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Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by
biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance,
stepping-stone dispersal and long-distance dispersal (LDD)] using Munroa, an American genus of grasses with six
species and a disjunct distribution between the desert regions of North and South America. The ages of clades,
cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among
species, to determine the time of divergence of the genus and its main lineages, and to understand further the
biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American
M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa
originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we
postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to
South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid
conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and
South America were probably advantageous for the establishment of populations of Munroa. We did not find any
relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts
associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of
rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015
The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 00, 000–000.

Additional Keywords: American arid lands – amphitropical disjunction – historical biogeography – long-
distance dispersal (LDD) – molecular phylogeny – stepping-stone dispersal – vicariance.

INTRODUCTION

For a long time, biogeographers have focused on
understanding the causes that underlie the distribu-

tion patterns of disjunct taxa (Christenhusz & Chase,
2013). A remarkable number of examples with dis-
junct distributions are found in species or genera of
plants from North America that are disconnected
from their counterparts in South America (Humboldt,
1817; Johnston, 1940; Raven, 1963; Cruden, 1966;
Barbour, 1969; Solbrig, 1972; Williams, 1975; Allred,
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1981; Carlquist, 1983; Simpson & Neff, 1985;
Peterson & Columbus, 1997; Wen & Ickert-Bond,
2009; Donoghue, 2011; Moore et al., 2012; Masson &
Kadereit, 2013; González et al., 2014; Linder &
Barker, 2014). Several hypotheses have been postu-
lated to explain the origin of these disjunctions, in
particular: (i) the vicariance hypothesis, in which
closely related taxa diverged from widely distributed
tropical ancestors (Johnston, 1940; Barbour, 1969;
Moore, Tye & Jansen, 2006; Escudero et al., 2010); (ii)
the stepping-stone dispersal hypothesis, in which dia-
spore(s) are dispersed over short distances through
tropical zones using arid or semi-arid islands (i.e.
high mountain corridors) or are dispersed directly via
an old arid or semi-arid corridor close to the Pacific
coast (Morrell, Porter & Friar, 2000; Winkworth et al.,
2002; Moore et al., 2006; Gillespie et al., 2012); and
(iii) the long-distance dispersal (LDD) hypothesis, in
which diaspore(s) are dispersed across the tropics,
founding populations in distant areas (Raven, 1963;
Cain, Milligan & Strand, 2000; Winkworth et al.,
2002; Blattner, 2006; Wen & Ickert-Bond, 2009;
Donoghue, 2011; Gillespie et al., 2012). The latter has
been suggested as an explanation for the disjunct
distribution of New World desert plants (Raven, 1963;
Winkworth et al., 2002; Wen & Ickert-Bond, 2009;
Donoghue, 2011; Gillespie et al., 2012; Linder &
Barker, 2014).

Perhaps the best documented disjunctions of plants
from North and South American deserts are those of
Larrea Cav. (Lia et al., 2001), Tiquilia Pers. (Moore &
Jansen, 2006; Moore et al., 2006), Nitrophila S.Watson
(Masson & Kadereit, 2013) and Erioneuron Nash
(Peterson & Ortíz-Diaz, 1998). For these taxa, South
America is thought to be the centre of origin, with one
or more subsequent northward dispersal events. In
contrast, the distribution patterns of several grasses,
such as Lycurus setosus (Nutt.) C.Reeder (Peterson &
Morrone, 1997), Muhlenbergia torreyi Hitchc. ex Bush
(Peterson & Ortíz-Diaz, 1998; Peterson, Columbus &
Pennington, 2007) and Scleropogon brevifolius Phil.
(Peterson & Columbus, 1997), probably originated
instead in North America, and moved southwards
(Peterson & Columbus, 1997; Peterson & Ortíz-Diaz,
1998; Peterson et al., 2007). However, many biogeog-
raphers who have favoured dispersal are reluctant
to accept that plants could, in a single event, travel
between landmasses in different hemispheres
(Winkworth et al., 2002; Gillespie et al., 2012).
Instead, intermediate regions have often been sug-
gested to be stepping stones in such movements, and
the existence of a fossil record in these intermediate
areas makes this hypothesis an enticing possibility
(Winkworth et al., 2002).

In turn, evidence of multiple and non-
contemporaneous dispersal events in an amphitropi-

cally disjunct group would lend support to LDD as the
most plausible mechanism explaining such disjunc-
tions (Raven, 1963; Moore et al., 2006; Wen &
Ickert-Bond, 2009). However, although a single rare
LDD event may indeed be impossible to predict, an
understanding of the mechanisms involved in LDD
over extended (evolutionary) time periods can lend
predictability to the process. For example, understand-
ing the different modes of LDD (dispersal by wind,
birds and ocean currents) and associated dispersal
adaptations in the context of geological, palaeontologi-
cal, evolutionary and ecological data can lead to pre-
dictions concerning the origin, frequency of arrival and
location of establishment of dispersed organisms (Cain
et al., 2000; Winkworth et al., 2002; Gillespie et al.,
2012).

