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Abstract The invariants of an attractor have been
the most used resource to characterize a nonlinear
dynamics. Their estimation is a challenging endeavor
in short-time series and/or in presence of noise. In this
article, we present two new coarse-grained estimators
for the correlation dimension and for the correlation
entropy. They can be easily estimated from the cal-
culation of two U-correlation integrals. We have also
developed an algorithm that is able to automatically
obtain these invariants and the noise level in order to
process large data sets. This method has been statis-
tically tested through simulations in low-dimensional
systems. The results show that it is robust in presence of
noise and short data lengths. In comparisonwith similar
approaches, our algorithm outperforms the estimation
of the correlation entropy.
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1 Introduction

Correlation dimension (D) and correlation entropy
(K2) are quantities that characterize the natural mea-
sure of an attractor. The first one can be interpreted as
the dimension of the attractor. It is a rough measure of
the effective number of degrees of freedom (number of
variables) involved in the dynamical process. The cor-
relation entropy is a measure of the rate at which pairs
of nearby orbits diverge. In other words, it gives us an
estimate of the unpredictability of the system [6].

The correlation dimension and entropy allow us to
measure the complexity of a dynamical system. Typi-
cally, more complex systems have higher dimensions
and larger values of entropy. More important, these
quantities help us to identify changes in the system’s
complexity. For this reason, they have become very
popular and widely used in the biomedical field [27],
not only to characterize the dynamics of physiological
systems, but also to detect different types of patholo-
gies. For example, Choi et al. used the correlation
dimension calculated from voice signal to characterize
the dynamics of the phonatory system in normal and
pathological conditions. They reported a mean value
of D = 1.57 for normal voices and an increased
dimension value for pathological ones [3]. In Hos-
seinifard et al. [15] used D, among other nonlinear
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measures, extracted from electroencephalographic sig-
nals to classify between depressed and normal patients.
Combining these features with machine learning tech-
niques, they achieved a 90%classification accuracy.On
the other hand, in [8,9] the authors illustrated how K2

and other related entropy measures have been used to
characterize different biological phenomena.

Since the natural measure of an attractor is invari-
ant under the dynamical evolution, both D and K2

can be easily estimated from indirect time measure-
ments of one of the system variables [19]. For an
observed stationary time series of length N , {xn}Nn=1,
the reconstructed m-dimensional delay vectors xi =(
xi , xi+τ . . . , xi−(m−1)τ

)
, i = 1, 2, . . . , L = N −

(m − 1) τ , must be formed. Here m is the embedding
dimension and τ is the embedding lag. As a collection,
these delay vectors constitute the reconstructed attrac-
tor of the system in R

m . From another point of view,
this collection can be thought as samples drawn from
the natural measure of the system. These samples can
be used to estimate the invariants D and K2 using the
correlation integralGm (h). This last quantity is defined
as the probability that the distance z̃ = ∥∥xi − x j

∥∥

between two randomly selected m-dimensional delay
vectors xi and x j is smaller than a value h [6]:

Gm (h) =
∫

g (h, z̃) f mz̃ (z̃) dz̃, (1.1)

where g is a kernel function and f mz̃ (z̃) is the proba-
bility density function (pdf) of the distance between
pairs of delay vectors. In this article, the Euclidean
distance is used, but others measures of distance can
be employed. The Grassberger and Procaccia correla-
tion integral Cm(h) uses as kernel function g (h, z̃) =
H (1 − z̃ / h), where H (·) is the Heaviside step func-
tion [11]. On the other hand, the Gaussian kernel corre-
lation integral (GCI) Tm (h) proposed by Diks et al. [5]
adopts g (h, z̃) = exp

(−z̃2 / 4h2
)
. For deterministic

time series and in absence of noise, both correlation
integrals scale as:

Cm (h) = Tm (h) ∼ hDe−m�tτK2 ,

for m → ∞ and h → 0.

where �t = 1 / fs , being fs the sampling frequency
of the time series. This behavior is due to that, in the
attractor of a chaotic dynamical system, the expected

density of points within a ball of small radius h scales
as hD . Thus, the greater the correlation dimension, the
more complex the attractor, and the longer it takes to
revisit the same region in it [2]. On the other hand,
the e−m�tτK2 factor is related to the exponential diver-
gence of nearby trajectories. The higher the entropy
values, the faster those trajectories diverge [7,12].

Themain advantage of theGCI over theGrassberger
and Procaccia correlation integral is that the former
allows us to model the influence of additive noise on
the scaling law. For a time series with added white
Gaussian noise of variance σ 2, the scaling rule is [5,
22,28]:

Tm (h) ∼ hm
(
h2 + σ 2

) D−m
2

e−m�tτK2

for m → ∞ and
√
h2 + σ 2 → 0. (1.2)

In presence of noise, it is very important to be able
to quantify its level σ in order to correct the estimation
of D and K2. Moreover, an imprecise estimate of these
invariants can lead to mistaken conclusions about the
studied phenomena. In this sense, an estimate of the
noise level must be reported allowing other researchers
to be aware of the limitations of the data.

The main problem of the GCI is that it requires high
values of m to obtain a convergent estimate of K2 [22,
25]. This is a major drawback, since high values of m
imply much longer time series in order to achieve good
estimations.

The cause of this problem is related with the kernel
function of the GCI. It can be seen in Eq. (1.1) that the
pdf of the interpoint distance depends on the embed-
ding dimension. However, the Gaussian kernel func-
tion does not change with m, and, for this reason, the
convergence of the GCI to the K2 is slowed down [24].

