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Abstract
The clade size effect refers to a bias that causes middle-sized clades to be less supported than small or large-sized clades. This bias is present in resam-
pling measures of support calculated under maximum likelihood and maximum parsimony and in Bayesian posterior probabilities. Previous analyses
indicated that the clade size effect is worst in maximum parsimony, followed by maximum likelihood, while Bayesian inference is the least affected.
Homoplasy was interpreted as the main cause of the effect. In this study, we explored the presence of the clade size effect in alternative measures of
branch support under maximum parsimony: Bremer support and symmetric resampling, expressed as absolute frequencies and frequency differences.
Analyses were performed using 50 molecular and morphological matrices. Symmetric resampling showed the same tendency that bootstrap and jack-
knife did for maximum parsimony and maximum likelihood. Few matrices showed a significant bias using Bremer support, presenting a better perfor-
mance than resampling measures of support and comparable to Bayesian posterior probabilities. Our results indicate that the problem is not maximum
parsimony, but resampling measures of support. We corroborated the role of homoplasy as a possible cause of the clade size effect, increasing the
number of random trees during the resampling, which together with the higher chances that medium-sized clades have of being contradicted generates
the bias during the perturbation of the original matrix, making it stronger in resampling measures of support.
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Introduction

Previous authors found an association between the size of a clade
and its support, causing large and small clades to be more sup-
ported than medium-sized clades (Pickett and Randle 2005;
Randle and Pickett 2006; Brandley et al. 2009). The effect was
first described in the context of Bayesian analyses, when Pickett
and Randle (2005) showed that the values of the clade prior proba-
bilities were affected in a predictable way by the size of the clade
given the number of taxa in the matrix, when uniform topological
priors were stipulated. These clade prior probabilities influenced
the Bayesian clade support values, translating the prior effect to
the node support estimations (i.e. posterior probability of a clade).

Surprisingly, the clade size effect was also found when calcu-
lating bootstrap and/or jackknife in maximum likelihood and
maximum parsimony, methods that do not depend on prior val-
ues (Pickett and Randle 2005). The authors proposed that two
different mechanisms were causing the effect: clade prior proba-
bilities in the case of Bayesian support values and noise in the
data sets (caused by homoplasy) in the case of resampling sup-
port. Apart from the noise, the authors suggested that the lack
of data decisiveness, caused by character conflict, was also
responsible for the clade size effect (Randle and Pickett 2006).
In fact, this effect was previously noted by Wenzel and Siddall
(1999) in the context of the addition of noise to a matrix or the
random replacement of its entries with random states. Albeit the
effect reported by Wenzel and Siddall (1999) was related to a
stability measurement and not to measures of branch support, it
is essentially the same bias that was later called the clade size
effect.

Brandley et al. (2006) questioned Pickett and Randle’s posi-
tion and stated that the same mechanism was responsible for the
clade size effect in Bayesian support, bootstrap and jackknifing,
suggesting that taxon sampling may be one of the underlying
mechanisms. Finally, Brandley et al. (2009) analysed the influ-

ence of homoplasy on the clade size effect and compared the
intensity of the effect in Bayesian inference, maximum likelihood
and maximum parsimony. They concluded, based on simulation
analyses, that homoplasy might be one of the factors causing the
clade size effect by including effectively random trees in the cal-
culation of the support values. Also, Brandley et al. (2009) found
that Bayesian inference was the least affected method by the
clade size effect, while maximum parsimony was the most
affected one.

The aim of this study was to evaluate the presence of the
clade size effect in alternative measures of group support avail-
able for maximum parsimony: symmetric resampling, expressing
the group frequencies as absolute frequencies and as difference
in frequencies (Goloboff et al. 2003), and Bremer support
(Bremer 1994). The analyses were performed using empirical
data sets, including molecular and morphological matrices, using
the Clade Disparity Index (Brandley et al. 2009) and the two-
dimensional Kolmogorov–Smirnov test (Garvey et al. 1998).
Also, we plotted the node support values versus the clade size or
the clade prior probabilities and explored the fitting of the data
to the expected patterns of distribution (quadric and exponential,
respectively), interpreting these results as another measure of the
strength of the effect. Finally, we evaluated the possible causes
of the effect, correlating the statistics with different characteris-
tics of the data sets.

Materials and Methods

Data sets and phylogenetic analyses

For analysing the association between the size of a clade and its support,
we used 50 empirical data sets, including 27 molecular matrices and 23
morphological data sets (Appendix 1). 15 of the 38 data sets analysed by
Brandley et al. (2009) were included in this study. All the phylogenetic
searches and node support calculations were carried out using the soft-
ware TNT version 1.1 (Goloboff et al. 2008).

Heuristic searches were performed using 1000 random addition
sequences (RAS) and tree bisection–reconnection (TBR). In the moreCorresponding author: Mar�ıa Amelia Chemisquy (amelych80@gmail.com)
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complex cases, searches were carried out by building 20 RAS trees, swap-
ping each one with TBR, sectorial search (with the default parameters),
and 20 iterations of tree-drifting (Goloboff 1999). The strict consensus
was calculated in all the cases and was used as the reference tree for cal-
culating the clade prior probabilities and the node support values. Clade
prior probabilities were calculated using the Equation 1 published by
Pickett and Randle (2005). Bootstrap and traditional jackknife were
evaluated by previous authors (e.g. Pickett and Randle 2005; Brandley
et al. 2009), so we chose to test the clade size effect using alternative
measures of support, such as the symmetric resampling expressed as abso-
lute frequencies (SR; Goloboff et al. 2003), and as differences of frequen-
cies (GC; Goloboff et al. 2003), and the Bremer support (Br; Bremer
1994). Symmetric resampling is a modification of the traditional jackknife,
where the probability (p) of a character of being upweighted, remaining
unmodified or being deleted is the same (0.33; Goloboff et al. 2003), and
it is the best choice when working with weighting schemes. The GC mea-
sures the differences in frequencies between a group and the most frequent
contradictory group (Goloboff et al. 2003) and varies between �100 and
100 (contrary to other resampling methods that vary from 0 to 100). The
GC can be calculated using the resampling strategy of the bootstrap, the
jackknife or the symmetric resampling. Finally, the Bremer support mea-
sures the extra length needed to lose a branch in the strict consensus (Bre-
mer 1994) and, contrary to the other methods, does not rely on
perturbations to the matrix nor on a resampling scheme. Bremer support
was calculated using the script Bremer.run (available in the web page tnt.
insectmuseum.org) using the default parameters (searching with constrains
for trees not lost in the one-step-longer trees, with sectorial search and 10
tree-drift cycles, repeating the search three times and showing the mini-
mum value). SR and GC were calculated by performing 1000 pseudorepli-
cates saving 100 trees in each replicate, using the groups from the strict
consensus tree. To avoid scaling artefacts, all the branch support values
were taken to a 0–1 scale for the statistical analyses. For doing so, we
divided each node support value by 100 in the case of SR; by the figure
of the most supported node of each tree in the case of Bremer; and by
100 + the number of the lowest (most negative) supported node in the
case of GC.