Without knowledge of continental drift, most early
biogeographers hypothesized that dispersal was the
historical mechanism behind such disjunctions (de
Queiroz, 2005). However, the acceptance of plate tec-
tonics in the 1960s and 1970s caused a shift towards
the idea that most plant disjunctions resulted from the
fragmentation of earlier, larger landmasses, such as
Gondwana; the Gondwanan breakup seems to have
occurred between 160 and 30 Mya (Nelson & Platnick,
1981; Wiley, 1988; de Queiroz, 2005; Upchurch, 2008).
These vicariance explanations remained dominant
until the advent of molecular systematic techniques,
particularly molecular-based dating of lineage diver-
gences (de Queiroz, 2005). Using these techniques,
most research has shown that numerous plant disjunc-
tions are far too young to have resulted from vicari-
ance, again leaving dispersal as the only plausible
alternative (Sanmartín & Ronquist, 2004; de Queiroz,
2005; Renner, 2005; Wen & Ickert-Bond, 2009;
Donoghue, 2011; Popp, Mirré & Brochmann, 2011;
Moore et al., 2012; Christenhusz & Chase, 2013;
Masson & Kadereit, 2013; González et al., 2014; Linder
& Barker, 2014).

The disjunct taxa distribution patterns have been
explained by stepping-stone dispersal, LDD or vicari-
ance, and the relative importance of these explana-
tions in shaping current distributions may vary,
depending on historical backgrounds or the biological
characteristics of particular taxa (Raven, 1963;
Winkworth et al., 2002; Wen & Ickert-Bond, 2009;
Donoghue, 2011; Gillespie et al., 2012; González et al.,
2014; Linder & Barker, 2014). There has been substan-
tial research focusing on extrinsic environmental
factors influencing dispersal; in particular, it has been
suggested that habitat similarity (Cain et al., 2000;
Crisp et al., 2009; Gillespie et al., 2012; Linder &
Barker, 2014), dominant wind directions (Wright et al.,
2000; Winkworth et al., 2002; Muñoz et al., 2004;
Blattner, 2006; Sanmartín, Wanntorp & Winkworth,
2007; Gillespie et al., 2012) or bird migration routes
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(Winkworth et al., 2002; Coleman et al., 2003;
Blattner, 2006; Gillespie et al., 2012) might determine
dispersal routes and events. Although intrinsic attrib-
utes, such as seed morphological structures, were
explored in the last century (Ridley, 1930), in the past
decade these factors have not received much attention
(Cain et al., 2000). Indeed, Higgins, Nathan & Cain
(2003), in a review of whether morphology relates to
dispersal, concluded that the relationship between
morphologically defined dispersal syndromes and dis-
persal is poor. With regard to ploidy, an association
between polyploidy and dispersal events has been
reported for diverse plant groups (Coleman et al., 2003;
Kadereit, Mucina & Freitag, 2006; Linder & Barker,
2014), and it is now known that polyploids are more
successful at dispersal than diploids, and that the
frequent polyploidy in the grasses might have facili-
tated the extensive dispersal among continents, thus
contributing to their evolutionary success (Linder &
Barker, 2014).

It is clear that several hypotheses may explain the
disjunct distribution patterns of New World plants
(stepping-stone dispersal, LDD or vicariance) and that
estimates of the time of divergence of independent
lineages need to be considered when testing specific
hypotheses regarding the role of orogenic and/or cli-
matic events in the separation or extinction of popu-
lations of plants in certain areas (Winkworth et al.,
2002; Wen & Ickert-Bond, 2009; Escudero et al., 2010;
Jakob et al., 2010; Donoghue, 2011; Popp et al., 2011;
Gillespie et al., 2012; González et al., 2014). Moreover,
information on plant dispersal mechanisms, floral
biology and ploidy is useful for understanding disper-
sal events. Indeed, it is only through the integration of
data from multiple sources that plant disjunctions will
be properly understood (Raven, 1963; Cain et al., 2000;
Blattner, 2006; Donoghue, 2011; Linder & Barker,
2014).

In this study, we use the grass genus Munroa Torr.
(Chloridoideae, Scleropogoninae) to test further the
hypotheses associated with plant disjunct distribution
patterns. Munroa has an amphitropical distribution,
with two species [M. squarrosa (Nutt.) Torr. and
M. pulchella (Kunth) Amarilla] occurring in the
deserts from southern Canada to northern Mexico and
four species (M. andina Phil., M. decumbens Phil.,
M. mendocina Phil., M. argentina Griseb.) occurring in
the South American deserts, extending from Peru,
Bolivia and Chile to north-western Argentina (Anton &
Hunziker, 1978; Amarilla et al., 2013). Munroa spp.
grow in arid and semi-arid regions in open areas of
plains and mountains from mid (1000 m) to high
(> 4000 m) elevations. Plants grow on alluvial and
sandy–stony soils, often in dry creeks and river-beds
(Amarilla et al., 2013). Furthermore, Munroa spp.
have C4 metabolism and display variable morphology,

especially in attributes associated with dispersal (elon-
gated stolons), reproductive system (andromonoecy,
gynomonoecy or monoecy), life cycles (annual or per-
ennial), articulation of the rachilla (disarticulating or
non-disarticulating) and glume texture (membranous
or coriaceous) (Anton & Hunziker, 1978; Amarilla
et al., 2013). With regard to cytology, early counts by
Covas (1949) for M. mendocina and Reeder (1977) for
M. squarrosa and M. pulchella [= Dasyochloa pul-
chella (Kunth) Willd. ex Rydb.] indicated a chromo-
some base number of x = 8 (2n = 16). However, ploidy
in most Munroa spp. is unknown.

Based on phylogenetic and biogeographical analy-
ses, we test whether the current disjunct distribution
of Munroa is explained by any of the above-mentioned
hypotheses. In a spatio-temporal framework, we
examine whether shifts in attributes, such as ploidy
(diploidy to polyploidy; Linder & Barker, 2014), habit
(perennial to annual; Jakob et al., 2010), reproductive
system (monoecy to gynomonoecy; Mamut et al., 2014)
or a number of vegetative and floral characters that
favour dispersal or establishment in new habitats,
occurred at the nodes at which dispersal events
happened.

