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Recently, new insights into the relation between the geometry of the vessel that confines a fluid and
its thermodynamic properties were traced through the study of cluster integrals for inhomogeneous
fluids. In this work, I analyze the thermodynamic properties of fluids confined in wedges or by
edges, emphasizing on the question of the region to which these properties refer. In this context,
the relations between the line-thermodynamic properties referred to different regions are derived as
analytic functions of the dihedral angle α, for 0 < α < 2π, which enables a unified approach to both
edges and wedges. As a simple application of these results, I analyze the properties of the confined
gas in the low-density regime. Finally, using recent analytic results for the second cluster integral
of the confined hard sphere fluid, the low density behavior of the line thermodynamic properties is
analytically studied up to order two in the density for 0 < α < 2π and by adopting different reference
regions. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922928]

I. INTRODUCTION

The interest on confined inhomogeneous fluids covers a
large length of scales of the particles’ size which starts at the
simplest one-atom per molecule (e.g., the noble gases) and
goes up to proteins, polymers (including DNA molecules), and
large colloids.1–5 The thermodynamic properties of these sys-
tems are influenced by the geometry of the vessel or substrate
that constrains the spatial region where the molecules of the
system are enabled to move. Important efforts are continuously
devoted to reach a detailed description of the response of
fluids to some simple geometrical constraints like the confine-
ment in pores with slit, cylindrical and spherical shapes, as
well as the case of fluids in contact with planar and curved
walls.

This work focuses on fluids confined by open dihedrons
built by two planar faces that meet in an edge. Previous studies
were dedicated to analyze the adsorption of liquid-vapor coex-
isting phases on edges and wedges,6–9 and also, to the adsorp-
tion on corrugated surfaces.10–12 The main characteristic of the
thermodynamics of fluids confined by edges and wedges is the
existence of line tensions. This property also characterizes sys-
tems with two coexisting phases adsorbed on planar substrates
(sessile drops) and systems with three coexisting phases that
meet on a common line.13,14

One of the particularities of the edge/wedge type of
confinement is that it produces non-trivial spatial inhomo-
geneities of the fluid. As in the case of fluids confined by
curved walls, it happens that different points of view in the
very beginning of the analysis produce dissimilar properties.15

Thus, it is relevant to establish the basis that allow us to
compare the thermodynamic properties found by adopting
these different points of view.

a)iurrutia@cnea.gov.ar

In this work, I analyze the statistical mechanics and ther-
modynamic properties of a fluid confined in an edge/wedge
on the basis of the representation of its grand potential in
powers of the activity. In Sec. II, different types of edge/wedge
confinements are discussed and the thermodynamics of the
fluid composed by spherical particles is revisited. There, I
analyze the free energy and related thermodynamic magni-
tudes of the confined fluid emphasizing on the explicit choice
of the reference region to which system properties refer. Sec-
tion III describes the functional dependence of the cluster
integrals with the measures of the edge/wedge spatial region
and the consequences that follow on system properties. There,
new relations between bulk-surface and line-thermodynamic
properties for different reference regions are shown. They take
the form of transformation laws and apply to any density. Also,
the behavior of low density gases is discussed. In Sec. IV,
this approach is utilized to derive analytic expressions for the
thermodynamic properties (pressure, surface tension, line ten-
sion, and surface- and linear-adsorptions) of the confined hard
sphere (HS) fluid up to order two in density. The consequences
of adopting different reference regions on the thermodynamics
of this system are also discussed in this section. The expres-
sions obtained of line-tension and line-adsorption show the
dependence with the opening dihedral angle. Final remarks are
presented in Sec. V.