Evaluating the relationship between clade size and node
support

We performed two different approaches to evaluate the relationship
between clade size and node support. In the first one, we compared
the clade prior probabilities with the branch support values using the
Clade Disparity Index (CDI) proposed by Brandley et al. (2009). The
CDI not only evaluates the presence of the clade size effect, but also
estimates its magnitude (Brandley et al. 2009). The significance of the
index was evaluated performing a randomization test where the node
support values were resampled 10 000 times, obtaining new CDIs for
each resampled group where the node support values were randomly
distributed throughout the tree. The CDIs and its significance were cal-
culated using the software R 2.9.2 (R Development Core Team 2004,
Vienna, Austria). In the second approach, we compared the raw clade
size (i.e. the number of taxa of each clade) with the branch support
values using the two-dimensional Kolmogorov–Smirnov test (2DKS;
Garvey et al. 1998) implemented on the software Ez2dks (distributed
by J. Garvey at http://www.science.siu.edu/zoology/garvey/2dks.htm).
Since the clade prior probabilities are estimated using the raw clade
size, we expect to have similar results in both approaches. Moreover,
because the clade prior probabilities are not used for tree searches in
maximum parsimony, the examination of raw clade size becomes rele-
vant.

Apart from the statistical evaluation of the clade size effect, we also
examined the relationship between clade size (both raw values and log10
clade prior probabilities) and node support values using bivariate plots.
We expect to find a quadric pattern of distribution (i.e. a U-shaped curve)
when plotting the raw clade size values against the node support values,
and an exponential pattern when plotting the clade prior probabilities
(based on Pickett and Randle 2005; Brandley et al. 2009). Fittings were
performed using a quantile regression, which does not require the data to
be homoscedastic (Cade and Noon 2003). Curves were fitted to the
graphs, and the significance of the fitting and the proportion of explained
variance (R2) were calculated using the package quantreg for the software

R. The proportion of explained variance was interpreted as another mea-
sure of the strength of the effect.

Evaluating the relationship between the clade size effect and
other parameters

To analyse the hypotheses proposed by previous authors about the influ-
ence of homoplasy in the clade size effect, we tested the relationship
between the CDI and the D statistic from the 2DKS test, with the amount
of homoplasy measured with the Consistency Index (CI; Kluge and Farris
1969; Goloboff 1991a) using the Spearman’s correlation index (Zar
1984). We also explored the correlation between the CDI and D with the
following parameters: number of taxa and characters (an expression of the
size of the tree and data set), number of nodes of the strict consensus tree
(tree size and resolution), asymmetry of the strict consensus tree (tree
shape; measured following Prevosti and Chemisquy 2009), mean support
number of the strict consensus tree (a proxy of the phylogenetic signal of
the data set) and cladistic decisiveness of the matrix (Goloboff 1991a)
(Appendix 1). The significance of the correlations was tested using a ran-
domization test resampling the CDI or the D values 10 000 times. The
cladistic decisiveness of data is the degree to which the possible dicho-
tomic trees differ in length (Goloboff 1991a,b), being 0 when all the pos-
sible resolved trees have the same length and increasing when the trees
differ more in length (Goloboff 1991b). Cladistic decisiveness is inver-
sely related to the homoplasy of the matrix (Goloboff 1991b) and was cal-
culated using the equation for DD (from data decisiveness) published by
Goloboff (1991a) implemented on a script designed for TNT by
P. Goloboff (available from the authors of this contribution). We also
analysed the effect of the type of data (i.e. molecular or morphological)
on the clade size effect performing the Student’s t-test with the CDI or the
D values. All the statistical analyses were performed with the software R.

Finally, we tested the hypothesis of the relationship between the distri-
bution of the signal of a character on the tree and the clade size effect
(Brandley et al. 2006). If the hypothesis is correct, we expect a ‘U’ distri-
bution in the spreading of the synapomorphies versus the clade size,
where larger and smaller clades have higher numbers of synapomorphies.
For doing so, we obtained the number of synapomorphies of each node
of one randomly chosen most parsimonious tree. Then, we analysed
whether there was an association between the number of synapomorphies
and the size of each node using the 2DKS test. We also analysed the
relationship between both variables in a qualitative way using bivariate
plots and fitting a quadric pattern of distribution.

The statistical significance of the p value was determined, in all the
analyses, using a p-plot and a sharpened Bonferroni method (Garc�ıa
2004). We considered each measure of group support and each statistic
as a different family of tests.

Results

Relationship between priors, clade size and clade support

For most of the data sets, the CDI and the 2DKS test showed a
similar pattern. The 2DKS test was significant for four data sets
of the 50 in the Br, 14 data sets in the GC and 16 in the SR
(Table 1). Of the 47 data sets for which clade prior probabilities
were obtained, two had a significant CDI in the Br, nine had in
the GC, and eight had in the SR (Table 1). The CDIs of the
matrices that showed a significant relationship ranged between
0.08 and 0.4. Six of the 47 matrices had negative CDIs in the
GC and the SR, but the values were never higher than �0.05,
while for the Br, 16 matrices had negative CDIs reaching values
of �0.14 (Table 1). SR and GC showed similar values of CDI in
most of the data sets, but the relationship between the CDIs of
Br and the resampling measures of support was not constant,
being sometimes higher, sometimes lower and sometimes nega-
tive when GC and SR had positive values (Fig. 1).