MATERIAL AND METHODS
TAXON SAMPLING

This study included 167 accessions (species) represent-
ing all Munroa spp., 157 species of Chloridoideae
and four outgroups selected after Peterson,
Romaschenko & Johnson (2010): Chasmanthium lati-
folium (Michx.) H.O.Yates, Aristida scribneriana
Hitchc., Rytidosperma pictum (Nees & Meyen) Nicora
and Danthonia compressa Austin. The broad sampling
of taxa was necessary to properly place the calibration
points for molecular dating. GenBank accession
numbers for the sequences generated for the present
study (30) and for the previously generated sequences
extracted from Peterson et al. (2010) are listed in
Supporting Information (Table S1). We report voucher
information for the six new collections of Munroa
(Table S1).

DNA EXTRACTION, AMPLIFICATION AND SEQUENCING

Genomic DNA was extracted from silica-dried or her-
barium material using cetyltrimethylammonium
bromide (CTAB) (Doyle & Doyle, 1987). DNA extrac-
tions were used to amplify four plastid DNA regions
(ndhF, rps16-trnK, rpl32-trnL and ndhA) and one
nuclear gene (ITS). Amplification reactions were per-
formed in 25-μL reaction solutions with volume 1.13
ReddyMix™ PCR Master Mix (2.5 mM MgCl2)
(ABgeneH, Thermo Fisher Scientific Inc., UK) follow-
ing the manufacturer’s instructions and using the
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following primers: ndhF2091R and ndhF1311F for
ndhF (Romaschenko et al., 2010), rpS16-900F and
3914PR for rps16-trnK (Peterson et al., 2010), ndhAx4
and ndhAx3 for the ndhA intron (Peterson et al., 2010),
trnL (UAG) and rpl32-F for rpl32-trnL (Shaw et al.,
2007) and ITS5a and ITS4 for ITS (White et al., 1990;
Stanford, Harden & Parks, 2000). Amplification prod-
ucts were visualized under UV light after electropho-
retic separation on a 1% agarose TBE gel stained with
SYBR Safe gel stain (Invitrogen, Carlsbad, California,
USA). Amplified products were sent to Macrogen Inc.
(Seoul, South Korea) for purification and sequencing
with the BigDye™ terminator kit and run on an ABI
3730XL.

PHYLOGENETIC ANALYSES

Sequences were assembled and edited using
Sequencher v4.1 (Gene Codes Corporation, Ann Arbor,
MI, USA), pre-aligned in Muscle (Edgar, 2004), imple-
mented in MEGA 5 (Tamura et al., 2011) and manually
adjusted. Nucleotide substitution models were deter-
mined with jModelTest 0.1.1 (Posada, 2008) using
the Akaike information criterion and default search
values for each marker. The best-fit models of evolution
obtained are indicated in Table 1. To address the level
of congruence among data partitions and their influ-
ence on combined datasets of plastid and nuclear
ribosomal DNA (nrDNA), the incongruence length
difference (ILD) test (Farris et al., 1994) and paramet-
ric bootstrapping (Huelsenbeck, Hillis & Jones, 1995;
Swofford et al., 1996; Goldman, Anderson & Rodrigo,
2000) were performed. The ILD test with 1000 permu-
tations and a significance level of P < 0.01 was
conducted in TNT (ILD.run script). Parametric boot-
strapping was carried out separately for the plastid
and nrDNA datasets using GARLI (Zwickl, 2006). The
maximum likelihood (ML) bootstrap (BS) analysis was
performed with 1000 replicates, with ten random
addition sequences per replicate. A majority rule con-
sensus for each replicate was obtained by PAUP*
4.0b10 (Swofford, 2000). ML analyses yielded trees
with possible incongruence between plastid DNA and
nrDNA (see Results). To test this incongruence statis-
tically, a pair of reciprocal BS analyses was conducted
in which the nrDNA tree was constrained to have the
plastid DNA topology with respect to this incongru-
ence, and vice versa. ML searches with monophyly
constraints consistent with the alternative hypothesis
(plastid DNA vs. nrDNA) were carried out with
GARLI. The ML BS was performed with identical
parameters as mentioned previously. A majority rule
consensus for each replicate was obtained by PAUP*.
The constraint topology and model parameters were
used to simulate 100 data matrices equal in size to the
original matrix using Mesquite v. 2.75 (Maddison & T
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Maddison, 2011). These parameters were then used in
PAUP* to find the most parsimonious trees con-
structed under topological constraints and the most
parsimonious unconstrained trees. Differences in tree
length for constrained and unconstrained searches for
each of the 100 simulated matrices were calculated
and plotted as histograms using Mesquite v. 2.75. The
distribution of tree length differences between two
potential topologies was estimated. If the difference
between constrained and unconstrained topologies fell
outside the 95% confidence interval of this distribution
(P < 0.05), the alternative hypothesis was rejected.

Based on these incongruence tests, we were able to
decide that nuclear and plastid matrices can be com-
bined (see Results). Parsimony analyses were per-
formed in TNT ver. 1.1 (Goloboff, Farris & Nixon,
2008). DNA regions were concatenated and characters
were treated as unordered, independent and equally
weighted. Gaps were treated as missing data. A full
parsimony search was performed using the following
specifications: 5000 replicates with random sequence
addition, tree bisection–reconnection (TBR) branch
swapping, keeping all multiple shortest trees found
during branch swapping (MulTrees = on) and other
parameters using the default options. Clade support
was estimated using non-parametric bootstrapping
with 1000 replicates, 10 random addition sequence
replicates with a maximum of 10 trees saved per
replicate, and all other settings used in the full search.

