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Photoreceptors UVR8 and
phytochrome B cooperate to
optimize plant growth and
defense in patchy canopies

Light is a critical source of information for plants. Plants use the
phytochromes (particularly phyB) to detect light signals associated
with the proximity of competitors. A low ratio of red (R) to far-red
(FR) radiation (R : FR) indicates increased competition intensity,
and triggers morphological responses that allow the plant to escape
shading from its neighbors (the shade avoidance syndrome, SAS)
(reviewed in Ballar�e, 2009; Kami et al., 2010; Mart�ınez-Garc�ıa
et al., 2010; Casal, 2012; Pierik & deWit, 2014). Recent evidence
from studies on light regulation of plant immunity has suggested
that plants may also use ultraviolet-B (UV-B, 290–315 nm)
radiation as an indicator of competition intensity and light
availability (Demkura et al., 2010; Demkura & Ballar�e, 2012). In
addition, recent studies have shown that UV-B radiation can
strongly repress SAS responses triggered by low R : FR ratios
(Hayes et al., 2014). Ambient UV-B radiation causes damaging
effects on plants, such as DNA damage (Mazza et al., 1999), and
also induces adaptive photomorphogenic responses acting through
a specific UV-B photoreceptor (UVR8) (Rizzini et al., 2011;
Christie et al., 2012; Wu et al., 2012) (reviewed in Heijde & Ulm,
2012; Jenkins, 2014). Therefore, the possibility exists that plants
integrate information perceived by phyB and UVR8 to make
decisions about growth and defense when faced with a complex
light environment, such as the one that characterizes vegetation
canopies. In this Letter, we address this possibility and discuss how
the interplay between UV-B and R : FR signaling fine tunes plant
growth and defense to optimize resource utilization in patchy
canopy environments.

UV-B tempers SAS responses triggered by phyB
inactivation under sunlight

In Arabidopsis seedlings grown under artificial light, moderate levels
of supplemental UV-B can strongly suppress hypocotyl elongation
responses to low R : FR ratio (Hayes et al., 2014). However, under
field conditions, phyB inactivation can trigger significant elongation
responses even in plants growing under full sunlight. Perhaps the
most dramatic example comes from studieswith cucumber (Cucumis
sativus), which showed that the phyB null mutant (lh) can grow
hypocotyls as long as 30 cmevenunder summertimefield conditions
and high natural UV-B irradiance (Casal et al., 1994). To further
explore the interactions between phyB inactivation and natural UV-

B levels, we compared the growth of lh and wild type cucumbers
under filters that either blocked (�UV-B) or transmitted UV-B
radiation (+UV-B) (see Supporting Information Methods S1). We
found a dramatic effect of phyB inactivation promoting hypocotyl
elongation and a modest, but significant repression of elongation by
solar UV-B radiation (Fig. 1a). Less spectacular responses to partial
phyB inactivation have been reported in other field studies, under
solar UV-B irradiances, using other plant species exposed to lateral
FR radiation (reviewed in Ballar�e, 1999). Since none of these field
studies involved Arabidopsis plants, we characterized SAS responses
to the proximity of competitors in wild-type and uvr8 Arabidopsis
seedlings grown in the field under contrasting levels of UV-B
radiation (Fig. 1b). Plants responded to the proximity of grass
competitors with a rapid increase in leaf angles (hyponastic
response). This hyponastic response was reduced by solar UV-B
radiation, and the repressive effect of solar UV-B radiation was
missing in a uvr8 mutant (Fig. 1c). Exploration of Arabidopsis
transcriptome data in microarray databases (Supporting Informa-
tion Tables S1–S3) further suggest the existence of antagonistic
effects of low R : FR ratio and UV-B radiation on expression of
growth (auxin)-related genes (Fig. 2a). For example YUCCA9,
ATHB-2, IAA29 and SAUR23 were all strongly upregulated by low
R : FR and downregulated by UV-B radiation (Supporting Infor-
mation Table S3). Significant effects of UVR8 activation reducing
the expression of selected auxin-related genes have been reported
recently (Vandenbussche et al., 2014), particularly in plants exposed
to low R : FR ratios (including YUCCA9 and IAA29; Hayes et al.,
2014). In ourmeta-analysis of availablemicroarray data, the effect of
UV-B on the ‘Auxin’ gene ontology (GO) category appeared to be
somewhat dependent on the experimental conditions (Supporting
Information Fig. S1) and largely conserved in uvr8 (Supporting
Information Fig. S2). Taken together, physiological (Fig. 1) and
transcriptomic (Fig. 2a; Supporting Information Table S3) results
are consistent with the idea that solar UV-B radiation moderates the
growth responses to neighbor proximity triggered by low R : FR
ratios. The magnitude of the effect of UV-B (andUVR8) is likely to
vary with the relative levels of R : FR and UV-B radiation, which
emphasizes the need for using experimental approaches that cover
the natural range of variation of these light signals.