When plotting clade support against clade size, results were
ambiguous. The U-shaped pattern was not found, and some plots
had dots evenly distributed throughout the graphic (even plots of
data sets with high levels of significance in the 2DKS test;
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Fig. 2). When fitting a quadric function, we found that the R2

was never higher than 0.46 (Table 3), meaning that the fitting of
this model was not very good. Although the plots with higher R2

showed a pattern that could be seen as a U, both small and large
clades (mainly the small ones) had high and low values of node
support (i.e. a larger variance than the middle-sized clades;
Fig. 2). There was a difference between measures of node
support in the results of the regressions; Br showed much lower
R2 values than SR and GC, having only 12 data sets with a
R2 higher than 0.1 (versus 32 matrices for the SR and GC; Table
3). Results were similar when plotting clade support against
clade prior probabilities (Fig. 2). In this case, an exponential
function was fitted to the graphs, being the highest R2 0.48.
Similar to what happened with the clade size, GC and SR had
three times more matrices with an R2 over 0.1 than Br (26 versus
7; Table 3).

Differences between molecular and morphological matrices

Molecular and morphological matrices had a similar performance
with the Br, having both the same number of significant data sets
in the 2DKS test and the CDI test (Table 1). The CDI values
were also similar between both kinds of data sets (Fig. 3a), and
the t-test was not significant for the 2DKS test (t = �1.47,
p = 0.1546) nor for the CDI (t = �0.8676, p = 0.3903).

Conversely, the clade size effect was significantly greater for
morphological matrices than molecular matrices (Table 1,
Fig. 3b,c). The Student’s t-test showed significant differences in
the effect between both kinds of data sets for the 2DKS test and
the CDI in the GC (t = �36.217, p = 0.0007066 and
t = �38.547, p = 0.000494) and only for the CDI in the SR
(t = �42.41, p = 0.00018 and t = �1.9797, p = 0.05944 for the
2DKS test).

Correlation with other parameters of the matrix

The CDI values and the D parameter based on the Br did not
show any significant correlation with the parameters tested
(Table 2). The CDI values and the D parameter based on GC
and SR showed a significant negative correlation with the Con-
sistency Index, the number of characters, the mean support and
the data decisiveness (Table 2). The CDI values calculated using
the SR also had a significant and positive correlation with the
number of taxa. The asymmetry and the number of nodes of the
strict consensus tree never had a significant correlation.

Synapomorphies and clade size

The number of synapomorphies of each node did not show a sig-
nificant pattern with the clade size, and only one matrix was sig-
nificant under the 2DKS test (matrix Reinert et al. 2004; Table
S1). When analysing the plots of the synapomorphies versus the
clade size, results were inconclusive. The plots did not show a
clear U pattern (see examples in Fig. 4), and when regressing a
quadric function, none of the matrices had a significant regres-
sion, and the R2 was never higher than 0.25 (Table S1).

Discussion

Comparison between measures of support

Our results clearly show that the clade size effect has a stronger
influence on resampling measures of support. Only 5% of the
matrices had a significant CDI between Bremer support and the
clade prior probabilities, while almost 20% were significant when
analysing the symmetric resampling (both absolute frequenciesT
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and frequency differences). Maximum observed CDI values were
quite elevated, reaching almost 0.4 in the GC and Br and 0.33 in
the SR. However, for each branch support measure, only six
matrices had CDI values over 0.2, and the median was of ~0.07
for SR and GC and 0.039 for Br. This means that although the
clade size effect affects the performance of the clade support
measures, the strength of the effect (measured both with the fig-
ures and with the number of statistically significant CDIs) is not
really high. It is noteworthy that while only six matrices had a
negative CDI for the GC and the SR (and never lower than
�0.066), 14 matrices had a negative CDI calculated with the
Bremer support, even reaching �0.24. These results imply that
in Br, there is a tendency to have the inverse effect (i.e. having
higher values of support in the middle-sized clades). Only one of
these matrices with negative CDIs was significant with the ran-
domization test. Results with the 2DKS show the same tendency,
but the number of matrices with a significant relationship
between clade support and its size was larger (8% for BR, 28%
for GC and 32% for SR). The larger number of matrices that
were statistically significant in the 2DKS could be due to the test
itself and not to the use of the node size or the clade prior proba-
bilities, because the analysis of the node support versus the clade
prior probabilities with the 2DKS showed similar results than the
node size analyses (data not shown).

We found that the number of matrices with significant p val-
ues is lower (20% versus 31%) than the number found by Brand-
ley et al. (2009). However, if we employ Bonferroni correction
in the same way as Brandley et al. (2009) did, we have the same
percentage of statistically significant matrices. Nonetheless, the
number of matrices with CDI values over 0.2 is similar in both
analyses (13% versus 16%) as well as the maximum value (0.32
in Brandley et al.’s work). Moreover, the Student’s t-test was not
significant between the results presented here and the results
from Brandley et al. (2009) (t = 0.5691, p = 0.571 with SR;
t = 0.7332, p = 0.4657 with GC). It is important to mention that
Brandley et al. (2009) calculated the branch supports using
PAUP, which uses a majority rule consensus tree instead of a
strict consensus tree for estimating the branch support values
(Davis et al. 1998; Grandcolas 2004; Simmons and Freudenstein
2011). Although the use of the majority rule consensus tree over-

estimates the branch support and could be one of the causes of
the clade size effect (Simmons and Freudenstein 2011), we
obtained similar results calculating the branch supports using the
strict consensus tree (at least for resampling measures of sup-
port), implying that there are other factors causing this effect.

When contrasting our results with Brandley et al.’s (2009)
results for maximum likelihood (ML), a similar pattern to the
one described above was observed, because our results had a
lower number of matrices with significant p values (20% versus
37%; again, the numbers become similar when correcting our
results differently), and the maximum CDI remained similar to
the one we obtained with the absolute frequencies of the sym-
metric resampling support (0.33 versus 0.31). For the ML results,
the percentage of matrices with CDI values over 0.2 was only
8% (versus 13% for the MP results); however, this difference
was not significant when comparing the CDI values of both anal-
yses with a Student’s t-test (t = 0.6469, p = 0.5195 with SR and
t = 0.8252, p = 0.4117 with GC).