As a solution, we have recently proposed the U-
correlation integral (UCI) [24]:

Uβ
m (h) =

∫
�

(
β/2, z/h2

)

� (β/2)
f̂m (σ ; z) dz, (1.3)

where � (a, t) is the upper incomplete Gamma func-
tion, � (a) is the Gamma function and f̂m (σ ; z) is
the pdf of the squared interpoint distance. There are
two important issues about this correlation integral that
deserve further analysis. First, note that the UCI’s ker-
nel function, given by:

123

Author's personal copy



Automatic estimation of attractor invariants

g (h, β, z) = �
(
β/2, z/h2

)

� (β/2)

has a parameter β that is used to incorporate informa-
tion about the embedding dimension. In other words,
this kernel function is able to change according to m.
Second, we are now working with the square of the
interpoint distance, i.e., z = z̃2, to reduce the compu-
tational cost.

In order to find the scaling behavior of the UCI, we
need an expression for the pdf of the squared distances
between pairs of noisy delay vectors f̂m (σ ; z) [23,
see Eq. (18)]:

f̂m (σ ; z) = zm/2−1

2 (2σ)m−D

� (D/2)

� (m/2)

× 1F1

(
,
m−D

2
; m
2

)
− z

4σ 2 , (1.4)

where 1F1(a, b; t) is the Kummer’s confluent hyper-
geometric function. This distribution arises under the
assumption that, in absence of noise, the pdf of the
pairwise distances between m-dimensional delay vec-
tors (points in the reconstructed attractor) behaves as
hD−1 for a certain range of h values [23]. If each of the
coordinates of these vectors is perturbed with white
Gaussian noise of variance σ 2, then the pdf of the per-
turbed distances will follow Eq. (1.4).

The scaling law for the UCI can be obtained by
substituting Eq. (1.4) in Eq. (1.3) and integrating over
z [24]:

Uβ
m (h) = φ̂

2
(2σ)D

� (D/2) � ((β+m) /2)

� (β/2) � (m/2+1)
e−m�tτK2

×
(

h2

4σ 2

)m/2

F

(
β+m

2
,
m−D

2
; m+2

2
; − h2

4σ 2

)

,

(1.5)

where φ̂ is a normalization constant and F (a, b; c; t)
is the Gauss hypergeometric function.

In practical applications, once the scaling law has
been selected and the correlation integral has been cal-
culated, there are two main options to estimate D, K2

and σ . The first one is to estimate these invariants
through a nonlinear fitting of the scaling rule [5,28].
This method is highly dependent on the range of scale
selected to fit the model, and there is not a consensus
about the correct way to choose it [19]. The second
option is to use coarse-grained estimators. These are

explicit expressions for D, K2, and σ as functions of
m and h [6]. For example, in [22] Nolte et al. have
proposed a set of coarse-grained functions based on
the GCI. The most important aspect of their approach
is that the calculation of these functions only depends
on the estimation of Tm(h) for two consecutive values
of the embedding dimension m. Nevertheless, given
that these estimators are based on the GCI, the con-
vergence to K2 needs high values of m and, therefore,
large amounts of data.

In [24] we have proposed a set of coarse-grained
estimators for D, K2 and σ based on the UCI. How-
ever, these estimators are highly dependent on a precise
estimation of σ .

In this article, we present a new set of coarse-grained
estimators for D and K2, based on the UCI, that only
needs the calculation of twoU-correlation integrals i. e.
they do not require the a priori estimation of any quan-
tity. Moreover, we propose a methodology to automat-
ically estimate these invariants and the noise level of
the time series.

In Sect. 2, we derive the here proposed coarse-
grained estimators. Section 3 is devoted to describe
the algorithm to automatically estimate the invariants.
In Sect. 4, we discuss these results and give some sug-
gestions for the practical of the algorithm. Finally, the
conclusions are presented in Sect. 5.

2 Theory

Following a similar approach to one given by Nolte et
al. [22], the here proposed coarse-grained estimators
are based on a noise level functional. This quantity,
closely related to the noise level of the time series, can
be estimated using two U-correlation integrals. In this
work, the noise level functional will be employed to
correct the deviation of the coarse-grained estimators
from the scaling law in presence of noise.

2.1 Noise level functional

The noise level functional based on the UCI can be
defined as [24]:

�U
m (h) = 1

2

(
Ḋβ=m
m+2 (h) − Ḋβ=m

m (h)
)

≈ 4σ 2

h2 + 4σ 2 for m � D, (2.1)
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where

Ḋβ
m (h) = d lnUβ

m(h)

d ln h
.

As it can be observed from Eq. (2.1), �U
m (h) is a

function that decreases monotonically from 1 to 0 on a
scale that is proportional to the value of σ . This func-
tional depends on the logarithmic derivative of two U-
correlation integrals: Uβ=m

m (h) and Uβ=m
m+2 (h). Note

that the parameter β is set equal to m in both correla-
tion integrals.

In order illustrate the behavior of this noise level
functional, we will use the Henon map:
{
xn+1 = 1 − ax2n + yn
yn+1 = bxn

,

where a = 1.4 and b = 0.3. This map has been widely
used in the literature to numerically characterize dif-
ferent methods devoted to estimate attractor’s invari-
ants [4,6,16,19,20,22,23,25,26,28]. For this map, and
the given parameters values, the correlation dimension
and correlation entropy are D = 1.22 and K2 = 0.3,
respectively [28].

The noise level functionals for both a clean and a
noisy (σ = 0.05) realizations of the Henon map of
length N = 10000 are shown in Fig. 1. Note that in
absence of noise (Fig. 1a), this functional is close to
zero for a wide range of h values regardless the value of
m. On the other hand, in Fig. 1b it can be observed that
�U

m (h) falls of from 1 to 0 and the curves for different
m values are very close to the theoretical curve for
σ = 0.05. We must point out that the closest curve
of this functional to the theoretical value is the one
corresponding tom = 2. For larger values ofm,�U

m (h)

slightly deviates from this behavior.