II. DETAILED DESCRIPTION OF A FLUID
IN AN EDGE/WEDGE CONFINEMENT

Let us consider an open system of particles at constant
temperature T and chemical potential µ, which is confined
by two planar walls that intersect in an edge. For simplicity,
we only refer here to spherical particles. The walls exert a
hard potential φ (r) that constrains the position of the center
of each particle to a regionA with dihedral shape (throughout

0021-9606/2015/142(24)/244902/7/$30.00 142, 244902-1 © 2015 AIP Publishing LLC
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this work, the open-dihedron geometrical shape is referred to
as dihedron) being α the inner angle between faces (inner to
A). I analyze two different types of edge/wedge confinements.
Fig. 1 shows one of the edge/wedge confinement considered.
There, the edge/wedge available region A is defined by the
Boltzmann factor exp [−φ (r) /kT] = Θ�|r − C |�where k is the
Boltzmann’s constant, Θ (x) is the Heaviside function [Θ (x)
= 1 if x > 0 and zero otherwise], the dihedral region which is
the complement ofA is C = R3 \ A, and |r − C | is the shortest
distance between r and C. Note that the faces of A meet on
a straight line; thus, I call it a straight-edge dihedron. On the
other hand, one has the confinement defined by the Boltzmann
factor exp [−φ (r) /kT] = Θ �|r − C | − σ

2

�
beingC a solid dihe-

dral region and σ/2 the minimum distance between the center
of a particle and the solid dihedron. The latter case, particularly
relevant for colloidal particles and macromolecules, is drawn
in Fig. 2 where the forbidden region betweenA and C is also
indicated. Note that for 0 < α < π the region A is a straight-
edge dihedron (shown in Fig. 2(a)). On the contrary, for π
< α < 2π (shown in Fig. 2(b)),A is a rounded-edge dihedron
(it has a curved end-of-fluid surface). This kind of rounded
edge confinement is produced by the external hard poten-
tial being the inter-particles’ potential arbitrary. In summary,
Figs. 1(a), 1(b), and 2(a) correspond to a straight-edge confine-
ment while Fig. 2(b) corresponds to a rounded-edge.

Before analysing the thermodynamic properties of this
confined fluid it is necessary to adopt a region B as the
reference region (RR).15,16 Note that B may coincide or not
withA. I wish to underline that in the study of confined fluids,
it is crucial to clearly establish the adopted RR which fixes the
position and shape of its boundary, the surface of tension.
This question is as important as to establish the system of
reference in the study of a mechanical system. Hence, I adopt
as RR the region B which nearly follows the shape of A and
has measures MB = (V, A,L) (being V , A, and L the volume,
surface area, and length of the edge of B, respectively). A
detailed analysis of different prescriptions for B is presented
in Sec. III. The grand potential of the confined fluid, relative
to B, can be written as

Ω = −PV + γA + T L, (1)

where P is the pressure of the fluid, γ is the wall/fluid surface
tension (or surface free-energy), and T is the wall/fluid line
tension (or line free-energy). The mean number of particles in

FIG. 1. Fluid confined by a hard-wall dihedron. In the region A in light-gray
(green), particles are free to move while the region in white is forbidden. Note
that no matter the value of the opening angle both light-gray (green) and white
regions is straight-edge dihedrons.

FIG. 2. Fluid confined by a hard wall dihedron that induces an excluded
region. Painted with darker gray is the hard wall, lighter gray (green) cor-
responds to the fluid, and the excluded region is in white. (a) shows the
case α < π while (b) corresponds to the case α > π. The wall-particle hard
repulsion distance is σ/2 and dashed circles represent particles at selected
positions near the edge/wedge. The arrows show characteristic lengths in
σ units.

the confined system is

N = −∂Ω
∂µ

(2)

= ρV + ΓAA + ΓLL, (3)

where ρ is the mean number density, ΓA is the excess adsorp-
tion per unit area, and ΓL is the excess adsorption per unit
length. Naturally, this kind of linear decomposition also applies
to other magnitudes, such as the entropy S = − ∂Ω

∂T
, the en-

ergy U = Ω + T S + µN , and higher order derivatives like σ 2
N

≡


N2� − N2 = kT ∂N

∂µ
which describe fluctuations.

