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We numerically investigate the ghost stochastic resonance phenomenon induced by a
power-law distributed noise in the neuron FitzHugh–Nagumo model. The input noise con-
sidered is produced by a Langevin process including both multiplicative and additive
Gaussian noise sources. In this process, the power-law decay exponent of the resulting
noise distribution is governed by the off-set of the multiplicative noise, thus allowing us
to probe both regimes of Gaussian and strongly non-Gaussian noises. Ghost stochastic res-
onance, i.e., stochastic resonance in a missing fundamental harmonic, occurs in this model.
Deviations from the Gaussianity of the input noise are shown to reduce both the additive
noise intensity corresponding to the optimal identification of the missing fundamental as
well as the number of firing events at the ghost stochastic resonance condition.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The influence of noise on the time evolution of dynamical systems is quite diverse. Besides its standard effect of produc-
ing disorder and, therefore, compromising the identification of a regular input signal, it can have the opposite effect of
improving the system’s response to an external stimulus under appropriated conditions. In particular, the study of neural
systems under the influence of a noise source is fundamental to fully understand its dynamics. For example, neurons
in vitro fire with considerable regularity in response to a constant stimulus while neurons in vivo exhibit a much larger irreg-
ularity in response to the same stimulus. A number of possible sources for neuronal noise in vivo has been proposed, includ-
ing an intrinsic channel [1], Johnson electrical [2] and network [3] noises. Among the many positive roles played by noise in
dynamical systems, the stochastic resonance (SR) phenomenon is one of the most intriguing. SR is the optimal detection of a
sinusoidal sub-threshold signal achieved at a characteristic noise level. Along the years, SR has contributed to change the
traditional concept of noise as a disturbing agent [4–15].

Recently, SR has been used to explain a phenomenon that happens in the human ear known as the ‘‘missing fundamental
illusion’’. In this phenomenology, the human ear can perceive tones that are not present in the characteristic function of
pressed notes [16–19]. This phenomenon has been studied in a model of neurons and compared with the general case of
unharmonious tones used in the experiments of Schouten [20] where the complex signal was constructed adding pure
high-order harmonics of a fundamental frequency. Ghost resonance produced by noise was observed with good agreement
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with experiments. The missing frequency resonance phenomenon promoted by noise has been termed as ghost stochastic
resonance (GSR) and it has been detected in different systems like lasers [21], electronic circuits [22] and chaotic systems
[23].

Usually, GSR frequency is investigated when a given dynamical system is driven by a white Gaussian noise source. How-
ever, non-Gaussian noises are quite frequent in biological systems. For example, some experimental results in sensory sys-
tems, particularly for one kind of crayfish, as well as in rat skin experiments, offer strong indications that the noise source in
these systems could be non-Gaussian [24]. Experimental studies in rat sensory neurons have demonstrated that, under cer-
tain circumstances, colored noise can be better than white Gaussian noise for enhancing the neuron response to a weak sig-
nal [25]. Although several studies have addressed the question of the influence of the noise statistical properties on the
stochastic identification of weak harmonic signals [26], there still lacks a better understanding of how the noise character-
istics can affect the missing fundamental illusion in sensory neuron models.

In the present work, we investigate how the noise deviation from Gaussianity influences the GSR characteristics exhibited
by a nonlinear sub-threshold dynamical system. As a prototype model, we will consider the FitzHugh–Nagumo (FHN) neural
model driven by superposed harmonics of a missing fundamental and a power-law distributed noise source resulting from a
Langevin process including both additive and multiplicative Gaussian noises. By controlling the model parameters, one can
tune the degree of deviation from Gaussianity and explore its influence on the characteristic noise intensity leading to an
optimal identification of the missing fundamental.

This work is organized as follows: In Section 2, we review some basic aspects of stochastic and ghost resonances. In Sec-
tion 3, we describe the main features of the FitzHugh–Nagumo neural model. The Langevin process leading to the production
of a power-law distributed noise is detailed in Section 4. Section 5 is devoted to the numerical methodology we used and to
the main results characterizing the GSR phenomenon in the modeled system. Finally, we summarize and draw our main
conclusions in Section 6.