The comparison with the Bayesian posterior probabilities (PP)
showed different results, because only 16% of the matrices had
significant p values, and most importantly, the highest CDI only
reached 0.092. These results confirm the hypothesis proposed by
Brandley et al. (2009) that Bayesian posterior probabilities are
less affected by the clade size effect than the MP resampling
measures of support, because the difference in the CDI values
between PP, SR and GC was highly significant when compared
with a Student’s t-test (t = 4.6888, p = 0.000012 and t = 4.8914,
p = 0.0000056, respectively).

A similar result led Brandley et al. (2009) to conclude that
MP bootstrapping has a poor performance, and it is highly
affected by clade size, encouraging researchers to prefer Bayes-
ian posterior probabilities. They also stated that the increased
magnitude of the effect is related to the lack of capacity of MP
to deal appropriately with homoplasy. However, our results
obtained with Bremer support are as good as Bayesian PP
results, having fewer matrices with significant p values (5% for
Br versus 16% for PP), and non-significant differences on the
CDI values (t = 1.7181, p = 0.09036). Moreover, the same ten-
dency to have the reverse effect in 26% of the matrices reported
by Brandley et al. (2009) is similar to our results from Bremer

Figure 1. Clade Disparity Indexes (CDIs) of the 47 empirical data sets described in Table 1. Br, Bremer support; SR, symmetric resampling expressed
in absolute frequencies; CG, SR expressed in frequency differences. The numbers of the x-axis correspond to the number that each matrix has in the
Table 1
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support. In conclusion, the poor performance of MP bootstrap
has nothing to do with the method used to infer the phylogeny,
but with the method used to obtain the branch support values
(i.e. a resampling method).

Possible causes of the clade size effect

Our results indicate that homoplasy, the number of characters,
the mean support and the data decisiveness might be responsible
for the clade size effect in the resampling measures of support.
This is interesting because these four factors are connected. For
example, an increase in the number of characters (and taxa) leads
to higher levels of homoplasy (i.e. there is an inverse relationship

between the number of characters and taxa with the CI, because
higher values of CI imply less homoplasy; see Archie 1989,
1996; Sanderson and Donoghue 1996), while more homoplasy
is related to lower values of support (i.e. there is a positive
correlation between CI and mean support; e.g. Sanderson and
Donoghue 1996; Prevosti and Chemisquy 2010). Although deci-
siveness is not a function of the amount of homoplasy on a data
set and it is not directly related to the CI (Goloboff 1991a), the
same author reported that when the CI is higher than 0.5, there
is a positive relationship between CI and DD. With this data set,
we found a positive correlation between the data decisiveness
and the CI (Spearman’s r = 0.65, p < 0.00001), something that
could be interpreted as a relationship between both parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Distribution of measures of nodal support plotted against prior clade probability or node size for the following data sets: (a) and (b) Leschen
and Buckley (2007), (c) Garey et al. (1996), (d) Berbee and Taylor (2001), (e) and (f) Lipscomb (1989). Lines indicate exponential or quadric fitting
estimated using quantile regression. Br, Bremer support; SR, symmetric resampling expressed in absolute frequencies; CG, SR expressed in frequency
differences. Node support values were rescaled to a 0–1 scale. Plots were chosen to show different examples of distribution and fitting. See Discussion
for more details
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Consequently, more homoplasy probably leads to less mean sup-
port and data decisiveness. The correlation of these variables
with the CDI agrees with previous interpretations about the cau-
sal role of the homoplasy in the size clade effect (Pickett and
Randle 2005; Brandley et al. 2009).

The relationship between homoplasy and the clade size effect
can also be seen in the differences between molecular and mor-
phological data sets. It is widely known that morphological data
sets have higher levels of homoplasy than molecular matrices
(e.g. Sanderson and Donoghue 1996; Givnish and Sytsma 1997a,
b) and that is also true for the matrices included in the present
study (Fig. 4a; Student’s t-test t = 5.664, p = 0.000001). This

difference in the levels of homoplasy is translated in higher CDIs
for the morphological matrices and more morphological data sets
with a significant relationship between nodes or clade prior prob-
abilities and clade support (Fig. 4b–d; Table 1).

The question that arises is why homoplasy is particularly prob-
lematic for resampling measures of support? The answer lies in
the way in which each measure of branch support is calculated.
Posterior probabilities are calculated using the trees sampled in
the MCMC chains (Huelsenbeck and Ronquist 2005), while Bre-
mer support is based on suboptimal trees (Bremer 1994), but
none of them alter the data matrix during support calculation.
Conversely, resampling techniques modify the matrix in different
ways to explore the stability of the nodes obtained in the original
optimal trees (Felsenstein 1985; Farris et al. 1996). The modifi-
cation of the matrix during its resampling may cause the appear-
ance of a secondary signal and noise (Brochu 1999; Wenzel and
Siddall 1999) that modifies the resampled tree, and in this con-
text, the homoplasy could originate new contradictory clades that
are not present in optimal and suboptimal trees obtained from
the non-modified matrix. The number of these contradictory
groups probably increases with the homoplasy, which is expected
due to the negative relationship between mean support and
homoplasy (Archie 1989, 1996; Sanderson and Donoghue 1996;
Prevosti and Chemisquy 2010; this study).

Medium-sized clades have larger probabilities of being con-
tradicted. Take as an example a fully pectinate tree of n = 10
taxa (Fig. 5a); the odds of breaking a clade of T taxa could be
given by the Equation

Qn
i¼2 2i� 3

� �� QT
i¼2 2i� 3

� � Qn
i¼Tþ1 2i� 2T � 1

� �

Qn
i¼2 2i� 3

� � ð1Þ

which represents the number of possible rearrangements of the
whole tree minus the rearrangements that do not compromise the
monophyly of the clade i of n taxa (inside or outside the clade
i). When plotting the chances of breaking a clade calculated
using Equation 1, versus its size, we obtained a pattern inverse
from the clade size effect pattern (Fig. 5b). The presence of more
homoplasy could generate random contradictory clades, which
will impact harder on medium-sized clades due to the higher
probabilities given by Equation 1. If all the trees obtained from
the resampled matrices (during the branch support calculation)
were random trees, a perfect fit to the clade size effect would be
obtained (such as Fig 1, Pickett and Randle 2005). This is diffi-
cult to obtain with real data sets, because the matrices retain
some phylogenetic signal after the resampling, making the effect
softer. However, as Brandley et al. (2009) suggested, when
obtaining resampled measures of support, the presence of homo-
plasy during the random modification of the matrices could gen-
erate some amount of random or ‘near random’ trees, causing a
significant (but not very strong) clade size effect. This is the case
of the data sets analysed in this contribution.