From Eq. (1), it is clear that once A is fixed, Ω becomes
independent of the adopted RR. On the contrary, since mea-
sures are relative to B, some of the magnitudes (P, γ, and T )
depend on B. Naturally, the same argument shows that N is
independent of the adopted RR although some of the magni-
tudes (ρ,ΓA,and ΓL)may depend onB, and so on. In summary,
even when we have an idea of the meaning of the magnitudes
(P, γ,T , ρ,ΓA, and ΓL) that allow us to give a name to each
one, they were not appropriately defined yet. Indeed, they do
not describe the pure properties of the confined fluid (as it may
be suggested by the adopted names for these magnitudes), but
they describe the properties of the fluid with regard to a given
RR in a sense that will be clarified below. Some general aspects
of the former discussion follow the analysis of macroscopic
systems with coexisting phases done in Ref. 14.

III. CLUSTER INTEGRALS AND THERMODYNAMICS

Let us consider a system of particles interacting through a
pair potential ψ (r) with finite range. The center of these parti-
cles is confined by a hard external potential to an edge/wedge
regionA. It was recently shown that the cluster integrals of the
system take the form17,18

τi = i!biV − i!aiA + i!ciL. (4)

Here, the ith cluster integral τi is linear on the extensive mea-
sures MA = (V, A,L) that geometrically characterize the re-
gionA (its volume V , surface area A, and the length of its edge
L). We say that MA are the measures of the system relative
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to A. Besides, cluster integral also depends on the opening
dihedral angle between faces, α. The volume coefficients bi

are the well known Mayer’s cluster integrals for homogeneous
systems and the area coefficients ai were introduced to describe
a fluid adsorbed on an infinite wall.19,20 bi and ai with i > 1
depend on ψ (r) but are independent of α, being τ1 = b1V with
b1 = 1 and V = Z1, the configuration integral of one particle.
Equation (4) was originally derived for the case of a straight-
edge dihedral region17A, i.e., the cases described in Figs.1(a),
1(b), and 2(a), and was latter extended to the rounded-edge
dihedron shown in Fig. 2(b).16

It is well known that in the low density regime or gaseous
phase, the properties of the confined fluid can be rigorously
written as power series in the activity z = Λ−3 exp(βµ) (here,
β = 1/kT is the inverse temperature, and Λ is the de Broglie’s
thermal length).18 The Mayer series of the grand potential for
the confined fluid is given by

Ω = −β−1

i≥1

τi
i!

zi, (5)

its mean number of particles being

N =

i≥1

i
τi
i!

zi. (6)

By replacing Eq. (4) in Eqs. (5) and (6), one obtains

βΩ = −
(
i≥1

bizi
)
V +

(
i≥1

aizi
)

A −
(
i≥1

cizi
)
L, (7)

N = −
(
i≥1

ibizi
)
V −

(
i≥1

iaizi
)

A +
(
i≥1

icizi
)
L. (8)

Consistently, a similar transformation applies to other thermo-
dynamic magnitudes [S, U,σ 2

N
, see Eq. (3)]. Equations (1) and

(7) have a similar dependence with the measures. Nevertheless,
Eq. (1) is in terms of measures MB that correspond to the
choiceB as RR, while Eq. (7) is in terms of measures regarding
to A as RR. Of course, the same applies to Eqs. (3) and (8).
Equations (1)-(3) show the advantages in deriving τi as a linear
function of the measures of B. If it is possible, one finds
the z power series for the intensive thermodynamic properties
P, γ,T and densities ρ,ΓA,ΓL, referred to B.

Equation (4) transpires linear algebra concepts. It can
be seen not only as a vector in an abstract space with basis
of coordinates (V, A,L) and components (i!bi,−i!ai, i!ci) but
also as the inner product (i!bi,−i!ai, i!ci) ·MA between row
and column vectors that live in dual spaces. These analogies
flow to Eqs. (7) and (8) and will be further investigated in
Secs. III A and III B for different ranges of α.