2. Stochastic and ghost resonances

When a nonlinear dynamical system is driven by a sub-threshold periodical signal, the superposition of an input noise can
make the output signal to bring information regarding the external sub-threshold input. Usually there is an optimal intensity
of the superposed noise that leads to the highest resolution of the sub-threshold periodic signal. This effect is known as SR and
it has been studied in several different physical scenarios such as lasers, chemical reactions, and chaotic systems [27–29].

The ghost resonance is a variant of the SR phenomenon in which the periodic stimulus is a superposition of higher har-
monics, equally spaced in frequency, of a fundamental tone [16–23]. When the maximum of this complex signal is sub-
threshold, a SR condition can be reached in the presence of noise. However, the main SR is not in any of the frequencies con-
tained in the periodic stimulus but rather in the missing fundamental tone. This phenomenon is referred as the missing fun-
damental illusion, or in this case, GSR because the perceived tone corresponds to the fundamental frequency for which there
is no actual source. It only appears in the output signal due to the presence of noise. This phenomenon has been shown to be
directly related to pitch perception of complex sound waves [17]. Within this context, a relevant question refers to the shift
in the pitch perception when the frequencies of the harmonic tones are rigidly displaced, which makes them no longer
higher harmonics of a fundamental tone. The external complex stimulus is usually considered as a superposition of sinusoi-
dal functions in the form
FðtÞ ¼ Afsinð2pf 1tÞ þ sinð2pf 2tÞ þ � � � þ sinð2pf ntÞg ð1Þ
where f 1 ¼ kf0 þ Df ; f 2 ¼ ðkþ 1Þf 0 þ Df ; . . . ; f n ¼ ðkþ n� 1Þf 0 þ Df . Here, Df is a frequency shift from a perfect harmonic ser-
ies, f 0 is the fundamental tone, and A is the amplitude of the signal components. A SR is observed in frequencies given by Ref.
[18,19]
f r ¼ f 0 þ Df=½kþ ðn� 1Þ=2�; ð2Þ
where n ¼ 1;2;3; . . . and k > 1. The above equation actually corresponds to the expected frequency at which the highest
peaks of the complex signal occur. Such prediction has been probed in several physical systems such as the neuron model
[18], semiconductor lasers [22], chaotic systems [23] and electronic circuits [21,23]. It has also been well reproduced in
experiments of pitch perception [20]. A recent review on GSR and its different manifestations can be found in Ref. [16].

3. The FitzHugh–Nagumo neuron model

The FitzHugh–Nagumo neuron (FHN) model is a representative example of a bistable excitable system that occurs in a
wide range of applications ranging from kinetics of chemical reactions to biological processes. Different aspects of the
dynamics of this model and similar excitable ones in the presence of noise have been discussed from different points of view
[30–34]. The equation of motion for the FHN neuron is given by
� dv
dt ¼ vðv � aÞð1� vÞ �xþ FðtÞ þ mðtÞ

dx
dt ¼ v �x� b

(
ð3Þ
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where vðtÞ is a fast variable representing a dimensionless membrane voltage and xðtÞ is a slow variable with a unitary char-
acteristic time constant. The time constant � governs the speed of changes in the fast variable vðtÞ in comparison to the slow
variable xðtÞ. It will be fixed at � ¼ 0:002 s in the following numerical study. The parameter a accounts for an unstable fixed
point and b for the resting voltage. These will be considered to assume the values a ¼ 0:5, and b ¼ 0:15 which reproduce a
typical neuron firing sequence. The sum FðtÞ þ mðtÞ is an external stimulus given by a combination of periodic force [see Eq.
(2)] and the noise component. When the intensity of the stimulus is fixed below threshold, no firing can be observed in vðtÞ.
Increasing the intensity of the stimulus, a firing recovery produces an absolute refractory time TR during which a second fir-
ing cannot occur, followed by a longer relative refractory time during which firing requires stronger perturbations. Thus, the
firing threshold depends on the time interval since the previous firing. In Fig. 1, we show a typical time evolution of the
system fast voltage vðtÞ under the influence of an external stimulus. The time at which spikes appear are denoted by ti.
In consequence, the inter-spike intervals (ISI) are given by Dti ¼ ti � ti�1.