Bayesian inference analyses were employed to infer
the phylogeny using the plastid DNA and nrDNA
datasets separately and subsequently using a com-
bined dataset that included all sequences. Bayesian
inference was performed using the NSF teragrid appli-
cations of MrBayes v.3.1.2 (Huelsenbeck & Ronquist,
2001; Ronquist & Huelsenbeck, 2003) employing the
CIPRES Science Gateway (Miller, Pfeiffer & Schwartz,
2010). There were two separate chains for each run,
with three hot and one cold chain, running for
10 000 000 generations, sampling a tree every 1000
generations. Stationarity was determined on the basis
of the convergence of likelihood scores, and sample
points generated prior to stationarity were eliminated
as burn-in (25%). The posterior probabilities (PPs) of
the clades were determined by a 50% majority rule
consensus of the trees retained. To decide data parti-
tion strategies, three analyses (ITS + combined plastid
DNA, ITS + partitioned plastid DNA and total com-
bined evidence) were performed using Bayes factors.
Bayes factors were calculated from the estimated
results of the harmonic mean likelihood of each parti-
tioning data matrix, using the ‘sump’ command in
MrBayes v. 3.1.2 (Huelsenbeck & Ronquist, 2001).
Decisions to partition data matrices were based on the
2ln Bayes factor (B10) criterion, in which a value of ≤ 0
is negative and ≥ 10 is positive (Kass & Raftery, 1995).

DIVERGENCE TIME ESTIMATION

Divergence times for Munroa and the lineages therein
were estimated using BEAST v. 1.6.1 (Drummond &
Rambaut, 2007), and the same data matrix was used
for the Bayesian inference of phylogeny. For this
analysis, Chloridoideae and Distichlis Raf. were con-
strained as monophyletic, following Bouchenak-
Khelladi et al. (2009, 2010). The Chloridoideae node
was constrained using a log-normal prior distribution
[offset, 30; log (mean), 0; log (SD), 1; range, 35.18–
30.19], following earlier estimates of Bouchenak-
Khelladi et al. (2009, 2010). The Distichlis node was
calibrated using fossil evidence of epidermal cells with
round silica bodies and triangular stomata subsidiary
cells (Dugas & Retallack, 1993). This node was con-
strained using a minimum age of 14 Mya and a log-
normal prior distribution [offset, 14; log (mean), 0; log
(SD), 1; range, 19.18–14.19] (Bouchenak-Khelladi
et al., 2010). Analyses were run using a molecular clock
model with uncorrelated rates, assuming a log-normal
distribution of rates (UCLD). Models of sequence evo-
lution for each partition were the same as for those
used in the MrBayes analyses. The Yule process was
selected as the tree prior and a single overall UCLD
model was applied for all partitions. Four Markov
chain Monte Carlo (MCMC) analyses were run, each
with 100 million generations and sampling every
10 000th generation. Time series plots of all param-
eters were analysed in Tracer v. 1.5 (Rambaut &
Drummond, 2009) to check for adequate effective
sample sizes (ESS > 200) and convergence of the model
likelihood and parameters between each run. Trees
were combined in Log Combiner v. 1.6.1 (Drummond &
Rambaut, 2007), setting the burn-in to 25% of the
initial samples of each MCMC run. After burn-in,
samples were summarized using the maximum clade
credibility tree (MCC) option in Tree Annotator v. 1.6.1
(Drummond & Rambaut, 2007). The single tree
was visualized with Figtree v. 1.5.4 (Drummond &
Rambaut, 2007).

CYTOLOGICAL STUDIES

Mitotic chromosomes were examined in squashes of
root tips that were obtained from germinating seeds.
Root tips were fixed in a 3 : 1 ethanol–acetic acid
mixture, after pretreatment in a solution of 2 mM
8-hydroxyquinoline for 24 h, and were stained with
alcoholic hydrochloric acid–carmine (Snow, 1963). At
least ten metaphases per species were photographed
with a phase contrast optic Axiophot microscope. The
photomicrographs were used to take measurements
for each chromosome pair: short arm (s), long arm (l)
and mean total chromosome length (c). The arm ratio
(r = l/s) was then calculated and used to classify the
chromosomes according to Levan, Fredga & Sandberg
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(1964). In addition, the total haploid chromosome
length of the karyotype (tl), average chromosome
length (C) and average arm ratio (R) were calculated.
Idiograms were based on the mean values for each
species. The chromosomes were first arranged into
groups according to their increasing arm ratio and
then according to the decreasing length within each
group. Karyotype asymmetry was estimated using the
intrachromosomal (A1) and interchromosomal (A2)
indices of Romero Zarco (1986).