The confinement of the systems drawn in Fig. 1 is purely
characterized by the regionA where the density distribution is
non-null. This density-based choice of B will be labeled with
a d subindex (d-RR). For the confinement shown in Figs. 1(a)
and 1(b), the unique simple choice for RR is A itself; this
prevents to analyze them from the point of view of the freedom
to choose the RR.

On the other hand, even when the systems shown in Fig. 2
can also be analyzed under the same density-based B, other
RRs could be adopted. To analyze this problem and the rela-
tion between the thermodynamic properties obtained under
different choices of B, we study the edges/wedges with angles

0 < α < π and π < α < 2π separately. It is interesting to note
that when the d-RR is adopted, the system depicted in Fig. 1(a)
and the system drawn in Fig. 2(a) are identical, and thus, their
properties are identical too.

A. Case I (0 < α < π )

For the case of the wedge confinement drawn in Fig. 2(a),
I study two different choices for the RR that are the most nat-
ural to be adopted. Under the density-based RR that identifies
B with A, the measures are Md = (Vd, Ad,L), the ith cluster
integral being

τi/i! = biVd − aiAd + ci(β) L = bd ·Md, (9)

where bd = (bi,−ai,ci) is the vector of coefficients. The second
simple choice forB is the empty-region (e-RR), i.e.,B is taken
as A joined with the white region in Fig. 2(a) and the mea-
sures are Me = (Ve, Ae,L). In what follows, we will use σ (see
Fig. 2) as the unit length. From geometrical considerations,
it is possible to obtain the linear relation between both sets
of measures: Vd = Ve − 1

2 Ae +
1
4 cotα2 L for 0 < α < π, Ad = Ae

− cscα L for 0 < α < π
2 , and Ad = Ae − cotα2 L for π

2 < α < π.
Thus, under the e-RR choice,

τi/i! = b̃iVe − ãiAe + c̃i(α) L = be ·Me. (10)

We introduce the matrix Y that transforms between both sets
of measures,

Md = Y ·Me and Me = Y−1 ·Md. (11)

Its expression follows from the relations above Eq. (10),

Y =
*....
,

1 −1
2

1
4

cot
α

2
0 1 −y(α)
0 0 1

+////
-

, (12)

with y(α) = cscα if 0 < α < π
2 and y(α) = cotα2 if π

2 < α < π
(note that y(α) is a continuous non-derivable function at α
= π

2 ). Given that Ω remains unmodified no matter which RR
is adopted, one finds the linear relation between the unknown
coefficients be =

�
b̃i,−ãi, c̃i

�
and the known bd, through the Y

matrix,

be ·Me = bd · Y · Y−1 ·Md,

be = bd · Y.
(13)

Besides, through Eqs. (1)-(3), Y also transforms the thermody-
namic properties,

(−P, γ,T )e = (−P, γ,T )d · Y, (14)
(ρ,ΓA,ΓL)e = (ρ,ΓA,ΓL)d · Y, (15)

where the label outside brackets shows the adopted reference
region. These relations should be valid even when the series
expansion in powers of z does not apply, and thus, they should
apply to any density. Equations (14) and (15), with Y taken
from Eq. (12), are one of the main results of the current work.
They show the transformation law between the intensive prop-
erties of the confined system when different RRs are adopted.

Now, we turn our attention to Eqs. (1), (7), and (14). They
show that Pe = Pd = P, P being the pressure of the bulk fluid
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at the same T and µ. Furthermore, one obtains

γe = γd + P/2. (16)

Equation (16) found here for a wedge confinement is a known
relation for fluids adsorbed on both planar and curved walls.15,20

The z power series representation of γe and γd shows that they
are the surface tension of the fluid in contact with an infinite
planar wall (each one for a different RR). The line tension
transforms as

Te= Td− γd y(α) − P
4

cot
α

2
. (17)

To the best of my knowledge, it is the first time that Eq. (17),
which applies to any density, is derived. Turning to Eqs. (3),
(8), and (15), they imply that ρe = ρd = ρ with ρ being the
number density of the bulk fluid (at the same T and µ). For
the surface adsorption, one finds