2.2 Noise level coarse-grained estimator

Starting from Eq. (2.1), we have derived the coarse-
grained noise level estimator [24]:

σU
m (h) = h

2

√
�U

m (h)

1 − �U
m (h)

. (2.2)

We must point out that all time series used in this
work were rescaled to have unitary standard deviation.
In consequence, σ is the noise level after rescaling, i.e.,

(a)

(b)

Fig. 1 Henon map: Noise level functional for m = {2, 4, 6, 8},
the curves for different m values are color-coded in grayscale
where the lightest gray corresponds to m = 2. a Noiseless. b
σ = 0.05. The theoretical curve [right-hand side of Eq. (2.1)] is
shown in dashed black line

σ = σn√
σ 2
c + σ 2

n

,

where σ 2
n is the noise variance and σ 2

c is the variance of
the clean time series. In this sense, σ → 0 corresponds
to clean time series and σ → 1 implies only noise. The
signal-to-noise ratio (SNR) can be calculated as:

SNR = 10 log10

(
1 − σ 2

σ 2

)
dB.

In Fig. 2, it is shown the coarse-grained estimator for
noise level as a function of h for m = {2, 4, 6, 8, 10}
for both a clean and a noisy (σ = 0.05) realization
of the Henon map with length N = 10000. It can be
observed in Fig. 2a that, for the noiseless case, σU

m (h)

approaches to zero as h → 0.On the other hand, Fig. 2b
shows that, when the noise level is increased, σU

m (h)

underestimates the value of σ , but it is not too far from
its real value. Note that the curve of σU

m (h) closest to
the real σ is the one calculated for m = 2 (top curve).
Moreover, the range of h values where σ can be esti-
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(a)

(b)

Fig. 2 Henon map: Noise level coarse-grained estimator for
m = {2, 4, 6, 8}, the curves for different m values are color-
coded in grayscale where the lightest gray corresponds tom = 2.
aNoiseless.bσ = 0.05.The true value of the noise level is shown
in dashed black line

mated is larger for m = 2 than for the other m values.
This suggests that a coarse-grained estimator based on
the GCI could be better than one based on the UGI for
noise level estimation.

2.3 Correlation dimension coarse-grained estimator

Here we present a new coarse-grained estimator for D
(see Appendix A for deduction) which is given by:

DU
m (h) = Ḋβ=m

m (h) + �U
m (h)

1 − �U
m (h)

[
Ḋβ=m
m (h)

+ 2 (m−1)

(
Uβ=m−2
m (h)

Uβ=m
m (h)

−1

) ]
. (2.3)

The calculation of DU
m (h) requires the estimation

of �U
m (h) and two correlation integrals:Uβ=m

m (h) and

Uβ=m−2
m (h). In [24] we have shown that if σ � h, then

Ḋβ=m
m (h) → D. Moreover, under the same condition

�U
m (h) → 0. Replacing in Eq. (2.3) we have that:

(a)

(b)

Fig. 3 Henon map: Correlation dimension coarse-grained esti-
mator for m = {4, 6, 8}, the curves for different m values are
color-coded in grayscale where the lightest gray corresponds to
m = 4. a Noiseless. b σ = 0.05. The reported value of the
correlation dimension is shown in dashed black line

DU
m (h) → Ḋβ=m

m (h) → D, for σ � h.

This means that, in absence of noise, this coarse-
grained estimator is the logarithmic derivative of the
UCI, which tends to D. On the other hand, if noise
is present, the second term in the right-hand side of
Eq. (2.3) helps to correct the estimation.

Since the GCI is a special case of the UCI for
β = 2. The coarse-grained estimator of D proposed by
Nolte et al. in [22] can be easily derived from Eq. (A.7)
(see Appendix A.1).

In Fig. 3, the estimations of DU
m (h) for both a clean

and a noisy (σ = 0.05) realizations of the Henon map
are shown form = {4, 6, 8}. In absence of noise, it can
be seen in Fig. 3a that the estimator DU

m (h) oscillates
near the reported value of correlation dimension (D =
1.22) for a wide range of scales, regardless the value of
m. In contrast, Fig. 3b shows that DU

m (h) overestimates
D. Furthermore, the best estimation is reached with
the lowest value of the embedding dimension, m = 4.
This is related with the previously discussed scaling
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behavior of �U
m (h). However, it can be observed that

the values of DU
m (h) are close to the reported value of

D.

2.4 Correlation entropy coarse-grained estimator

The here proposed coarse-grained entropy estimator is
defined as (see Appendix B):

KU
m (h) = − 1

2�tτ
ln

(
Uβ=m+2
m+2 (h)

Uβ=m
m (h)

)

− 1

2�tτ
ln

(
DU
m (h)

m
+ 1

)

+ 1

2�tτ
ln

[
�U

m (h)

(
m− Ḋβ=m

m (h)

m−DU
m (h)

)

+ (
1−�U

m (h)
)
(
Ḋβ=m
m (h)

m
+1

)]
. (2.4)

This coarse-grained estimator depends on the cor-
relation integrals Uβ=m+2

m+2 (h) and Uβ=m
m (h), �U

m (h),

the logarithmic derivative Ḋβ=m
m (h), and the coarse-

grained estimator DU
m (h). When σ � h the quantities

DU
m (h) → Ḋβ=m

m (h) → D, and taking into account
that for σ � h [24]:

1

2�tτ
ln

[
Uβ=m+2
m+2 (h)

Uβ=m
m (h)

]

≈ 1

2�tτ
ln

(
D

m
+ 1

)
− K2,

then it can be easily shown that:

KU
m (h) → K2, for σ � h and m � D.

The estimations of KU
m (h) from both a clean and

a noisy realization (σ = 0.05) of the Henon map for
m = {4, 6, 8} are presented in Fig. 4. It can be observed
that in both cases (Fig. 4a, b) KU

m (h) is near to the
reported value of K2 = 0.3 for allm values. This is the
main advantage of the UCI in comparison with other
correlation integrals [24].