ANCESTRAL AREA RECONSTRUCTIONS

Two analyses for inferring the ancestral areas and
ancestral ranges were performed: Bayesian binary
MCMC (BBM) and statistical dispersal-vicariance
analysis (S-DIVA) methods, implemented in RASP
software (Nylander et al., 2008; Yu, Harris & He, 2010;
2011). These analyses were developed for the Scleropo-
goninae clade; for this, some sequences were pruned
from the combined (ndhA intron, ndhF, rpl32-trnL,
rps16-trnK, ITS) data matrix and 12 terminal taxa
[Scleropogon brevifolius Phil., Swallenia alexandrae
(Swallen) Soderstr. & H.P.Decker, Blepharidachne
kingii Hack., B. benthamiana Hitchc., Erioneuron ave-
naceum (Kunth) Tateoka, E. nealleyi (Vasey) Tateoka
(only two Erioneuron spp. were included because we
lacked adequate material from other species and vari-
eties; however, we included representatives occurring
in North and South America, thus covering the com-
plete disjunct distribution area of the genus) and all
Munroa spp.] were included. Two areas were defined
for the biogeographical analysis based on the extant
distribution patterns of Munroa and the geological
history of the Americas (Taylor, 1991; Posadas, Estévez
& Morrone, 1997; Gregory-Wodzicki, 2000; Morrone,
2006; Antonelli et al., 2009), as follows: (1) temperate
North America; (2) South American Transition Zone
(SATZ). The input file for RASP consisted of the 7500
post-burn-in trees from the Bayesian inference analy-
ses run in MrBayes (GTR model). Tree files were
combined in RASP to estimate PPs for each node.
MCMC chains were run simultaneously for 5 000 000
generations and the reconstructed state was sampled
every 1000 generations. The fixed model JC + G
(Jukes-Cantor + Gamma) was used for BBM analysis
with a null root distribution.

ANCESTRAL CHARACTER STATE RECONSTRUCTIONS

Ancestral character state reconstruction with the ML
criterion (Mk1 model) was conducted in Mesquite v.
2.75 (Maddison & Maddison, 2011) to the Scleropogoni-
nae clade; for this, some sequences were pruned from
the combined (ndhA intron, ndhF, rpl32-trnL, rps16-
trnK, ITS) data matrix and 12 terminal taxa (Scleropo-

gon brevifolius, Swallenia alexandrae, Blepharidachne
kingii, B. benthamiana, Erioneuron avenaceum,
E. nealleyi and all Munroa spp.) were included. The
input file for Mesquite consisted of the 7500 post-
burn-in trees from the Bayesian inference analyses
run in MrBayes (GTR model). The 50% majority rule
was calculated in Mesquite. Morphological characters
and character states were coded from observations
of herbarium vouchers (Supporting Information,
Table S1) and complemented by information from the
literature (Anton & Hunziker, 1978; Valdés-Reyna &
Hatch, 1995; 1997; Valdés-Reyna, 2003; Amarilla
et al., 2013). Five morphological features were coded as
discrete characters: life form (perennial 0, annual 1);
rachilla (non-disarticulating 0, disarticulating 1);
reproductive mode (andromonoecy 0, gynomonoecy 1,
monoecy 2); glumes (absent 0, present 1); glume
texture (membranous 0, coriaceous 1) (Supporting
Information, Table S2).

RESULTS
RECONSTRUCTION OF PHYLOGENETIC RELATIONSHIPS

Phylogenetic hypotheses were largely congruent
between partitions according to the ILD test (P = 0.44).
Our results mostly agree with previous phylogenetic
relationships for Chloridoideae reported by Peterson
et al. (2010). A single incongruence based on plastid
DNA vs nrDNA data matrices involved the phyloge-
netic position of Sohnsia filifolia (E.Fourn.) Airy Shaw;
using the plastid DNA data matrix, S. filifolia was
retrieved as sister to the Muhlenbergiinae clade
(BS = 65%), whereas nrDNA retrieved S. filifolia as
sister to Muhlenbergiinae + Scleropogoninae (BS =
50%). Parametric bootstrapping analyses did not,
however, reject the alternative, constrained topologies
for the plastid DNA and nrDNA trees (P > 0.05 in
both), indicating a statistically insignificant incongru-
ence between the two genomes in the placement of
these taxa. The 2ln Bayes factor (B10) results indicated
positive values for all strategies: ITS + combined
plastid DNA (B10 = 2.5), ITS + partitioned plastid DNA
(B10 = 3.0) and total combined evidence (B10 = 2.8).
Based on these tests and to compare our results with
those of Peterson et al. (2010), we conducted parsi-
mony analysis with total combined evidence and
Bayesian analysis using the ITS + partitioned plastid
DNA data matrix (B10 = 3.0). The alignment of the 167
accession dataset consisted of 4794 aligned positions
(Table 1). The strict consensus tree resulting from
parsimony analyses shows the same topology as the
50% majority rule consensus tree resulting from
Bayesian analyses, and all nodes were strongly to
moderately supported (> 75% BS, Fig. 1).

Our Bayesian results (Fig. 1) corroborate previously
reported phylogenetic relationships for Chloridoideae
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(Peterson et al., 2010). The Scleropogoninae clade
(BS = 100, PP = 1.0) is monophyletic and includes
Munroa, Erioneuron, Swallenia alexandrae, Blephari-
dachne and Scleropogon brevifolius. Munroa was
recovered as monophyletic with six species (BS = 100,
PP = 1.00). Munroa pulchella is sister to the rest of
Munroa, with M. squarrosa and M. mendocina appear-
ing as the last diverging clade. Further details on the
degree of support and relationships recovered are
shown in Figure 1.

DIVERGENCE TIME ESTIMATES

The maximum clade credibility chronogram for Chlo-
ridoideae is included in Figure 2. Our results show
that the diversification of Scleropogoninae began in the
early Miocene, at c. 17.5 Mya (19.5–15.5 Mya). Munroa
diverged from the Erioneuron clade in the mid-
Miocene, at c. 11 Mya (13–9.5 Mya), and the diversifi-
cation of the crown node of Munroa began in the late
Miocene, at c. 7.2 Mya (8.2–6.5 Mya). The divergence
between M. squarrosa and M. mendocina began in the
mid-Pleistocene, at c. 1.8 Mya (2–0.8 Mya).