(ΓA)e = (ΓA)d − ρ/2, (18)

which is known to be an exact relation for planar walls. Again,
based on the z power series, one finds that both (ΓA)e and (ΓA)d
are the adsorption of the fluid on an infinite planar wall (each
one for a different RR). Furthermore, one obtains for the excess
linear adsorption

(ΓL)e = (ΓL)d − (ΓA)d y(α) + ρ

4
cot

α

2
. (19)

Again, this expression applies to any density and it was never
published before.

B. Case II (π < α < 2π )

Now, focusing on the case shown in Fig. 2(b), I will
analyze two different choices for the region B, which splits
in three different sets of measures that are the most natural
to adopt. The first choice is the d-RR, which corresponds
to identify B with A. For this d-RR, one can consider two
different criteria to define the measures depending on whether
A is taken as the area of the planar part (Apd) of the surface ∂B
or as its total area. Thus, using the first criterion, the measures
are Md1 =

�
Vd, Apd,L

�
and

τi/i! = biVd − aiApd + ci(α) L = bd1.Md1, (20)

with the vector of coefficients bd1 = (bi,−ai,ci). However, if
one adopts the second criterion that assumes A as the total area
of ∂B, it is obtained as

τi/i! = b̄iVd − āiAd + c̄i(α) L = bd2.Md2, (21)

with Md2 = (Vd, Ad,L) and Apd = Ad − (α − π) 1
2 L. The rela-

tionship between both sets of measures is

Md1 = Y ·Md2 , Md2 = Y−1 ·Md1, (22)

while the vectors of coefficients relate through

bd2 = bd1 · Y, (23)

with

Y =
*....
,

1 0 0

0 1 −1
2
(α − π)

0 0 1

+////
-

. (24)

The relations between the equations of state (−P, γ,T ) and also
(ρ,ΓA,ΓL) in d1-RR and d2-RR are given by Eqs. (14) and
(15) with the obvious change of labels and with Y taken from
Eq. (24). Therefore, one finds Pd2 = Pd1 = P (with P the bulk
pressure), γd2 = γd1 (which are equal to the planar-wall surface
tension γd discussed for the case α < π), and

Td2 = Td1 − γd (α − π) /2. (25)

Besides, it is obtained that ρd2 = ρd1 = ρ, (ΓA)d2 = (ΓA)d1
(which are equal to the planar-wall adsorption (ΓA)d discussed
for the case α < π), and

(ΓL)d2 = (ΓL)d1 − (ΓA)d1 (α − π) /2. (26)

It seems that Eqs. (25) and (26), that apply to any density, are
novel results.

The other choice for B is the e-RR, that is, the join of
region A and the white region in Fig. 2(b). In this case, the
measures are Me = (Ve, Ae,L) and

τi/i! = b̃iVe − ãiAe + c̃i(α) L = be.Me, (27)

with Vd = Ve − 1
2 Ae − 1

8 (α − π) L and Apd = Ae. Equations
(22) and (23) describe the transformation between both, the
measures and the coefficients, and they remain valid with the
change of labels d2 → e and for

Y =
*....
,

1 −1
2
−1

8
(α − π)

0 1 0
0 0 1

+////
-

. (28)

Yet non-surprising, following Eqs. (14) and (15) with the
obvious change of labels and taking Y from Eq. (28), one
obtains Pe = P and ρe = ρ. Furthermore, both γe and (ΓA)e
coincide with the planar-wall magnitudes found for the case
α < π, and then Eqs. (16) and (18) apply for the broad range
0 < α < 2π. Finally, one obtains

Te = Td1 + P (α − π) /8, (29)
(ΓL)e = (ΓL)d1 − ρ (α − π) /8. (30)

Equations (29) and (30) were not published earlier.