The last statement can be confirmed by compar-
ing KU

m (h) with two similar coarse-grained estimators
based on different correlation integrals. The first one
was proposed by Jayawardena et al. [17], and it is based
on the Grassberger and Procaccia correlation integral
(Cm (h)). The second one was proposed by Nolte et

(a)

(b)

Fig. 4 Correlation entropy coarse-grained estimator for m =
{4, 6, 8}, the curves for different m values are color-coded in
grayscale where the lightest gray corresponds tom = 4. aNoise-
less. b σ = 0.05. The reported value of the correlation entropy
is shown in dashed black line

al., and it is calculated from the GCI (Tm (h)). These
approaches, as well as the here proposed, KU

m (h) only
requires the estimation of two correlation integrals of
the same kind.

In Fig. 5, the estimations of K2 for the Henon map
through the estimators proposed by Jayawardena et al.,
Nolte et al. and KU

m (h) can be compared. They were
calculated from a time series of length N = 5000
with added white Gaussian noise at a level σ = 0.05.
The correlation sums Cm (h), Tm (h), Uβ=m

m (h) and
Uβ=m−2
m (h) were calculated for m = {4, 6, . . . , 22}

with τ = 1. Figure 5a shows the results for the estima-
tor proposed by Jayawardena et al. It can be observed
that, asm is increased, this estimator slowly approaches
to the reported value of K2. However, itmust be pointed
out that, regardless that the dimension of this map
is low (D = 1.22), high values of m are needed in
order to converge. On the other hand, it can be seen in
Fig. 5b that the results of the coarse-grained estimator
proposed by Nolte et al. also converge slowly to the
reported value for K2. In contrast, in Fig. 5c it can be
observed that the estimator KU

m (h) approaches faster to
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(a) (b) (c)

Fig. 5 Henon map with noise (σ = 0.05). Estimation of K2 for
m = {4, 6, . . . , 22} through different coarse-grained estimators,
the curves for different m values are color-coded in grayscale

where the lightest gray corresponds to m = 4. a Jayawardena et
al. b Nolte et al. c KU

m (h). The reported value K = 0.3 is shown
in dashed black line

(a) (b) (c)

Fig. 6 Rössler system. Estimation of K2 form = {4, 6, . . . , 22}
through different coarse-grained estimators, the curves for dif-
ferent m values are color-coded in grayscale where the lightest

gray corresponds to m = 4. a Jayawardena et al. b Nolte et
al. c KU

m (h). The reported value K = 0.066 is shown in
dashed black line

the value of K2 than the other two studied estimators.
Note that the curves for different m values of KU

m (h)

are very close to each other, meaning that this estimator
is more robust to changes in the parameter m. Please
note that the curves corresponding to m = {4, 6, 8} of
Fig. 5c are also shown in Fig. 4b.

The same methodology was applied to a clean time
series obtained from the Rössler system:

⎧
⎪⎨

⎪⎩

ẋ = −y − z

ẏ = x + ay

ż = b + z (x − c)

,

where a = 0.15, b = 0.2 and c = 10. The system
was solved using the Runge–Kutta method with time
step 0.5 and initial condition x (0) = 0.1, y (0) = 0.1,
z (0) = 0.1. The first 20,000 data points were dis-
carded, and the next N = 10,000 data points were
taken to estimate the attractor’s invariants. The corre-
lation sums Cm (h), Tm (h),Uβ=m

m (h) andUβ=m−2
m (h)

were calculated for m = {4, 6, . . . , 22} with τ = 3.

The results for the estimators proposed by Jayawar-
dena, Nolte, and KU

m (h) are shown in Figs. 6a–c,
respectively. In all three cases, a typical scaling behav-
ior can be observed. Once again, the estimators pro-
posed by Jayawardena and Nolte need high values of
m, in contrast with KU

m (h). Interestingly, all estima-
tors converge to values of correlation entropy that dif-
fers from the one reported (K2 = 0.066) [6]. Both
the Jayawardena’s and Nolte’s estimators converge to
K̂2 ≈ 0.085, while KU

m (h) converges to K̂2 ≈ 0.052.
From these results, we can conclude that the estimator
KU
m (h) converges by using low values ofm, in compar-

ison with the previously proposed estimators [17,22].

3 Automatic invariants estimation

In practical applications, it is important to verify the
existence of a scaling behavior for a range of h. The
determination of a stable scaling region, which is
required to estimate the invariants, is usually done by
visual inspection. However, that is not feasible when
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Fig. 7 Noise-assisted correlation algorithm. The ω-th compara-
tor (ω = 1, 2, . . . , 	) with threshold θω = 0 receives as input
the squared distance between two m-dimensional delay vectors
minus an i.i.d. realization αω ∼ (

h2/2
)
χ2

β. All binary outputs

μω are averaged to calculate the U-correlation sum Ûβ
m (h)

large sets of data are studied Additionally, the sub-
jective judgment should be avoided. The necessity of
an algorithm for the automatic estimation of invariants
arises, once the scaling regime has been confirmed. In
this section, we propose an algorithm (seeAlgorithm 2)
based on the coarse-grained estimators σU

m (h), DU
m (h)

and KU
m (h), that is able to automatically estimate these

invariants. Before describing this algorithm, we need
to detail some aspects about the calculation of the U-
correlation integral.