A similar explanation was proposed by Goloboff and Pol
(2005) to account for inconsistent estimations of Bayesian poster-
ior probabilities and incorrect estimations of monophyly provided
by Bayesian analyses. The authors also mentioned that some-
thing similar could be affecting bootstrap values estimated using
PAUP* because of the implementation of the bootstrapping and
jackknifing in that software. However, the authors did not deal
with the clade size effect, nor with problems associated with
branch support estimated using other softwares.

Wenzel and Siddall (1999) found a pattern similar to the clade
size effect between clade size and a measure of stability (mojo
values) when including random signal (e.g. random characters

(a)

(b)

(c)

Figure 3. Boxplot of the CDIs discriminated by type of data (molecular
or morphological). (a) Bremer support; (b) symmetric resampling
expressed in absolute frequencies; (c) symmetric resampling expressed in
frequency differences
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and/or states) in a data set. Wenzel and Siddall’s results agree
with our interpretation of the causes of the clade size effect,
because similar to resampling measures of support, what they did
was perturb matrices, although they did it using random signal.

This problem is not expected, at least not in the same degree,
with the Bayesian posterior probabilities and Bremer support,
because they do not depend on randomly modified matrices.
Brandley et al. (2009) proposed something similar when men-
tioning that homoplasy could cause the inclusion of randomly
resolved trees during the resampling, and that could be one of
the reasons of the clade size effect. However, we must mention
that some contriving examples could be generated to show that
posterior probabilities are also susceptible to the clade size effect
(Goloboff and Pol 2005; Pickett and Randle 2005).

Another hypothesized cause for the clade size effect was the
taxon sampling strategy, of which the outgroup taxa (i.e. the lar-
ger nodes) are distant from the ingroup, while the smaller nodes
group specimens of the same species (Brandley et al. 2006). This
could concentrate the character signal in the terminal and in the
most basal nodes. If this was the case, we would have expected
to find the synapomorphies more concentrated in the larger and
smaller clades, but our analyses did not find any support for this
statement. Moreover, this particular taxon sampling is more com-
mon in phylogenies of living taxa, especially in molecular stud-
ies. The presence of a stronger CDI bias in morphological
matrices does not agree with this hypothesis either. Related to
this, one of the reviewers pointed out that in phylogenetic analy-
ses that include fossils, the incompleteness of the fossil record
could be causing smaller nodes to be more supported than mid-
sized clades due to the accumulation of derivate states (see also
Sidor and Hopson 1998). Although this need to be tested with a
larger sample of matrices, the five paleontological data sets
included in this analysis did not describe a different pattern from
other morphological matrices with only extant taxa (see matrices
Gaudin 2004, Gasparini et al. 2006, Leschen and Buckley 2007,
O’Leary et al. 2004 and Wills et al. 1998 in Table 1).

Does the clade size effect really affect our daily analyses?

Brandley et al. (2009) stated that the poor performance of MP
bootstrapping should concern the researchers, while researchers
using likelihood-based methods should not worry. As said
before, the results presented here using resampling measures of
support are not different from the results obtained by Brandley
et al. (2009) using ML bootstrapping. But going further on the
analyses and despite what the statistical analyses might say to us,
the actual impact of the clade size effect may not be so dramatic.

When plotting the clade support versus the clade size (raw
number or the log10 of the clade prior probabilities), it becomes
evident that the effect is not as strong as the CDI or the 2DKS
test might suggest. Take as an example the data set of Leschen
and Buckley (2007), which has a relatively high CDI with the
SR (0.3, p = 0.0005) and a significant relationship between SR
and clade size measured with the 2DKS (D = 0.176;
p = 0.0002). Although the bivariate plot of the clade size versus
the SR had a significant quadric fitting, the R2 was only 0.42
(Table 3). A graphical analysis of the plot showed that the small-
est nodes have a wide range of support values, and while the
largest node has a higher branch support value than the middle-
sized ones, the branch support value of this node is low (less
than 40%; Fig. 2a). Although the bivariate plot of the clade prior
probabilities versus the SR showed a tendency to have highest
support values on the nodes with the highest priors, there is a
wide dispersion of the data on that part of the graph (Fig. 2b),
and again, the R2 was low (0.43; Table 3). Another good exam-T
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ple is the data set of Garvey et al. (1998) that has a significant
CDI of 0.14 with the GC, and the plot of the GC versus the
clade size is not much different from the plot of Berbee and Tay-
lor (2001) that has a low, not significant CDI (0.08, p = 0.05;
Fig. 2c and d). In this case, none of the plots showed a signifi-
cant fitting (Table 3).

The implications of the results discussed above are clear.
Although the clade size effect exists and it has a moderate influ-
ence on the resampling measures of support, the actual outcome
of the effect is not as strong as expected according to the signifi-
cance of statistical analyses. The bivariate plots of the clade sup-
port versus its size clearly show that small-sized clades have a
wide range of support values, and the same is also true for other
sizes of clades. This is also evident by the lack of fitting of the
graph to a quadric or exponential function, where the best fits
had a proportion of explained variance of 0.46 and 0.48, respec-
tively, for the matrix of Lipscomb et al. (1989) (Fig. 2 e,f;

Table 3). We believe that we can still rely on the results of our
maximum parsimony analyses and on the node support values
obtained for our cladograms. But, if researchers are concerned
by the clade size effect, they can use the Bremer support or the
Bayesian posterior probabilities, which are almost not affected
by it. In the case of concern of the bias in a particular node, it is
possible to compare the values from resampling measures of sup-
port and Bremer support or Bayesian posterior probabilities.
Another possibility is to analyse the number of uncontradicted
synapomorphies of the node, at least in the case of maximum
parsimony.