4. Power-law distributed noise and its numerical generation

In the present work, we will consider the noise input mðtÞ to be power-law distributed. In order to numerically generate
such class of noises, we employed a Langevin differential stochastic process including both additive and multiplicative
underlying noise sources governed by the following equation [35–37].
Fig. 1.
spike is
dmðtÞ
dt
¼ kðtÞmðtÞ þ nðtÞ; ð4Þ
where mðtÞ is the stochastic variable to be used as the input noise in the neuron system, kðtÞ is a multiplicative noise and nðtÞ
an additive noise. A unitary characteristic time scale is assumed. Both kðtÞ and nðtÞ are white and Gaussian, with average and
variance given by
hkðtÞi ¼ k0 < 0;
hðkðtÞ � k0Þðkðt0Þ � k0Þi ¼ 2Dkdðt � t0Þ;
hnðtÞi ¼ 0;
hnðtÞnðt0Þi ¼ 2Dndðt � t0Þ:

ð5Þ
In the above equations Dk and Dn are the multiplicative and additive noises fluctuation intensities, and k0 is a constant offset
of the multiplicative noise.

In most practical situations, the additive noise is weaker than the multiplicative noise. In analog simulations of the above
process, for example, the additive noise is just produced by small thermal noises of operational amplifiers or from external
electromagnetic noises. In a detailed analytical study of this stochastic process, it has been shown that the Fokker–Planck
equation satisfied by the probability distribution function Pðm; tÞ of mðtÞ is given by
@P
@t
¼ � @

@m
ðk0 þ DkÞmP � @

@m
½ðDkm2 þ DnÞP�

� �
; ð6Þ
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which has as stationary solution
Fig. 2.
is contr
asterisk
interpr
PðmÞ / 1þ m
s

2
� �� ��ðbþ1Þ=2

; ð7Þ
with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn=Dk

p
and b ¼ �k0=Dk. The strength of the generated noise can be characterized by its variance
2Dm ¼ hm2i ¼ 2Dn

Dkðb� 2Þ : ð8Þ
Boundary conditions with no probability flux were assumed to produce stationarity. The weak additive noise condition

implies s� 1. Therefore the stochastic signal has an asymptotic power-law distribution Pðm=s� 1Þ / ðm=sÞ�ðbþ1Þ. Observe
that the characteristic power-law exponent b is determined only by statistical characteristics of the multiplicative noise.
Thus, the average multiplicative noise k0 will be used in this work to tune the power-law distribution exponent. In what fol-
lows, we will work in units of Dk¼1. Therefore, Dn will measure the fluctuations on the additive noise relative to those on the
multiplicative noise, which ultimately determine the characteristic scale s of the power-law generated noise. Therefore, by
changing the pair of parameters ðk;DetaÞ, one can fully tune the statistical properties of the noise that is going to be super-
posed to the complex periodic signal feeding the FitzHugh–Nagumo neuron model. A detailed study of this stochastic pro-
cess, Eq. (4), can be found in references [35–37].

To numerically integrate the power-law noise equation, we rewrote Eq. (4) in order to use the Euler numerical integration
method. We defined kðtÞ ¼ NðtÞ þ k0, where NðtÞ is a white noise that has the same characteristics of nðtÞ and fluctuation
intensity Dk. Using this relation, one can rewrite Eq. (4) as
dmðtÞ ¼ k0mðtÞdt þ NðtÞmðtÞdt þ nðtÞdt: ð9Þ
Using Ito and Stratonovich theory for integrating stochastic differential equations [36], we can write Eq. (9) in the form
dmðtÞ ¼ k0mðtÞdt þ mðtÞdN0 þ 0:5mðtÞðdN0Þ2 þ dW ; ð10Þ
where dN0 ¼ NðtÞdt and dW ¼ nðtÞdt represent Wiener process increments. According to the central limit theorem, dN0 and
dW have Gaussian distributions with variance 2Dkdt and 2Dndt, respectively. Therefore, during the numerical integration, the

Wiener increments were generated by DN0 ¼ RG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dkdt

p
and, DW ¼ RG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dndt

p
, where the values of RG were taken, at each

time increment, as random uncorrelated numbers sampled from a Gaussian distribution with unitary variance. For the mul-
tiplicative noise, the quadratic term in the Wiener increment was included to improve the convergence, according to Stra-
tonovich’s prescription. It effectively takes the average of the values at the beginning and at the end of the integration
interval dt as a better approximation of mðtÞ.