CYTOLOGICAL STUDIES

All Munroa spp. were diploid with 2n = 16 (x = 8).
Karyotypes were uniform, exclusively composed of
small-sized metacentric chromosomes with no visible
secondary constrictions. In general, considering cen-
tromere position and chromosome size variation,
karyotypes were symmetrical. The chromosome mor-
phological data are shown in Supporting Information,
Table S3.

ANCESTRAL AREA RECONSTRUCTIONS

The reconstructions of BBM are presented in Figure 3.
The most recent common ancestor (MRCA) of Munroa
(node N1) probably occurred in North America (Tem-
perate North America area; P = 88%). The ancestral
distribution of nodes N1–N4 was reconstructed as
‘South America’ (SATZ, P = 82%), whereas the MRCA
of M. mendocina and M. squarrosa (N5) may have had
a distribution in South America (P = 91%). Two disper-
sal events between North and South America (i,
between nodes N1 and N2; ii, following the split

Figure 1. Fifty per cent majority rule Bayesian consensus of the molecular phylogenetic analyses of Chloridoideae with
emphasis on Munroa. Posterior probabilities are indicated below the branches. Bootstrap supports are indicated above the
branches. Condensed branches represent all subtribes included in this study.
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between M. mendocina and M. squarrosa, along the
branch leading to the terminal M. squarrosa) were
reconstructed in all analyses (BBM and S-DIVA). In
addition, vicariance was inferred at nodes N1 and N5.
S-DIVA optimizations (not shown) were similar to
those presented in Figure 3.

ANCESTRAL CHARACTER STATE RECONSTRUCTIONS

The evolution pattern of selected morphological traits
is summarized in Figure 4. The ancestor of Munroa is
inferred to have been a perennial herb (PP = 0.92),
with a disarticulating rachilla (PP = 0.52), monoecious
reproductive system (PP = 0.70) and membranous
glumes (PP = 0.99). The putative ancestor of the South
American clade is inferred to have been an annual herb
(PP = 0.99), with a disarticulating rachilla (PP = 0.58),
gynomonoecious reproductive system (PP = 0.77) and
membranous glumes (PP = 0.99). Munroa pulchella
has a perennial habit, disarticulating rachilla, monoe-
cious reproductive system and membranous glumes.
All the other taxa are annual and gynomonoecious,
except for M. argentina (monoecious), M. andina,
M. decumbens and M. squarrosa, which have disar-
ticulating rachillas and membranous glumes. Munroa

argentina has a non-disarticulating rachilla and coria-
ceous glumes, whereas M. mendocina has a non-
disarticulating rachilla and lacks glumes.

DISCUSSION

Our phylogenetic reconstruction recovered Munroa as
monophyletic, and the North American M. pulchella is
recognized as sister to the remaining species, which
form a clade of mixed South and North American taxa.
We present a well-supported and well-resolved phylo-
genetic hypothesis which is appropriate to evaluate
biogeographical movements and possible associations
between morphological shifts with dispersal events.
Our results are congruent with previously proposed
divergence times for Chloridoideae and with the radia-
tion of C4 grasses in the Americas (Christin et al., 2008,
2009; Vicentini et al., 2008; Osborne & Freckleton,
2009; Edwards et al., 2010; Edwards & Smith, 2010;
Strömberg & McInerney, 2011). The ancestral area
reconstructions and age estimations indicate that
Munroa probably originated in North America
(P = 88%) during the time period in which the expan-
sion of arid grassland in North America was correlated
with global cooling and aridification (Retallack, 1997).

Figure 2. BEAST chronogram of the combined dataset of 163 representatives of Chloridoideae. Estimated ages are
presented in millions of years (Myr) and 95% confidence intervals are given at the nodes. Condensed branches represent
all subtribes included in this study.
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The split between North American M. pulchella and
its common ancestor with South American M. andina
took place at c. 7.2 Mya (8.2–6.5 Mya), when arid and
semi-arid environments were available to receive
trans-tropical migrants (Graham, 1999; Hartley &
Chong, 2002; Wen & Ickert-Bond, 2009; Rech et al.,
2010; Masson & Kadereit, 2013). Moreover, the radia-
tion of Munroa in South America took place at c.
4.6 Mya (5.5–3.2 Mya) (P = 82%), during the onset of
hyper-aridity of the Atacama Desert (Rech et al., 2010).
The split between M. mendocina and M. squarrosa
took place at c. 1.2 Mya (2–0.8 Mya). The MRCA of the
M. mendocina + M. squarrosa clade occurred in South
America (P = 91%), which is another example of an

amphitropical desert disjunction that originated in
South America and reached North America during the
early Pliocene–late Pleistocene (Raven, 1963; Wen &
Ickert-Bond, 2009).