Conclusions

We corroborated the presence of the clade size effect in a small
proportion of the matrices analysed (less than 25%). When
branch support was calculated using Bremer support, the bias

(a) (b)

(c) (d)

Figure 4. Distribution of the number of synapomorphies plotted against node size for the following data sets: (a) Dohrmann et al. (2008), (b) de Jong
et al. (1996), (c) Chemisquy and Morrone (2012), (d) Brown et al. (2008)

(a) (b)

Figure 5. Chances of breaking a clade according to Equation 1. (a) Model tree, (b) possibility of breaking a clade plotted against node size
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was lower (fewer matrices with a statistical significant bias and
lower values of CDI).

Our results using symmetric resampling are similar to the
results previously found by Pickett and Randle (2005) and
Brandley et al. (2009) using bootstrap and jackknife under maxi-
mum parsimony and maximum likelihood. The bias was signifi-
cantly stronger for symmetric resampling than for Bayesian
posterior probabilities, while Bremer support presented a better
performance (although not statistically different from Bayesian
posterior probabilities).

Contrary to what was proposed by Brandley et al. (2009), the
problem is not on the method used for phylogenetic reconstruc-

tion (i.e. maximum parsimony), but on the resampling measures
of branch support. Homoplasy is in part responsible for the bias,
because more homoplasy increases the number of random or near
random trees obtained during the resampling of the data sets. If
we add the higher chance that medium-sized clades have of
being contradicted, the clade size effect appears, affecting med-
ium-sized clades during the perturbation of the original matrix
for the calculation of the branch support. This explains why
resampling measures of support have considerably higher values
of CDI, as well as more matrices with statistically significant
CDIs than Bremer support and Bayesian posterior probabilities.

Table 3. Quadric or exponential fitting of the branch support values to the node size or the prior clade probabilities respectively estimated using quan-
tile regression

Study

GC SR Bremer

R2 exponential R2 quadric R2 exponential R2 quadric R2 exponential R2 quadric

Aliscioni et al. (2003) 0.0071 0.0116 0.0078 0.0116 0.0096 0.0068
Anderson et al. (2004) 0.2384 0.379 0.2397 0.379 0.036 0.007
Armbruster (2004) 0.2117 0.2924 0.1585 0.2924 0.0036 0.0798
Baker et al. (2000) 0.1693 0.267 0.1891 0.267 0.0081 0.0034
Barkworth et al. (2008) 0.1252 0.111 0.1228 0.111 0.0231 0.0086
Barns et al. (1996) 0.0095 0.0142 0.0177 0.0142 0.0529 0.0066
Bell and Donoghue (2003) 0.0362 0.0409 0.0293 0.041 0.0151 0.0164
Berbee and Taylor (2001) 0.0581 0.071 0.0852 0.071 0.0054 0.0006
Whitten et al. (2007) 0.0365 0.0322 0.0412 0.0322 0.0443 0.0334
Brown et al. (2008) 0.3576 0.3098 0.3105 0.3098 0.1402 0.1143
Cabrero-Sa~nudo (2007) 0.4118 0.4009 0.3984 0.401 0.0336 0.0364
Jaramillo et al. (2008) 0.0364 0.0364 0.0014
Chemisquy and Morrone (2010) 0.0025 0.002 0.0034 0.0006 0.0977 0.125
Chemisquy and Morrone (2012) 0.0195 0.0024 0.0101 0.0036 0.0009 0.0498
Chemisquy et al. (2010) 0.0008 0.0108 0.0008 0.0044 0.0133 0.0053
de Jong et al. (1996) 0.1004 0.1086 0.1051 0.1255 0.1068 0.1067
Des Marais et al. (2003) 0.0613 0.1059 0.0628 0.0647 0.0506 0.049
Dohrmann et al. (2008) 0.0229 0.1602 0.0105 0.1614 0.0285 0.0396
Edwards et al. (2005) 0.2126 0.2699 0.1658 0.2062 0.0492 0.2383
Freitas and Brown (2004) 0.0429 0.0529 0.0581 0.0715 0.0282 0.0058
Garey et al. (1996) 0.184 0.1622 0.1837 0.1617 0.1637 0.1253
Gasparini et al. (2006) 0.2925 0.2895 0.2486 0.2281 0.0276 0.0034
Gaudin (2004) 0.1645 0.2361 0.1915 0.2681 0.000001 0.0226
Grant et al. (2006) 0.1151 0.2301 0.2006 0.3351 0.0344 0.0338
Ilves and Taylor (2008) 0.1583 0.0047 0.1892 0.000002 0.0193 0.199
James (2004) 0.0161 0.0843 0.0334 0.1509 0.000001 0.0073
Jordan et al. (2003) 0.013 0.0126 0.0167 0.0172 0.0137 0.0034
Kaila (2004) 0.2698 0.3494 0.003
Kelch and Baldwin (2003) 0.1224 0.1651 0.1937 0.2399 0.1142 0.122
Komarek and Beutel (2007) 0.0321 0.0383 0.0449 0.0398 0.000001 0.00001
Leschen and Buckley (2007) 0.4520 0.4433 0.4299 0.4226 0.0024 0.00001
Lindgren et al. (2004) 0.0308 0.0281 0.0006 0.00007 0.0661 0.0727
Lipscomb (1989) 0.4705 0.4355 0.4838 0.456 0.0151 0.0545
Mori et al. (2007) 0.2266 0.2474 0.2073 0.2246 0.0184 0.0198
Nihei and Barros de Carvalhlo (2007) 0.2015 0.1858 0.2036 0.1765 0.0001 0.0101
O’Leary et al. (2004) 0.0723 0.1065 0.0711 0.1381 0.0494 0.1401
O’Leary et al. (2009) 0.0054 0.0462 0.0069 0.0486 0.0384 0.0828
Pitts et al. (2006) 0.2889 0.2986 0.3457 0.3514 0.0006 0.061
Pramuk (2006) 0.2882 0.2817 0.3691 0.3757 0.0428 0.0767
Prevosti (2010) 0.0071 0.1514 0.0071 0.1417 0.0033 0.044
Reinert et al. (2004) 0.2061 0.3256 0.3049 0.4278 0.0279 0.0479
Rokas et al. (2003) 0.0786 0.4092 0.0241 0.4343 0.0241 0.0193
Shivonen (2005) 0.2731 0.2866 0.3058 0.2997 0.0131 0.1719
Sikes et al. (2008) 0.2067 0.1964 0.2345 0.234 0.1281 0.0183
Swenson and Anderberg (2005) 0.3204 0.29 0.4224 0.39 0.1438 0.12
Wanntorp et al. (2006) 0.0046 0.0124 0.0048 0.0329 0.0191 0.1343
Weisrock et al. (2006) 0.0626 0.0641 0.0778 0.082 0.0761 0.0583
Wills et al. (1998) 0.2552 0.2255 0.2614 0.2383 0.0021 0.089
Wu et al. (2001) 0.1877 0.1669 0.1669 0.1507 0.0285 0.0374
Yen et al. (2005) 0.1933 0.2542 0.0269