C. Low density

In this brief digression, the confined ideal gas and the low
density regime of the confined non-ideal gas are analyzed. I
first concentrate in the d-RR (d-RR for 0 < α < π, d1- and d2-
RR for π < α < 2π). To obtain the properties of the confined
ideal gas, one truncates all the series in Eqs. (6)–(8) at the first
order in power of z. By adopting d-RR, the volume Vd is equal
to Z1 and the first cluster integral is τ1 = Vd. Thus, βP = z,
ρ = z,

γ = T = 0, and ΓA = ΓL = 0. (31)

Therefore, under d-RR, the confined ideal gas is thoroughly
described by βP = ρ, i.e., the equation of state of the bulk
ideal gas. Clearly, if we turn to e-RR, the edge/wedge confined
ideal gas has non-null surface- and line-free energies. They can
be evaluated using Eq. (31) and the transformations discussed
in Secs. III B and III A. The conclusion is that in order to
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obtain the simpler expressions for the thermodynamics of the
confined ideal gas, the d-RR is better than e-RR.

For the confined non-ideal gas under d-RR, the first cluster
integral remains unmodified in comparison with the ideal gas.
The second and higher order τi could be calculated by direct
integration. Now, the series given in Eqs. (5)–(8) are truncated
at order two in z, which gives surface and linear thermody-
namic properties proportional to z2. Using Eqs. (2) and (4)
and trivial series manipulation, one obtains the power series
for z (ρ) and the series representation of the thermodynamic
properties in powers of ρ. Up to order ρ2, it is obtained as
βP = ρ − b2ρ

2 (i.e., the virial series for the bulk gas18) and

βγ = −ΓA/2, βT = −ΓL/2 (32)

[with ΓA = −2a2ρ
2 and ΓL = 2c2ρ

2]. These notable relations
are not well known. They deal with inhomogeneous fluids
and link linearly an excess free energy (times β) with the
corresponding excess adsorption. It is remarkable that Eq. (32)
does not include coefficients related to the interparticle poten-
tial. Equation (32) resembles the equation of state of the bulk
ideal gas; nevertheless, it applies to any edge/wedge confined
fluid up to order ρ2. As can be easily verified, the use of
e-RR provides more complex expressions for the surface and
linear thermodynamic properties than Eq. (32). In summary,
d-RR is appropriate to obtain a simple description for the
thermodynamics of the confined ideal gas and also of any gas
at low density, but e-RR is not.

IV. APPLICATION TO HARD SPHERES

Recently, through adopting the d-RR, the low density
behavior of the HS confined fluid in an edge/wedge cavity was
studied using an analytic expression of c2(α).16 In this section,
we compare those properties with that found by adopting the
e-RR. With this purpose, the natural units for the HS system
will be used (which is equivalent to set the particles diameter
σ as the unit length). In Ref. 16 was obtained the following
exact expression:

c2 (α) = − 1
15

[1 + (π − α) cot α] (33)

that applies for 0 < α < π in the d-RR, while the analytic
expression for π < α < 2π in d1-RR is

c2(α) = 8
45

(α − π) +Q, (34)

with Q = 0.007 125 {1 − exp [−2.74 (α − π)]}. Using the
known parameters b2 = −2π/3, a2 = −π/8 and Eqs. (33) and
(34) for c2(α), one readily finds the series expansion of
{P, γ,T ,ΓA,ΓL} in power of ρ up to order two, by adopting
both d-RR and d1-RR. For T and ΓL, it gives analytically the
angular dependence with α (up to order two in ρ).

Now, we analyze the consequences of choosing a different
RR on the thermodynamic properties of the confined HS sys-
tem. In particular, novel analytic expressions of relevant line-
thermodynamic properties for e-RR and d2-RR will be derived.
Through the use of Eqs. (14) and (15), the matrices for RR
transformation (12), (24), and (28) and the density power series
of Pd, γd, Td, Td1, (ΓA)d, (ΓL)d, (ΓL)d1, one obtains the series for

γ, T , ΓA, and ΓL in the e-RR and d2-RR. For the wall-fluid
surface tension and excess area-adsorption, both up to terms
of order O(ρ3), it is obtained as

βγe =
ρ

2
+

5π
24

ρ2,

(ΓA)e = − ρ2 +
π

4
ρ2.