UV-B and high R : FR promote plant defense under
sunlight, via partially overlapping mechanisms

Solar UV-B radiation promotes plant defense against herbivorous
insects and some pathogens, and here again the effects of solar UV-B
are opposite to those of low R : FR ratio (Ballar�e et al., 2012). The
positive effect of (natural) UV-B radiation on plant immunity has
often been attributed to the accumulation of leaf phenolics,
although enhanced signaling through the jasmonate (JA) defense
pathway is also thought to play an important role (Ballar�e, 2014).
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Leaf phenolics

Accumulation of soluble phenolic compounds is one of the most
ubiquitous responses to UV-B radiation (Searles et al., 2001),
which is to be expected given the key role played by these
compounds in UV-photoprotection (Braun & Tevini, 1993;
Mazza et al., 2000). In Arabidopsis, the accumulation of both
phenylpropanoids (sinapates) and flavonoids is boosted by UV-B
radiation (Li et al., 1993; Landry et al., 1995), in a UVR8-
dependent manner (Kliebenstein et al., 2002; Demkura & Ballar�e,

2012). Some of these compounds (sinapates) have been shown to
mediate the positive effect of UV-B radiation on plant immunity
against fungal pathogens (Demkura & Ballar�e, 2012). In contrast
to the consistent effect of UV-B, the effects of R : FR ratio on levels
of soluble leaf phenolics can be quite variable (Table 1), and often
not significant. These observations at themetabolite level are totally
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Fig. 1 The interplay between solar UV-B and phyB in shaping plant
morphology under field conditions. (a) phyB inactivation in the lhmutant
(L�opez-Juez et al., 1992) triggers a strong shade avoidance response in field
grown plants, and solar UV-B represses elongation. Average hypocotyl
length (cm) forwild-type (WT)plantswas5.9 (+UV-B) and7.1 (�UV-B), and
for lh plants 10.9 (+UV-B) and 13.0 (�UV-B); lh effect P < 0.01; UV-B effect
P = 0.05; interactionP = 0.56; n = 5; see Supporting informationMethods S1
for experimental details; filter types and configuration were as described
previously (Izaguirreet al., 2007;Zavalaet al., 2014). (b) Experimental setup
used to test Arabidopsis responses to the proximity of grass neighbors in the
field under contrasting levels of solar UV-B radiation.Wild-type (Col-0) and
uvr8-6mutant (Favory et al., 2009) Arabidopsis plants were surrounded by
zero (D0), three (D3), or six (D6) ryegrass-containing pots [only treatments
D6 (top, six ryegrass pots) and D3 (bottom, three ryegrass pots and three
pots containing only soil) are shown in the picture]; the setup was replicated
four timesundereither solarUV-B (+UV-B)or attenuatedUV-B (�UV-B); see
Supporting Information Methods S1 for details. (c) Arabidopsis plants
respond to the proximity of grass neighbors by increasing leaf angles, and
ambientUV-B tempers this response viaUVR8. Bars,� 1 standard error (SE).
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Fig. 2 Comparisonof theeffectsof lowred : far red(R : FR)andsupplemental
ultraviolet-B (UV-B) radiation on gene expression for genes belonging to
selectedgeneontology (GO) categories.Data are frompublic databases (see
Supporting InformationMethodsS1 fordetails) andmanyof themhavebeen
reported inpreviouspublications (Brownet al.,2005;Taoet al.,2008;Favory
et al., 2009; Kozukaet al., 2010;Cerrudo et al., 2012; Leivar et al., 2012;De
Wit et al., 2013; Morales et al., 2013; Reddy et al., 2013). Data points
highlighted in red (a) correspond to YUCCA9 (At1G04180),ATHB-2
(At4 g16780), IAA29 (At4 g32280) and SAUR23 (At5 g18060); see
Supporting Information Table S3 for quantitative details.
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consistent with our meta-analysis of transcriptome data in
Arabidopsis: supplemental UV-B has a robust effect increasing
the expression of phenylpropanoid- and flavonoid-related genes,
whereas the effects of FR are generally very modest (Fig. 2b,c;
Supporting Information Table S3). The effects of UV-B on
phenylpropanoid- andflavonoid-related genes aremostlymediated
by UVR8 (Supporting Information Fig. S2b,c).