Br, Bremer support; SR, symmetric resampling expressed in absolute frequencies; CG, SR expressed in frequency differences.
Numbers in bold indicate statistically significant fittings.
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Finally, qualitative analyses showed that although the effect
does exist, it is not as strong as expected by the results of the
statistical analyses. The plotting of the branch support values
versus the node size (and clade prior probabilities) revealed that
the fit of the data to the expected pattern was not good, implying
that although the statistical analyses show that the effect exists,
the intensity of the effect is low (or moderate, in a few cases).
Consequently, we can still rely on the results of our branch sup-
port analyses, even the resampling ones.

Acknowledgements

We thank Mart�ın Ramirez for critically reading the manuscript, Pablo
Goloboff for helping with the scripts, Guillermo Cassini and Roger
Koenker for helping with regression methods and two anonymous
reviewers for improving the manuscript. An early version of this work
was presented on the IX Reuni�on Argentina de Clad�ıstica y Biogeograf�ıa,
and we acknowledge the discussion and suggestions from many of the
participants. CONICET provided financial support. This is a contribution
to PICT 2011-309 (ANPCyT), PIP 1054 and PIP 201101-00164 (CONI-
CET).

References

Aliscioni SS, Giussani LM, Zuloaga FO, Kellogg EA (2003) A
molecular phylogeny of Panicum (Poaceae: Paniceae): Tests of
monophyly and phylogenetic placement within the Panicoideae. Am J
Bot 90:796–821.

Anderson FE, C�ordoba AJ, Thollesson M (2004) Bilaterian phylogeny
based on analyses of a region of the sodium–potassium atpase b–
subunit gene. J Mol Evol 58:252–268.

Archie JW (1989) Homoplasy excess ratios: new indices for measuring
levels of homoplasy in phylogenetic systematics and a critique of the
consistency index. Syst Zool 38:253–269.

Archie JW (1996) Measures of homoplasy. In: Sanderson MJ, Hufford L
(eds), Homoplasy: The Recurrence of Similarity in Evolution.
Academic Press, New York, pp 153–206.

Armbruster JW (2004) Phylogenetic relationships of the suckermouth
armoured catfishes (Loricariidae) with emphasis on the Hypostominae
and the Ancistrinae. Zool J Linn Soc 141:1–80.

Baker WJ, Dransfield J, Hedderson TA (2000) Phylogeny, character
evolution, and a new classification of the Calamoid Palms. Syst Bot
25:297–322.

Barkworth ME, Arriaga MO, Smith JF, Jacobs SWL, Vald�es–Reyna J,
Bushman BS (2008) Molecules and morphology in South American
Stipeae (Poaceae). Syst Bot 33:719–731.

Barns SM, Delwiche SF, Palmer JD, Pace NR (1996) Perspectives on
archaeal diversity, thermophily and monophyly from environmental
rRNA sequences. Proc Natl Acad Sci 93:9188–9193.

Bell CD, Donoghue MJ (2003) Phylogeny and biogeography of
Morinaceae (Dipsacales) based on nuclear and chloroplast DNA
sequences. Org Divers Evol 3:227–237.

Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees
and geologic time. In: McLaughlin DJ, Mc–Laughlin, Lemke PA
(eds), Mycota–Systematics and Evolution VII. Springer–Verlag, New
York, pp. 229–245.

Brandley MC, Leach�e AD, Warren DL, Mcguire JA (2006) Are
unequal priors problematic for bayesian phylogenetics? Syst Biol
55:138–146.

Brandley MC, Warren DL, Leach�e AD, Mcguire JA (2009) Homoplasy
and clade support. Syst Biol 58:184–198.

Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304.
Brochu CA (1999) Taxon sampling and reverse successive weighting.

Syst Biol 48:808–813.
Brown GK, Murphy DJ, Miller JT, Ladiges PY (2008) Acacia s.s. and

its relationship among tropical legumes, tribe Ingeae (Leguminosae:
Mimosoideae). Syst Bot 33:739–751.

Cabrero–Sa~nudo FJ (2007) The phylogeny of Iberian Aphodiini species
(Coleoptera, Scarabaeoidea, Scarabaeidae, Aphodiinae) based on
morphology. Syst Entomol 32:156–175.

Cade BS, Noon BR (2003) A gentle introduction to quantile regression
for ecologists. Front Ecol Environ 1:412–420.

Chemisquy MA, Morrone O (2010) Phylogenetic analysis of the subtribe
Chloraeinae (Orchidaceae): a preliminary approach based on three
chloroplast markers. Aust Syst Bot 23:38–46.

Chemisquy MA, Morrone O (2012) Molecular phylogeny of Gavilea
(Chloraeinae: Orchidaceae) using plastid and nuclear markers. Mol
Phylogenet Evol 62:889–897.

Chemisquy MA, Giussani LM, Scataglini MA, Kellogg EA, Morrone O
(2010) Phylogenetic studies favour the unification of Pennisetum,
Cenchrus and Odontelytrum (Poaceae): a combined nuclear, plastid
and morphological analysis, and nomenclatural combinations in
Cenchrus. Ann Bot 106:107–130.

Davis JI, Simmons MP, Stevenson DW, Wendel JF (1998) Data
decisiveness, data quality, and incongruence in phylogenetic analysis:
an example from the Monocotyledons using mitochondrial atpA
sequences. Syst Biol 47:282–310.

de Jong R, Vane–Wright RI, Ackery PR (1996) The higher classification
of butterflies (Lepidoptera): problems and prospects. Entomol Scand
27:65–101.