Although vicariance is a hypothesis often used to
explain the disjunctions between North and South
American plants (Raven, 1963; Wen & Ickert-Bond,
2009), our results do not suggest this hypothesis as the
most explanatory. As in Munroa, divergence time
estimates of various lineages found that a number of
plant disjunctions originated much later than the
split of the various landmasses (de Queiroz, 2005;
Upchurch, 2008; Wen & Ickert-Bond, 2009; Donoghue,
2011; Gillespie et al., 2012; González et al., 2014;

Figure 3. A, Bayesian binary Markov chain Monte Carlo (MCMC) (BBM) reconstruction of ancestral areas for Munroa.
Posterior probabilities are indicated below the branches. Current distributions are indicated before the species names and
pie graphs report probabilities after BBM analysis for reconstructions with P > 0.01; other reconstructions are collectively
indicated in black. N1–N5 indicate the node names. B, D, Habitats in which Munroa grows in South America: Santiago
del Estero (Argentina) and Potosí (Bolivia), respectively. C, Munroa argentina in Salta, Argentina.
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Linder & Barker, 2014). Further, the hypothesis of
vicariance implies the existence of intermediate tropi-
cal taxa and near-identical arid-adapted taxa from
widely distributed tropical ancestors (Johnston, 1940;
Barbour, 1969; Moore et al., 2006); this condition is not
met by Munroa.

Under the stepping-stone dispersal hypothesis, we
would expect that the dispersal events occurred when
arid and semi-arid environments (or arid and semi-
arid patches along the Pacific coast of the American
continent) were available to receive trans-tropical
migrants (since the late Miocene; Raven, 1963;
Solbrig, 1972; Williams, 1975; Graham, 1999; Cain
et al., 2000; Hartley & Chong, 2002; Winkworth

et al., 2002; Moore et al., 2006; Gillespie et al., 2012).
The diversification of the Munroa clade began in the
late Miocene (c. 7.2 Mya), which is consistent with
the timeline and the climatic conditions derived from
this hypothesis. However, molecular dates indicate
that contemporary taxa were present during the
Quaternary, thus making it difficult to explain why
only contemporary taxa and not the stepping-stone
forms survived through the climatic instability. Such
a result would suggest that the stepping-stone
hypothesis is improbable (Winkworth et al., 2002).
Further, there are no fossils of Munroa or other
evidence to verify its occurrence in intermediate
areas to determine gradual migration.

Figure 4. Maximum likelihood ancestral character state reconstructions of selected characters associated with dispersal;
pie diagrams indicate the probability of each ancestral character state.
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Munroa has endemic species in both North and
South America, with an ancestor originating in the
arid–semi-arid areas of North America, which
expanded to South America. Later, another South
American ancestor (the putative ancestor of M. men-
docina and M. squarrosa) expanded in the opposite
direction. Therefore, two, non-contemporaneous dis-
persal events must have occurred in the Munroa clade,
and LDD appears to be a plausible explanation for its
current distribution, as has been proposed for other
amphitropical disjuncts (Xiang & Soltis, 2001;
Winkworth et al., 2002; Sanmartín & Ronquist, 2004;
Bell & Donoghue, 2005; de Queiroz, 2005; Renner,
2005; Blattner, 2006; Moore et al., 2006; Inda et al.,
2008; Escudero et al., 2010; Jakob et al., 2010;
Donoghue, 2011; Popp et al., 2011; Gillespie et al.,
2012; Linder & Barker, 2014). The LDD hypothesis has
been considered as difficult to prove (Winkworth et al.,
2002; de Queiroz, 2005; Donoghue, 2011; Gillespie
et al., 2012); however, as a result of the diversification
time of Munroa and the current lack of fossil evidence
(potential finding of fossils would change the situa-
tion), it is not possible to accept the vicariance or
stepping-stones hypothesis.

Based on our results, we suggest two dispersal
events in Munroa to explain its current distribution
pattern; these events occurred in opposite directions,
the first from north to south and the second from south
to north. The limitation of M. mendocina to Argentina
can be attributed to a secondary diversification
process, as suggested by Nie et al. (2012) and Loera,
Sosa & Ickert-Bond (2012) for Ampelopsis Michx. and
Ephedra L., respectively. Dispersal events have
occurred several times in other taxa, as in grasses such
as Lycurus setosus (Peterson & Morrone, 1997),
Muhlenbergia torreyi (Peterson & Ortíz-Diaz, 1998),
Scleropogon brevifolius (Peterson & Columbus, 1997)
and Hordeum L. (Blattner, 2006), and in other plants
including Lycium L./Grabowskia Schltdl. (Miller,
2002; Levin & Miller, 2005), Ephedra (Ickert-Bond &
Wojciechowski, 2004; Huang, Giannasi & Price, 2005),
Hoffmannseggia Cav. (Simpson, Tate & Weeks, 2005)
and Tiquilia (Moore et al., 2006).

In Poaceae, many of the attributes involved in
adaptations for dispersal and seedling establishment
(texture of glume and awns, pubescence, number and
size of florets per spikelet, elongated stolons, disarticu-
lating rachilla, reproductive system, annual life cycle,
etc.) are relatively prone to parallelism, convergence
and even reversals (Barkworth & Everett, 1987;
Davidse, 1987; Soreng & Davis, 1998; Soreng, Davis &
Voionmaa, 2007), and our ancestral character state
reconstructions indicate that the shift from perennial
to annual life form and monoecy to gynomonoecy
occurred at a key node in the phylogenetic tree in the
disjunct clades that were correlated with dispersal

events. Our counts show the chromosome base number
of x = 8 (2n = 16) for all Munroa spp. Recently, Linder
& Barker (2014) proved that successful dispersal is
more likely in polyploid than in diploid lineages, but
we did not find changes in chromosome number in this
disjunct taxon; therefore, we cannot associate the
dispersal process with polyploidization events.