JA signaling

Reductions in UV-B radiation and R : FR ratio may have
convergent effects repressing JA signaling. Genetic evidence in
Arabidopsis andNicotiana indicates that some of the anti-herbivore
effects of solar UV-B are missing in plants impaired in the
biosynthesis of bioactive JA (Caputo et al., 2006; Demkura et al.,
2010). Solar UV-B can increase JA synthesis or expression of JA
biosynthetic genes in Nicotiana spp. (Izaguirre et al., 2003; Ðinh
et al., 2012), although this is not always the case (Demkura et al.,
2010). In species of the Solanaceae,UV-B increases plant sensitivity
to JA for activation of proteinase inhibitors (Stratmann et al., 2000;
Demkura et al., 2010). However, this enhancing effect was not
detected in Arabidopsis for other markers of the JA response
(Demkura & Ballar�e, 2012). Available microarray data indicate
that UV-B radiation increases the expression of some JA-related
genes (Fig. 2d; see also Supporting Information Table S3 and Fig.
S1), but this effect appears to be highly dependent on the
experimental conditions (Supporting Information Fig. S1xiii–xvi),
and to some extent conserved in uvr8 mutants (Supporting
Information Fig. S2d). The effects of low R : FR reducing JA
sensitivity are very well documented (reviewed in Ballar�e, 2014).
Transcriptome data in Arabidopsis do not reveal major effects of
R : FR ratio on JA-related genes in healthy (non-induced) plants
(Fig. 2d), which is consistent with the idea that R : FR regulates JA
signaling predominantly by reducing the response to the JA burst

produced by the plant in response to herbivory or pathogen attack
(Moreno et al., 2009; Cerrudo et al., 2012; De Wit et al., 2013).
The effect of low R : FR ratios repressing the induction of JA-
dependent genes correlates with the down-regulation of specific
metabolites involved in direct (Cargnel et al., 2014) and indirect
(Izaguirre et al., 2013; Kegge et al., 2013) defenses. From an
ecological point of view, down-regulation of JA responses under
conditions of low R : FR and UV-B irradiance is likely to help the
plant to redirect resources from defense to rapid elongation,
thereby increasing its ability to compete for light.

Interactions between UVR8 and phyB signaling
mediated by hormonal cross-talk

Recent work on the effects of R : FR and UV-B on growth- and
defense-related hormonal pathways (Hayes et al., 2014; Leone
et al., 2014) can provide important clues to understand the
mechanisms by which R : FR and UV-B signals are used by the
plant to optimize resource allocation in patchy canopies (Fig. 3).
Reduced JA signaling under low R : FR ratios has been
attributed to increased stability of JAZ10 (Leone et al., 2014)
(and presumably other JAZ proteins – Chico et al., 2014), and
increased turnover of DELLA proteins (Leone et al., 2014).
JAZs are key repressors of JA signaling (Browse, 2009; Fonseca
et al., 2009; Kazan & Manners, 2012), and DELLA proteins,
which are key repressors of gibberellin (GA) signaling (Harberd
et al., 2009), are known to recruit JAZs into inactive protein
complexes (Hou et al., 2010; Yang et al., 2012). Hayes et al.
(2014) reported that UV-B supplementation can stabilize
DELLAs. Therefore, it is conceivable that changes in DELLA
turnover are functionally important not only to define the
balance between UV-B and low R : FR in the modulation of
growth responses, but also in the regulation of JA signaling and
plant immunity in canopies (Fig. 3).

