo-



Review Trends in Plant Science xxx xxxx, Vol. xxx, No. x

TRPLSC-1140; No. of Pages 11
site functions in the regulation of the same physiological
process. This feature, which is not common in other tran-
scription factor families, opens up new avenues of research
to learn how plants integrate endogenous and environ-
mental signals for fine-tuning their growth and develop-
ment. In the coming years, understanding the molecular
mechanisms of each individual BBX protein will be an
important task.

Furthermore, the involvement of BBX proteins in flow-
ering and biotic and abiotic stresses argues in favor of
their use in transgenic crops to obtain desirable agro-
nomic characters. For example, manipulating the expres-
sion of CO and COL and their orthologs in crops could be a
fruitful strategy to design plants with early or late flower-
ing time depending on production requirements or local
climatic limitations. For example, early flowering may be
a desirable trait in crop plants where seeds are the
harvested product, but late flowering could be an advan-
tage when total biomass is the objective of the production,
as is the case for green leafy vegetables, bioethanol, or
fodder crops. Very recently it has been shown that the
heterologous overexpression of Arabidopsis BBX32 pro-
tein in soybean plants increases grain yield under field
conditions [79]. These results suggest that BBX protein
manipulation in crops might be a strategy to increase food
production.
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