3.1 Noise-assisted correlation algorithm

The UCI is approximated with U-correlation sum
Ûβ
m(h). The calculation of Ûβ

m(h) requires a compu-
tationally expensive numerical integration due to the
kernel of the UCI. However, we can use the noise-
assisted correlation algorithm instead [24] (see Fig. 7).
This algorithm begins by calculating the squared dis-
tances between each pair of delay vectors zω =∥∥xi − x j

∥∥2, where ω = {(i, j) / i = 1, 2, . . . L , j =
1, 2, . . . , L , i �= j} and 	 = L (L − 1). Then, for
each squared distance zω an i.i.d. noise realization
αω ∼ Gamma

(
β/2, h2

)
is subtracted. Here, β/2 and

h2 are the shape and scale parameters, respectively.
The result is then compared with a threshold θω = 0
to produce a binary output uω. Then Û

β
m(h) is the aver-

age of all binary outputs. These steps must be repeated
for each value of h and m. Algorithm 1 describes
all the steps that must be followed in order to esti-

Algorithm 1 Noise-assisted U-correlation algorithm.
1: Form the m-dimensional delay vectors from the temporal

series and calculate all pairwise squared distances zω with
1 ≤ ω ≤ 	 = L (L − 1).

2: Fix the value of the parameter h and obtain 	 realization of
noise αω from the distribution

(
h2/2

)
χ2

β.
3: Calculate the binary variable:

uω (h) =
{
0 if zω − αω ≥ 0

1 otherwise
.

4: Calculate the U-correlation sum as:

Ûβ
m (h) = 1

	

	∑

ω=1

uω.

5: Repeat steps 1-4 for all values of h and m.

mate the noise-assisted U-correlation sum. The noise
realizations αω were generated using χ2

β realizations
given that, if X ∼ χ2

β, then
(
h2/2

)
X ∼ Gamma(

β/2, h2
)
.

As an example, the correlation integralUβ=m
m (h) can

be approximated by Ûβ=m
m (h) which in turn is calcu-

lated from the squared distances zω of m-dimensional
delay vectors, and noise realizations αω that follow
a Gamma distribution with shape parameter equal to
m/2. Similarly, the correlation sum Ûβ=m−2

m+2 (h) can be
obtained from the squared distances zω of (m + 2)-
dimensional delay vectors and noise realizations αω

following a Gamma distribution with shape parameter
equal to m/2 − 1.

3.2 Algorithm for automatic estimation of invariants

The automatic algorithm to estimate invariants begins
by approximating the U-correlation integralsUβ=m

m (h)

and Uβ=m−2
m (h), for different m values (m > 2) using

the noise-assisted correlation algorithm (Algorithm 1).
This step does not requires a narrow range of h as ini-
tial guess. For example, for a normalized time series the
range 10−8 ≤ h ≤ 10 is a good choice. On the other
hand, note that the expressionUβ=m−2

m (h) requires val-
ues ofm > 2 since Gamma distribution’s shape param-
eter must be greater than zero.

Next, the logarithmic derivatives Ḋβ=m
m (h),

Ḋβ=m
m+2 (h) are computed and�U

m (h) is calculated using
Eq. (2.1). To calculate the logarithmic derivatives, we
make use of a wavelet transform approach to approxi-
mate the derivative [21]. This allowsus to achieve better

123

Author's personal copy



Automatic estimation of attractor invariants

estimations of the invariants because it implements a
low-pass filter reducing the high-frequency oscillations
that are naturally present in estimators derived from
the noise-assisted algorithm [24]. Please observe that

correlation integral Uβ=m
m+2 (h) is equal to Uβ=m̂−2

m̂ (h)

correlation integral evaluated at m̂ = m + 2. In order
to obtain σ , the coarse-grained estimator σU

m (h) must
be calculated [Eq. (2.2)].

To obtain a suitable range of scale values where the
invariants can be estimated, onemust look for a range of
h where the coarse-grained estimator is nearly constant
and its variation across the different m values is the
smallest. In this sense, for the noise level we define the
functions:

Aσ (h) = 1

M

M∑

i=1

d σU
mi

(h)

d ln h
,

Vσ (h) = 1

M − 1

M∑

i=1

(
σU
mi

(h) − σ̂U (h)
)2

,

and

Fσ (h) = Aσ (h) Vσ (h) ,

where m ∈ {m1,m2, . . . ,mi , . . . ,mM }, σ̂U (h) is the
average of σU

m (h) across m. Aσ (h) is the average over
m of the derivative of σU

m (h) with respect to ln h, Vσ

gives the variation of σU
m (h) acrossm and Fσ (h) is the

product of the aforementioned functions. We propose
to estimate σ within a range of h centered at the h value
at which Fσ (h) is minimum. In this way, σ is estimated
in a range of h centered in a plateaued region (scaling
region) of σU

m (h), and its value is consistent through
the parameter m.

The correlation dimension is determined using the
coarse-grained estimator DU

m (h) [Eq. (2.3)]. To find a
range of h values to estimate D, we define the func-
tions AD (h), VD (h) and FD (h) similarly to the ones
above but using the estimator DU

m (h) instead of σU
m (h).

The estimation of D must be done within a range of h
centered at the h value at which FD (h) is minimum.

Finally, the correlation entropy can be estimated
using the coarse-grained estimator KU

m (h). As it can
be seen in Eq. (2.4), this estimator depends on �U

m (h),

Ḋβ=m
m (h), the coarse-grained estimator DU

m (h) and the

ratio between Uβ=m
m (h) and Uβ=m+2

m+2 (h). K2 must be

Algorithm 2 Automatic estimation of attractors’
invariants.
1: Calculate Uβ=m

m (h) and Uβ=m−2
m (h) using Algorithm 1 for

m > 2.
2: Calculate �U

m (h) using Eq. (2.1) and the UGI obtained in
step 1.

3: Compute σU
m (h) with Eq. (2.2) and obtain the function

Fσ (h). Estimate σ within a range of h centered at the value
h where Fσ (h) is minimum.

4: Use Uβ=m
m (h), Uβ=m−2

m (h) and �U
m (h) to calculate DU

m (h)

Eq. (2.3) and obtain the function FD (h). Estimate D within a
range of h centered at the value h where FD (h) is minimum.