As an example, we show some distribution functions for the resulting noise in Fig. 2, characterized by distinct values of
the parameter k0 and the intensity of the additive noise Dn. In the first case, we took k0 ¼ �2:5;Dn ¼ 0:001 (black asterisk)
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which represent a typical noise with a slow power-law decay (long-tailed distribution). For the second and third cases, we
consider k0 ¼ �10;Dn ¼ 0:001 (red square) and k0 ¼ �10;Dn ¼ 0:01 (green circle) where almost Gaussian noises are pro-
duced. In our numerical simulations, we fixed dt ¼ 10�4 s and Dk ¼ 1. In the following study of the neural dynamics under
the influence of a power-law distributed noise, the corresponding values of k0 and Dn will be adjusted to detect the GSR.
5. Methodology and results

For the numerical resolution of the nonlinear equation (3), we used a simple Euler method with an integration step of
0:0001 s. The total number of points used in our simulation was 5 � 107 and we saved one point at each 50 steps of integra-
tion. The following density plots were obtained by computing the histograms of the typical frequencies of firing events
f j ¼ 1=ðtj � tj�1Þ in the output signal vðtÞ (inter-spikes time intervals (ISI), see Fig. 1). The histograms were evaluated by
counting the number of occurrences of f j within a window of 0:01 Hz. The methodology presented here was used to produce
all numerical results.

In Fig. 3 we report comparative time series of the neuron signal together with the complex periodic signal superposed
with nearly Gaussian (k0 ¼ �40) as well as strongly nongaussian (k0 ¼ �2:5) noises. Notice that, due to the long tail charac-
ter of the nongaussian noise distribution, the resulting noisy input signal has a broader distribution of intensities when com-
pared to the case of a Gaussian noise. Under the presence of a nongaussian noise, the neuron firings are more correlated to
the occurrence of large noise events than to the peaks of the periodic complex signal. This feature can have an impact on the
stochastic identification of the underlying weak complex signal, which will be explored in the following.

The methodology utilized to detect the GSR is described in different works, and can be summarized in two steps. In the
first step, one fixes the intensity of the external periodical signal below threshold. After that, we add the noise and change its
intensity. With this procedure, one searches for the optimal noise intensity that produces a maximum output response on
the resonance frequency. This is actually the typical procedure to find the optimal noise in the SR case. In a second step, we
fixed the noise at this optimal level and vary Df to find the general characteristic of the ghost stochastic resonance predicted
by Eq. (2) [16,19,21–23].
5.1. Ghost stochastic resonance: Gaussian noise results

Following the above procedure, we were able to build Fig. 4, for which we have set k0 ¼ �40, Dk ¼ 1; f ¼ 0:4 Hz;Df ¼ 0;
n ¼ 2; k ¼ 2;A ¼ 6:0� 10�3 and distinct levels of the additive noise intensity Dn ¼ ð100;600;750;1400Þ � 10�6. In this case of
large multiplicative noise intensity k0 ¼ �40, the resulting noise feeding the neural model has an almost Gaussian distribu-
tion. Notice the signatures of SR in Fig. 4. There is an optimal detection of the external sub-harmonic signal frequency
f 0 ¼ 0:4 Hz at an additive noise intensity Dn ¼ 600� 10�6. That is, for this noise level, the number of events (histogram)
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is maximized at frequency f 0 ¼ 0:4 Hz in comparison with the other maxima. Due to fact that f 0 ¼ 0:4 Hz is not present in
the external sinusoidal signal, this phenomenon is also the signature of ghost stochastic resonance. Notice that a few other
maxima at lower frequencies are also identifiable at the optimal condition. These correspond to the resonance frequencies
predicted by Eq. (2) for the cases of k ¼ 3 (for which Df ¼ �0:4 and f r ¼ 0:285), k ¼ 4 (for which Df ¼ �0:8 and f r ¼ 0:22),
and k ¼ 5 (for which Df ¼ �1:2 and f r ¼ 0:22).