Table 1 Far red (FR) provided against a background of white light to lower the red (R) to far red (R : FR) ratio has mixed effects on accumulation of soluble
phenolic compounds in the leaves of de-etiolated plants

Species Effect of supplemental FR (low R : FR ratio)
Effect of supplemental UV-B under
comparable physiological conditions1

Betula pendula No effect on flavonoids; marginal increase
in the contents of phenolic acids, such as
chlorogenic acid and cinnamic acid
(Tegelberg et al., 2004)

Increased falvonoids and phenolic acids (Tegelberg et al., 2004)

Nicotiana longiflora Reduced the accumulation of
herbivory-induced chlorogenic acid
(Izaguirre et al., 2006)

Increased flavonoids and phenolic acids (Izaguirre et al., 2007)

Solanum lycopersicum Increased accumulation of flavonoids
in the leaves (the opposite effect was
observed for stem flavonoids and
anthocyanins) (Cagnola et al., 2012)

Increased flavonoid accumulation (Ballar�e et al., 1995)

Arabidopsis thaliana No effect on leaf flavonoids or sinapates
(Cargnel et al., 2014)

Increased flavonoids and sinapates in an UVR8-dependent manner
(Demkura & Ballar�e, 2012)

Arabidopsis thaliana Decreased content of anthocyanins in
plants treated with methyl-jasmonate
(Cerrudo et al., 2012; Leone et al., 2014)

Not reported

1Results are shown for comparison. In all the UV-B supplementation experiments listed in this column, plants were exposed to physiological levels of UV-B
radiation against a background of white light.
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Concluding remarks

UVR8 and phyB cooperativelymodulate the balance between growth
and defense through both convergent and parallel signaling pathways
(Fig. 3). The use of common signaling elements (such as DELLA
proteins), provides a simplemechanismto reinforce the responsewhen
both photoreceptors sense contingent information (e.g. under deep
canopy shade or in the open), or to balance out their effects when they
perceive conflicting canopy signals (e.g. during proximity perception).
In the latter case, FR reflected byneighboringplants provides the plant
with a key warning signal of oncoming competition when light levels
are still high (Ballar�e et al., 1990). However, because excessive
responses to low R : FR may entail fitness costs (Casal et al., 1994;
Dorn et al., 2000; McGuire & Agrawal, 2005), moderation of these
responses by UVR8 in canopy gaps (Fig. 1) may be ecologically
advantageous. In addition, the use of independent signaling pathways
may allow for one photoreceptor to dominate the pattern of response.
This appears to be the case for accumulation of phenolic sunscreens,
where UVR8 has a distinctly dominant role (Table 1; Fig. 2). Since
UV-B can penetrate more in leaf canopies than longer wavelengths
(Flint & Caldwell, 1998), an overriding role of the UVR8 pathway
may induce adaptiveUV-Bphotoprotection even under conditions of
low R : FR. The emerging map of interactions between UVR8 and

phyB signaling (Fig. 3) is revealing exciting new insights into the
mechanisms used by plants to optimize growth and defense plasticity
in variable light environments.
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2008; Hornitschek et al., 2012; Li et al., 2012; Park et al., 2012). PIFs are also repressed by abundant DELLA proteins (Feng et al., 2008; de Lucas et al., 2008),
which also keep JASMONATE ZIMdomain (JAZ) proteins from repressing their target transcription factors, such asMYCs (Hou et al., 2010). At the same time,
activation of UVR8 by solar UV-B facilitates accumulation of DELLA proteins in a HY5-dependent manner (likely by increasing gibberellin (GA) degradation),
and promotes PIF degradation in a HY5-independent manner (Hayes et al., 2014). Under these conditions, auxin biosynthesis and elongation growth are
repressed, and jasmonate (JA)-dependent defense responses can be readily activated following JA-induced JAZ protein degradation. UV-B, acting through
UVR8, promotes the accumulation of soluble phenolic compounds (flavonoids and phenylpropanoids), which can contribute to increase plant defense in a
JA-independentmanner (Demkura&Ballar�e, 2012). (b)Under shadeor high density conditions, lowR : FR ratios lead to phyB inactivation, increased levels and
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