5: Obtain KU
m (h) (Eq. 2.4) usingUβ=m

m (h),�U
m (h) and DU

m (h).
Calculate the function FK2 (h). Estimate K2 within a range
of h centered at the value h where FD (h) is minimum.

determined within a range of h centered at the h value
at which FK2 (h) is minimum.1

3.3 Simulations

The aforementioned methodology was applied to a
set of 128 realization of the Henon map with differ-
ent noise levels σ = {0, 0.05, 0.2} and data lengths
which are proportional to the number L of available
delay vectors to estimate the invariants σ , D and
K2. To calculate the UCIs for m = {4, 5, . . . , 8} all
realizations were normalized (unitary standard devi-
ation), and the nearest 15 temporal neighbors of each
delay vector were discarded [19]. Figure 8 shows the
boxplots of the invariants σ , D and K2 for L =
{500, 1000, 3000, 5000, 10,000}. Unfortunately, there
is no other automatic algorithm for the estimation of
invariants. Due to this reason, we only can compare
the results of our estimations with previously reported
values calculated by selecting the scaling range by
visual inspection. For the noise level estimation (first
row of Fig. 8), it can be observed that, in absence
of noise, our algorithm overestimates the value of σ

(dashed black line). On the contrary, for higher noise
levels (σ = {0.05, 0.2}) the proposed method slightly
underestimates σ . It can be noticed that, regardless the
noise level, the median of each box is very close to
the true value of σ and the variance of the estimation
decreases as the number of data points increases. The
estimation of the correlation dimension is shown in the

1 The functions FD (h) and FK2 (h) can be computed similarly
to Fσ (h) but using the coarse-grained estimators DU

m (h) and
KU
m (h), respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Henon map. Box plot of the estimation of σ , D,
and K2 for different numbers of available delay vectors
L = {500, 1000, 3000, 5000, 10,000}. First row: estimation of
σ . a noiseless, b σ = 0.05, and c σ = 0.2. Second row: estima-

tion of D. d noiseless, e σ = 0.05, and f σ = 0.2. Third row:
estimation of K2. g noiseless, h σ = 0.05, and i σ = 0.2. The
reported values are shown in dashed black line

second row of Fig. 8. It can be seen in Fig. 8d that
for noiseless time series the estimation of D is very
close to the reported value (D = 1.22) and its variance
decreases as the length of the time series is increased.
For higher noise levels, the correlation dimension is
slightly biased, but the estimations are still close to the
previously reported value.

The results for the correlation entropy are shown
in the third row of Fig. 8. In general, the here pro-
posed method yields correlation entropy values con-
verging to values lesser than the reported for this map
(K2 = 0.3).

The proposed approach was also tested on the
Mackey–Glass time series, which is generated by the
following nonlinear time-delay differential equation:

ẋ (t) = ax (t − λ)

1 + [x (t − λ)]10
− bx (t) ,

where a = 0.2, b = 0.1, and λ = 23. We estimate the
invariants σ , D, and K2 from 128 realizations with dif-
ferent initial conditions and normalized to have unitary
standard deviation. The embedding dimensions were
m = {4, 6, . . . , 10} and the embedding lag τ was set
to the first local minimum of the mutual information
function (τ = 20) [18]. Finally, the nearest 15 tempo-
ral neighbors of each delay vector were discarded.

The results of these simulations are presented in
Fig. 9, and the estimations of the noise level are pre-
sented in Fig. 9a–c. In absence of noise, the algorithm
estimates small positive values of σ . This behavior is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 Mackey–Glass box plot of the estimation of σ , D,
and K2 for different numbers of available delay vectors,
L = {1000, 3000, 5000, 10,000}. First row: estimation of σ .
a noiseless, b σ = 0.05, and c σ = 0.2. Second row: esti-

mation of D. d noiseless, e σ = 0.05, and f σ = 0.2. Third row:
estimation of K2. g noiseless, h σ = 0.05, and i σ = 0.2. The
reported values are shown in dashed black line

explained because the function �U
m (h) tends to zero as

the length of the time series increases, producing more
accurate estimations with less variance. In presence of
noise (σ = 0.05 and σ = 0.2), the here proposed algo-
rithm underestimates the noise level, but in Fig.8 it can
be seen how the median values tend to the real value of
σ as L increases.

The estimations of the correlation dimension are
shown in the second rowof Fig. 9. For clean time series,
our algorithm provides estimations of D very close to
the reported value D = 2.44 [13]. As the data length is
increased, the estimations approach the reported value.
In case of noisy time series, the estimations of the cor-
relation dimension are greater than those obtained in

the noiseless case. Nevertheless, the estimation of D is
still very good.

In Fig. 9g–i, the estimations for the correlation
entropy are presented. Our algorithm achieves sat-
isfactory estimations of K2 (reported value K2 =
0.008) [14], even in presence of noise. It can be
observed that regardless the value of L the estimation
of K2 is consistent, but its variance decreases as the
data length increases.

4 Discussion

In this section, we review the main contributions of
this article and give some practical recommendations
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for its implementation. In this work, we introduce a
new methodology to estimate the correlation dimen-
sion, the correlation entropy and the noise level of
time series. This approach is based on the recent
proposed U-correlation integral (Eq. 1.3), introduced
in [24], which uses a kernel function that depends
on the embedding dimension. From the scaling func-
tion of the UCI (Eq. 1.5), we have developed a set of
coarse-grained estimators for the correlation dimension
(Eq. 2.3), the correlation entropy (Eq. 2.4) and the noise
level (Eq. 2.2). The advantage of these coarse-grained
estimators is that they only depend on the estimation
of two U-correlation integrals. In other words, they
do not need of the tuning of any external parameter
and/or the estimation of the noise level, as it does other
approaches [6,16,24].