The putative ancestor of Munroa (North American)
was perennial, whereas the putative ancestor of
M. andina (South American) was annual; it is possi-
ble that the shift of life form may have speeded up the
establishment of seedlings in South America after the
dispersal processes. This result is in agreement with
the hypothesis of Stebbins (1982), who proposed that
the perennial habit is an ancestral character. An
identical pattern of shift has been reported for
Hordeum (Jakob et al., 2010). Our ancestral character
state reconstruction showed that the reproductive
mode monoecy shifted to gynomonoecy; this shift
occurs in the nodes involved in the dispersal event
with directions north to south. It has been postulated
that gynomonoecy (plants have both female flowers
and hermaphroditic flowers) benefits outcrossing, as
hermaphroditic flowers promote more seeds, whereas
female flowers counterbalance the loss of male func-
tion through better seed quality (Mamut et al., 2014).
It is possible that this shift in reproductive mode may
have speeded up the establishment of seedlings after
the dispersal processes.

All Munroa spp. have small propagules, comprising
either single florets or a portion of the inflorescence
(Anton & Hunziker, 1978; Amarilla et al., 2013); these
propagules might increase the probability of dispersal
and establishment in new habitats, but our results
were not sufficiently conclusive to discern whether the
putative ancestors involved in the dispersal events
had a disarticulating or non-disarticulating rachilla.
All putative ancestors of Munroa have membranous
glumes with awns; this trait might have increased the
probability of dispersal, as they can attach to animal
fur or plumage, as reported for Hordeum (Jakob et al.,
2010). The only exception is M. mendocina, in which
the glumes are absent and it has a restricted distri-
bution in South America. Munroa argentina is a
unique taxon with coriaceous and geniculate glumes,
and it has a wide distribution in South America.

The mobility of propagules by wind (anemochory),
water (hydrochory) and birds (epizoochory) has been
documented in Munroa spp. (Anton & Hunziker, 1978;
L. D. Amarilla, pers. observ.) and, as has been sug-
gested for other amphitropical disjunct taxa (Raven,
1963; Cain et al., 2000; Winkworth et al., 2002;
Blattner, 2006; Wen & Ickert-Bond, 2009; Donoghue,
2011; Popp et al., 2011; Gillespie et al., 2012), these
vectors could have helped the dispersal of Munroa.
Moreover, local and transoceanic whirlwinds are
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known for the Americas (Virji, 1981) and could carry
the small anthecious or partial inflorescences of
Munroa, as proposed for Hordeum (Blattner, 2006) and
several herbaceous plants with a desert amphitropical
distribution in the Americas (Raven, 1963; Wen &
Ickert-Bond, 2009).

CONCLUSIONS

The amphitropical disjunction in Munroa involved an
initial dispersal event from North America to South
America, expansion of its distribution area to the east
and west of the Andes, and dispersal back from South
America to North America. The time of diversification
of the Munroa clade appears to be the late Miocene at
c. 7.2 Mya. During the course of its range expansion
and colonization of South American habitats, the
diversification of Munroa in South America started at
c. 4.6 Mya. This radiation and last dispersal event
(south to north) are associated with the arid condi-
tions of the late Miocene–Pliocene and with the Qua-
ternary climatic oscillations. All Munroa spp. are
diploid, and therefore we did not find any relationship
between ploidy and dispersal events. Shifts from per-
ennial to annual life forms in Munroa and shifts from
monoecy to gynomonoecy may have been important
for dispersal and seedling establishment.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Table S1. Taxa sampled, voucher information (herbarium), laboratory number and GenBank accession numbers
(first, ITS; second, ndhA intron; third, ndhF; fourth, rpl32-trnL; fifth, rps16-trnK). Asterisk, sequences newly
generated for this study; –, absent sequence. Sequences without collection information were downloaded from
GenBank.
Table S2. Morphological data matrix used in ancestral character state reconstructions.
Table S3. Morphometric data obtained from cytological study. Karyotype formulae; total haploid chromosome
length (tl); arm ratio (r); mean chromosome length (C); ratio between the largest and smallest chromosomes in
the complement (R); intrachromosomal asymmetry index (A1); and interchromosomal asymmetry index (A2).
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 Click on the Strikethrough (Del) icon in the 

Annotations section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Add note to text Tool – for highlighting a section 

to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 

box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 

Annotations section. 

 Type instruction on what should be changed 

regarding the text into the yellow box that 

appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Add sticky note Tool – for making notes at 

specific points in the text. 

 

Marks a point in the proof where a comment 

needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 

Annotations section. 

 Click at the point in the proof where the comment 

should be inserted. 

 Type the comment into the yellow box that 

appears. 
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For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 

text or replacement figures. 

 

Inserts an icon linking to the attached file in the 

appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 

section. 

 Click on the proof to where you’d like the attached 

file to be linked. 

 Select the file to be attached from your computer 

or network. 

 Select the colour and type of icon that will appear 

in the proof. Click OK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Add stamp Tool – for approving a proof if no 

corrections are required. 

 

Inserts a selected stamp onto an appropriate 

place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 

section. 

 Select the stamp you want to use. (The Approved 

stamp is usually available directly in the menu that 

appears). 

 Click on the proof where you’d like the stamp to 

appear. (Where a proof is to be approved as it is, 

this would normally be on the first page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 

annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 

comment to be made on these marks.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to use it 

 Click on one of the shapes in the Drawing 

Markups section. 

 Click on the proof at the relevant point and 

draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 

move the cursor over the shape until an 

arrowhead appears. 

 Double click on the shape and type any 

text in the red box that appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