(35)

Fig. 3 displays the surface tension and surface excess area-
adsorption by adopting d-RR and e-RR. There, one can observe
the effect of choosing a different RR in the properties of the
confined HS fluid. For the d-RR, one finds βγd > 0 and (ΓA)d
< 0; on the other hand, for the e-RR, they yield βγe < 0 and
(ΓA)e > 0. Besides, near ρ & 0, the null slope in βγd and (ΓA)d
is apparent while βγe and (ΓA)e are linear with density. For Te
in the range 0 < α < π, there are two branches: the first one
for α < π

2 and the second one for α > π
2 , the corresponding

expressions are

βTe = −
ρ

4
cot

α

2
+
ρ2

15


1 −

(
3π
2
+ α

)
cot α − 5π

8
cscα


,

βTe = −
ρ

4
cot

α

2
+
ρ2

15


1 + (π − α) cot α − 5π

8
cot

α

2


.

(36)

In Fig. 4, it is shown the low density behavior of the edge line
tension T for d-RR and e-RR. In both cases, T is monot-
onous. For the Md measures, T is positive and has positive
slope. On the contrary, using Me measures, T is negative and
has a negative slope. For both, the modulus of the slope de-
creases with increasing α. The obtained expression of (ΓL)e for
0 < α < π is

(ΓL)e = ρ

4
cot

α

2
− 2ρ2

15


1 + (π − α) cot α +

15π
8

y(α)

,

(37)

which is non-derivable at α = π
2 [see Eq. (12)]. Fig. 5 is similar

to Fig. 4 but for the linear adsorption ΓL. When the Md mea-
sures are considered, the linear adsorption is monotonous,
negative (i.e., there is local desorption) and has negative slope
which increases with increasing α. On the other hand, when
Me measures are adopted, ΓL is not monotonous, positive
(i.e., there is local adsorption) and decreases for larger values
of α.

I also present here a similar analysis for the case
π < α < 2π. The results for the line-tension and excess linear

FIG. 3. Surface tension and surface adsorption. Curves for adsorption are
marked with squares. In continuous lines (blue) are plotted the magnitudes in
d-RR while dotted-dashed lines (red) refer to e-RR.
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FIG. 4. Line tension of the HS system vs. density for angles in the range
0 < α < π. Continuous lines (blue) plot Td while dotted-dashed lines (red)
plot Te. The curves correspond to α = π/4, π/2, 3π/4 while the arrow points
to the direction of increasing values of α.

adsorption by adopting e-RR and d2-RR up to order O(ρ3) are

βTe =
α − π

8
ρ −

(
π

12
+

8
45

)
(α − π) +Q


ρ2,

�
ΓL

�
e = −

α − π
8

ρ +


16
45

(α − π) +Q

ρ2,

(38)

βTd2 =

(
π

8
− 8

45

)
(α − π) +Q


ρ2,

�
ΓL

�
d2 =

(
−π

4
+

16
45

)
(α − π) +Q


ρ2.

(39)

Fig. 6 shows the linear tension of the HS system in the case
π < α < 2π. The functions Td1, Td2, and Te are shown for
comparison. In all cases, T is monotonous. For the Md1
measures, T is negative and has negative slope which de-
creases with increasing α. On the other hand, for Me and
Md2 measures, T is positive and has a positive slope which
increases with increasing α. Even, T for Md2 is nearly zero in
the adopted scale. From the comparison between Figs. 6 and
4, the inversion of the sign of Te at α = π is evident, where the
edge/wedge disappears. Fig. 7 plots the linear adsorption of the
HS system for the same three measure sets. In the cases of Md1
and Md2, we observe a monotonous ΓL. For the Md1 measures,
ΓL is a positive (i.e., there is local adsorption) increasing
function and its slope increases with increasing α. On the
contrary, for Md2 measures, ΓL is a negative (local desorption)
decreasing function and its slope decreases with increasing α.