From the results presented in the previous sec-
tion, we can conclude that the here proposed algo-
rithm (Algorithm 2) is able to automatically select the
scaling region and to estimate the invariants. As far
as we know, there is no other algorithms with these
features reported in the literature. For this reason, our
resultswere compared against reported estimations that
were obtained selecting the scaling region by visual
inspection.

Regarding the coarse-grained estimators, the most
outstanding result was obtained with KU

m (h). It is more
accurate than previously proposed estimators andneeds
lesser values of m to converge.

Finally, it is important to recall that the implementa-
tion of our method only requires the calculation of two
correlation integrals: Uβ=m

m (h) and Uβ=m−2
m (h), that

can be obtained through the noise-assisted correlation
algorithm (Algorithm 1). It is also important to say that
the time seriesmust be normalized to have unitary stan-
dard deviation. As it was reported in [24], the correla-
tion integrals computed using the noise-assisted corre-
lation algorithm present oscillations for small values of
h. This phenomenon makes difficult to look for scaling
regions over small h values. In order to avoid this diffi-
culty, three strategies can be followed: The first one is
to increase the number of comparators 	 in the noise-
assisted correlation algorithm by increasing the data
length. This will make coarse-grained curves smoother
and also will improve the convergence of these estima-
tors. The second one is to increase	 by making copies
of the squared distances between delay vectors zω and
adding different noise realizations μω to them. This
will not improve the convergence of any coarse-grained

estimators to the invariant since no new information is
added, but the ripple in the coarse-grained curves will
be reduced. The third one, and the one we have found
as the more adequate, is to use the algorithm proposed
in [21] to calculate the logarithmic derivatives of the
UCI. This algorithm calculates a smoothed version of
the derivative of a function using thewavelet transform.

5 Conclusions

Theoriginal contributions of this document are twofold:
both a new method for the estimation of invariants
based on the recently proposed U-correlation integral,
and an algorithm for the automatic selection of the scal-
ing region. The combined use of these two ideas allows
to automatically estimate the noise level, correlation
dimension and correlation entropy of a dynamical sys-
tem. This approach have been statistically tested using
synthetic data coming from low-dimensional systems
with different data lengths and noise levels. The results
suggest that our algorithm provides robust estimations
of the correlation dimension, the correlation entropy
and the noise level.

A Analytic deduction for the coarse-grained D
estimator

Let:

a = β + m

2
; b = m − D

2
; c = m + 2

2
;

y = − h2

4σ 2 ; dy

dh
= − h

2σ 2 , (A.1)

and

P = (−1)m/2 φ̂

2
e−m�tτK2

� (D/2) � ((β+m) /2)

� (β/2) � (m/2+1)

then Eq. (1.5) can be rewritten as:

Uβ
m(y) = Pym/2F (a, b; c; y) (A.2)

We need to find the logarithmic derivative of
Eq. (A.2). For this end we can find its first derivative
as:
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d
[
Uβ
m(y)

]

dh
= d

[
Pym/2F (a, b; c; y)]

dy

dy

dh

using Eq. 15.2.1 from Ref. [1]:

d
[
Uβ
m(y)

]

dh
= − Ph

2σ 2 y
m/2

[
m

2
F (a, b; c; y)

+ ab

c
F (a+1, b+1; c+1; y)

]

Then the logarithmic derivative can be found as:

d
[
lnUβ

m(y)
]

d ln h
= h

Uβ
m(y)

dUβ
m(y)

dh

= m + 2aby

c

F (a + 1, b + 1; c + 1; y)
F (a, b; c; y) , (A.3)

and for simplicity in the notation:

Ḋβ
m (y) =

d
[
lnUβ

m(y)
]

d ln h
.

Using the identity [10, Eq. 9.137.9]:

aby

c
F (a+1, b+1; c+1; y)

= 1

1−y

[
(c−a) F (a−1, b; c; y)

+ (a−c+by) F (a, b; c; y) ]
(A.4)

we can rewrite Eq. (A.3) as:

Ḋβ
m (y) = m + 2

1−y
[
(a−c+by) + (c−a)

F (a−1, b; c; y)
F (a, b; c; y)

]
(A.5)

From Eq. (1.5) and using the definitions in (A.1) it
is possible to demonstrate that:

Uβ−2
m (y)

Uβ
m(y)

= β − 2

2 (a − 1)

F (a − 1, b; c; y)
F (a, b; c; y) . (A.6)

Substituting Eq. (A.6) into (A.5):

Ḋβ
m (y) = m + 2

1−y
[

(a−c+by) + 2 (c−a) (a−1)

β−2

Uβ−2
m (y)

Uβ
m(y)

]

Restoring the values of β, m and D and clearing for
D

D = Ḋβ
m (y)− 1

y

[

Ḋβ
m (y)+ (m+β−2)

(
Uβ−2
m (y)

Uβ
m(y)

−1

)]

notice that −1/y = 4σ 2/h2 and from Eq. (2.1)

h2

4σ 2 = �U
m (h)

1 − �U
m (h)

,

then

D = Ḋβ
m (h) + �U

m (h)

1 − �U
m (h)

[
Ḋβ
m (h)

+ (m+β−2)

(
Uβ−2
m (h)

Uβ
m(h)

−1

) ]
. (A.7)

Making β = m, the coarse-grained estimator for D
can be defined as:

DU
m (h) = Ḋβ=m

m (h) + �U
m (h)

1 − �U
m (h)

[
Ḋβ=m
m (h)

+ 2 (m−1)

(
Uβ=m−2
m (h)

Uβ=m
m (h)

−1

) ]
. (A.8)

A.1 Relation with Nolte’s et al. coarse-grained D
estimator:

It was proved in [24] that the Gaussian correlation inte-
gral is a particular case of theU-correlation integral that
arises when β is constant and equal to 2. Let β = 2,
then from Eq. (A.6) it can be proved that:

Uβ−2
m (h)

Uβ
m(h)

= 0,
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for all m values. Thus, Eq. (A.7) can be rewritten as:

D = Ḋβ=2
m (h) − �U

m (h)

1 − �U
m (h)

(
m − Ḋβ=2

m (h)
)

.