To observe the general characteristic of the GSR effect, we set the system in the parameters utilized in the above numer-
ical experiment, i.e., we fixed the system at the optimal additive noise intensity Dn ¼ 600� 10�6, and varied the frequency
shift in the range �0:6 Hz 6 Df 6 0:6 Hz with displacements of 0:1 Hz. The obtained results are shown in Fig. 5. The general
configuration of ghost frequency appears according to the theory prediction Eq. (2). In this figure, the red line signals the
fundamental frequency. The transverse lines correspond to the theoretical prediction for the location of the resonance fre-
quency (see Eq. (2)), for the cases of k ¼ 1;2;3 and 4.
5.2. Ghost stochastic resonance: power-law distributed noise

The same procedure used in the previous subsection for the case of a Gaussian-like noise was employed for the case of
a power-law distributed noise. In Fig. 6, we show the distribution of the number of events when k0 ¼ �2:5, which cor-
responds to a slow decay of the noise distribution that stimulates the neuron model, and different levels of the additive
noise Dn ¼ ð50;120;250;750Þ � 10�6. Note that GSR also appears when the external noise has a slowly decaying power-
law tail. In this case, the optimal additive noise intensity corresponding to the maximum signal of the missing fundamen-
tal is weaker than the one achieved for a Gaussian-like noise. In Fig. 7, we show the general configuration of the GSR
when the system is stimulated by such optimal additive noise intensity Dn ¼ 120� 10�6. It is worth to call attention
to the fact that the number of firing events at the resonance condition is smaller than the one attained under the influ-
ence of a Gaussian noise. As a consequence, the poorer statistics compromises the clear identification of the other lower
frequency resonances.

Before finishing, we report in Fig. 8 the full dependence of the amplitude of the response (histogram value) at the missing
fundamental frequency as a function of k0 and Dn. Values are normalized to the maximum response for better visualization.
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Besides clearly showing that the optimal noise intensity decreases as one further deviates from gaussianity (smaller values of
k0), Fig. 8 unveils that the GSR condition becomes sharper. Therefore, while a weaker noise intensity is required to identify
the missing fundamental frequency under the influence of a nongaussian noise, its resolution appears in a narrower range of
noise intensities.
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6. Summary and conclusions

In summary, we investigated the occurrence of the GSR phenomenon on the FitzHugh–Nagumo neural model under the
influence of a power-law distributed noise. Such noise results from a Langevin process including both additive and multipli-
cative Gaussian noises. When the noise signal is superposed to a sub-threshold periodic stimulus composed of a linear com-
bination of high harmonics of a fundamental tone, the histogram of the firing events of the system presents a pronounced
peak at the missing fundamental frequency. For fixed statistical properties of the multiplicative noise, mainly its average and
variance, we observed that the optimal identification of the missing fundamental tone is achieved at an intermediate value of
the additive noise intensity which decreases as the input power-law noise deviates further from Gaussianity. Further, a smal-
ler number of firing events occurs at the GSR condition when considering a non-Gaussian noise input.
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The above two features related to the influence of noise non-Gaussianity on the GSR phenomenon can be better under-
stood by stressing that the intensity of the input power-law noise (see Eq. (8)) is proportional to the additive noise intensity
Dn and decreases with increasing values of the average multiplicative noise ð�k0Þ. Therefore, when ð�k0Þ is decreased to
enhance the non-Gaussian character of the input noise, a smaller intensity of the additive noise is required to produce
the same input noise intensity. As a consequence, the number of firing events decreases because the rare events of large
noise intensities have a mayor influence on the process. Considering that the neural response is quite sensitive to the noise
statistical properties [38,39] and that non-Gaussian noise are commonly found in nature [40], the present results sheds new
light on the possible mechanisms explored by biological dynamical systems, specially the auditory system, to identify hidden
fundamental harmonics in low intensity complex signals.
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