FIG. 5. Line adsorption of the HS system vs. density for angles in the range
0 < α < π, the curves correspond to α = π/4, π/2, 3π/4. Continuous lines
(blue) plot (ΓL)d while dotted-dashed lines (red) plot (ΓL)e. See Fig. 4 for
details.

FIG. 6. Line tension of the HS system vs. density for angles in the range
π < α < 2π. The curves correspond to α = 5π/4, 3π/2, 7π/4. In long-
dashed lines (blue) drawn is Td1, short-dashed line (green) corresponds to
Td2, and dotted-dashed line (red) is for Te. The arrows point to the direction
of increasing values of α.

FIG. 7. Line adsorption of the HS system vs. density for angles in the range
π < α < 2π. In long-dashed lines (blue) drawn is (ΓL)d1, short-dashed line
(green) corresponds to (ΓL)d2, and dotted-dashed line (red) is for (ΓL)e. See
Fig. 6 for more details.

Even, ΓL for Md2 is nearly zero in the adopted scale. For Me
measures, ΓL is not monotonous, is negative (i.e., there is local
desorption), attains its minimum near ρ ≃ 0.17, and decreases
with increasing values of α. Figs. 7 and 5 show the inversion
of the sign of (ΓL)e when both edge and wedge disappear at
α = π.

In the literature, both d-RR and e-RR were used to study
HS systems confined in cavities with different geometries.21,22

The behavior found with d-RR (including d1-RR and d2-RR)
and e-RR, for both line tension and line free energy, shows
that they strongly depend on the adopted reference system.
Linear thermodynamic magnitudes that are less dependent on
the adopted reference region can be found by considering the
mean values of excess density and excess free energy in a
region with finite size around the edge.16

V. FINAL REMARKS

In this work, I studied the relations between the thermo-
dynamic properties of fluids confined by wedges and edges
when different RRs are adopted. The analysis was based on
the activity series expansion of the grand free energy for
inhomogeneous systems and on the properties of its coeffi-
cients, the cluster integrals. I utilized a simple approach that
linearly connects the geometric measures: volume, surface
area, and edge length, in the different RRs that are consid-
ered. From that, the law of transformation of thermodynamic
properties between RRs was deduced. A similar method was
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previously used to study a system of hard spheres confined by
curved walls. The method was here refined and can be used
to analyze inhomogeneous fluids confined by walls with a
variety of shapes. Under this non-standard approach, I have
studied the dependence of the linear-thermodynamic prop-
erties on the adopted RR along the complete range of dihedral
angles 0 < α < 2π. Analytic expressions that transform the
thermodynamic intensive properties: pressure, surface ten-
sion, and line tension of the system when different RRs are
adopted were derived for the first time. Surface adsorption
and line adsorption were also analyzed in this framework.
The relevant results were given in Eqs. (17), (19), (25), (26),
(29), and (30). Furthermore, the thermodynamic properties
of both, the confined ideal gas and the confined real gases
at low density (up to order ρ2), were analyzed by adopting
different RRs. We found that the density-based d-RR is advan-
tageous to obtain a simpler analytic description of the studied
properties.

Regarding to the confined HS fluid, which is a relevant
reference system both for simple and colloidal fluids, the
dependence of line adsorption and line tension with the
edge/wedge dihedral angle and density was analyzed. We
found explicit analytic expressions truncated to order two
in density, which describe these properties for different
RRs and for the complete range 0 < α < 2π. They are
shown in Eqs. (36)–(39). The new results obtained for HS
complement those for the recently published.16 Given that
these analytic expressions are exact or quasi-exact, they consti-
tute well defined references that should enable to validate
other approximate theories like fundamental measure density

functional approaches to edge/wedge confined fluids at low
density.
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