(A.9)

Finally, given that the Gaussian correlation integral
is a particular case of the U-correlation integral for β =
2, i.e., Uβ=2

m (h) = Tm (h), we can write:

Ḋβ=2
m (h) = d [ln Tm (h)]

d ln h
.

Then, Eq. (A.9) is the same coarse-grained estima-
tor for the correlation dimension that was derived by
Nolte et al. in [22].

B Analytic deduction for the coarse-grained K2

estimator

The analytic deduction of the coarse-grained estimator
for K2 begins by defining the quantity:

M = φ̂

2

(
2σ 2

)D
� (D/2) .

Substituting this equation and Eq. (A.1) into Eq. (1.5)
we can write:

Uβ
m(y) = M

� (a)

� (β/2) � (c)
e−m�tτK2 (−y)m/2 F (a, b; c; y)

Then the ratio Uβ+2
m+2(y) /Uβ

m(y) can be written as:

Uβ+2
m+2(y)

Uβ
m(y)

= 2a (a+1)

βc
e−2�tτK2 (−y)

F (a+2, b+1; c+1; y)
F (a, b; c; y) .

Making α = a + 1:

Uβ+2
m+2(y)

Uβ
m(y)

= 2 (α−1) α

βc
e−2�tτK2

(−y)
F (α+1, b+1; c+1; y)

F (α−1, b; c; y) . (B.1)

The identity in Eq. (A.4) can be rewritten as:

α (−y)

c

F (α+1, b+1; c+1; y)
F (α−1, b; c; y) = −1

b (1−y)

[
(c−α)

+ (α−c+by)
F (α, b; c; y)

F (α−1, b; c; y)
]
. (B.2)

Substituting Eq. (B.2) into Eq. (B.1) and restituting
a:

Uβ+2
m+2(y)

Uβ
m(y)

= −2a

βb (1 − y)
e−2�tτK2

[
(c−a−1) +

+ (a+1−c+by)
F (a+1, b; c; y)
F (a, b; c; y)

]
. (B.3)

Using the identity [10, Eq. 9.137.12]:

by

c

F (a + 1, b + 1; c + 1; y)
F (a, b; c; y) + 1 = F (a + 1, b; c; y)

F (a, b; c; y) .

(B.4)

Equation (B.3) can be written as:

Uβ+2
m+2(y)

Uβ
m(y)

= e−2K2�tτ

2bβ (y − 1)

[
4a (c−a−1) +

+ 2 (a+1−c+by)

(
2aby

c

F (a+1, b+1; c+1; y)
F (a, b; c; y) + 2a

) ]
.

(B.5)

Using Eq. (A.5)

Uβ+2
m+2(y)

Uβ
m(y)

= e−2K2�tτ

2bβ (y − 1)

[
4a (c−a−1) +

+ 2 (a+1−c+by)
(
Ḋβ
m (y) − m + 2a

) ]
.

(B.6)

Replacing the values of a, c and b:

Uβ+2
m+2(y)

Uβ
m(y)

= e−2K2�tτ

2bβ (y−1)

[−β (m+β)+(β+2by)
(
Ḋβ
m (y)+β

)]

= e−2K2�tτ

2b (y−1)

[
Ḋβ
m (y)−m+2by

(
Ḋβ
m (y)

β
+1

) ]

= e−2K2�tτ

(y−1)

[
Ḋβ
m (y)−m

m−D
+ y

(
Ḋβ
m (y)

β
+1

)]

.

(B.7)
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It can be shown that �U
m (h) = 1/ (1 − y) and 1 −

�U
m (h) = y/ (y − 1) so:

Uβ+2
m+2(y)

Uβ
m(y)

= e−2K2�tτ
[
�U

m (h)

(
m− Ḋβ

m (y)

m−D

)

+ (
1−�U

m (h)
)
(
Ḋβ
m (y)

β
+1

) ]
.

Taking natural logarithm, subtracting the term
ln (D/β + 1) on both sides and dividing by 2�tτ :

K2 − 1

2�tτ
ln

(
D

β
+ 1

)

= 1

2�tτ

{
ln

[
�U

m (h)

(
m− Ḋβ

m (y)

m−D

)

+ (
1−�U

m (h)
)
(
Ḋβ
m (y)

β
+1

) ]

− ln

[
Uβ+2
m+2(y)

Uβ
m(y)

]

− ln

(
D

β + 1

) }
. (B.8)

Let call the left-hand side of Eq. (B.8) as KU
m (h):

KU
m (h) = 1

2�tτ

{
ln

[
�U

m (h)

(
m− Ḋβ

m (h)

m−D

)

+ (
1−�U

m (h)
)
(
Ḋβ
m (y)

β
+1

) ]

− ln

[
Uβ+2
m+2(h)

Uβ
m(h)

]

− ln

(
D

β
+ 1

) }
. (B.9)

Note that this estimator still depends on the cor-
relation dimension D. However, this dependency can
be avoided using DU

m (h) as estimator for D. Making
β = m we can define the coarse-grained entropy esti-
mator as:

KU
m (h) = 1

2�tτ

{
ln

[
�U

m (h)

(
m− Ḋβ=m

m (h)

m−DU
m (h)

)

+ (
1−�U

m (h)
)
(
Ḋβ=m
m (y)

m
+1

)]

− ln

[
Uβ=m+2
m+2 (h)

Uβ=m
m (h)

]

− ln

(
DU
m (h)

m
+ 1

) }
.

(B.10)
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