Des Marais DL, Smith AR, Britton DM, Pryer KM (2003) Phylogenetic
relationships and evolution of extant horsetails, Equisetum, based on
chloroplast DNA sequence data (rbcL and trnL-F). Int J Plant Sci
164:737–751.

Dohrmann M, Janussen D, Reitner J, Collins AG, W€orheide G (2008)
Phylogeny and evolution of glass sponges (Porifera, Hexactinellida).
Syst Biol 57:388–405.

Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny:
implications of Pereskia (Cactaceae) paraphyly for the transition to the
cactus life form. Am J Bot 92:1177–1188.

Farris JS, Albert VA,K€allersj€oM, LipscombD, KlugeAG (1996) Parsimony
jackknifing outperforms neighbor-joining. Cladistics 12:1199–1201.

Felsenstein J (1985) Confidence limits on phylogenies: an approach using
the bootstrap. Evolution 39:783–791.

Freitas AVL, Brown KS Jr (2004) Phylogeny of the Nymphalidae
(Lepidoptera). Syst Biol 53:363–383.

Garc�ıa LV (2004) Escaping the Bonferroni iron claw in ecological
studies. Oikos 105:657–663.

Garey JR, Near TJ, Nonnemacher MR, Nadler SA (1996) Molecular
evidence for Acanthocephala as a subtaxon of Rotifera. J Mol Evol
43:287–292.

Garvey JE, Marschall EA, Wright RA (1998) From star charts to
stoneflies: detecting relationships in continuous bivariate data. Ecology
79:442–447.

Gasparini Z, Pol D, Spalletti LA (2006) An unusual marine
Crocodyliform from the Jurassic–Cretaceous boundary of Patagonia.
Science 311:70–73.

Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia,
Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc
140:255–305.

Givnish TJ, Sytsma KJ (1997a) Consistency, characters, and the likelihood
of correct phylogenetic inference. Mol Phylog Evol 7:320–330.

Givnish TJ, Sytsma KJ (1997b) Homoplasy in molecular vs.
morphological data: the likelihood of correct phylogenetic inference.
In: Givnish TJ, Sytsma KJ (eds), Molecular evolution and adaptive
radiation. Cambridge University Press, New York, pp 55–101.

Goloboff PA (1991a) Homoplasy and the choice among cladograms.
Cladistics 7:215–232.<bib xml:id="bib38>Goloboff PA (1991b)
Random data, homoplasy and information. Cladistics 7:395–406.

Goloboff PA (1999) Analyzing large data sets in reasonable times:
solutions for composite optima. Cladistics 15:415–428.

Goloboff PA, Pol D (2005) Parsimony and Bayesian phylogenetics. In:
Albert V (ed.), Parsimony, Phylogeny, and Genomics. Oxford
University Press Inc., New York, pp 148–217.

Goloboff PA, Farris JS, K€allersj€o M, Oxelman B, Ram�ırez MJ, Szumik
CA (2003) Improvements to resampling measures of group support.
Cladistics 19:324–332.

Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for
phylogenetic analysis. Cladistics 24:774–786.

Grandcolas P (2004) Abstracts of the 23rd Annual Meeting of the Willi
Hennig Society. “Phylogenetics and Evolutionary Biology”. Cladistics
20:583–608.

J Zoolog Syst Evol Res (2013) 51(4), 260--273
© 2013 Blackwell Verlag GmbH

270 CHEMISQUY and PREVOSTI



Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR,
Means DB, Noonan BP, Schargel WE, Wheeler W (2006)
Phylogenetic systematics of dart–poison frogs and their relatives
(Amphibia, Athesphatanura, Dendrobatidae). Bull Am Mus Nat Hist
299:1–262.

Huelsenbeck JP, Ronquist F (2005) Bayesian analysis of molecular
evolution using MrBayes. In: Nielsen R (ed.), Statistical Methods in
Molecular Evolution. Springer, New York, pp 2–52.

Ilves KL, Taylor EB (2008) Evolutionary and biogeographical patterns
within the smelt genus Hypomesus in the North Pacific Ocean.
J Biogeogr 35:48–64.

James HF (2004) The osteology and phylogeny of the Hawaiian finch
radiation (Fringillidae: Drepanidini), including extinct taxa. Zool J
Linn Soc 141:207–255.

Jaramillo MA, Callejas R, Davidson C, Smith JF, Stevens AC, Tepe EJ
(2008) A phylogeny of the tropical genus Piper using its and the
chloroplast intron psbJ–petA. Syst Bot 33:647–660.

Jordan S, Simon C, Polhemus D (2003) Molecular systematics and
adaptive radiation of Hawaii’s endemic damselfly genus Megalagrion
(Odonata: Coenagrionidae). Syst Biol 52:89–109.

Kaila L (2004) Phylogeny of the superfamily Gelechioidea (Lepidoptera:
Ditrysia): an exemplar approach. Cladistics 20:303–340.

Kelch DG, Baldwin BG (2003) Phylogeny and ecological radiation of
New World thistles (Cirsium, Cardueae – Compositae) based on ITS
and ETS rDNA sequence data. Mol Ecol 12:141–151.

Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of
anurans. Syst Zool 18:1–32.

Komarek A, Beutel RG (2007) Phylogenetic analysis of Anacaenini
(Coleoptera: Hydrophilidae: Hydrophilinae) based on morphological
characters of adults. Syst Entomol 32:205–226.

Leschen RAB, Buckley TR (2007) Multistate characters and diet shifts:
evolution of Erotylidae (Coleoptera). Syst Biol 56:97–112.

Lindgren AR, Giribet G, Nishiguchi MK (2004) A combined approach to
the phylogeny of Cephalopoda (Mollusca). Cladistics 20:454–486.

Lipscomb DL (1989) The relationships among the eukaryotes. In: Fernholm
B, Bremer K, Jornvall H (eds), The Hierarchy of Life. Elsevier Science
Publishers B.V. (Biomedical Division), Amsterdam, pp 161–178.

Mori SA, Tsou CH, Wu CC, Cronholm B, Anderberg AA (2007)
Evolution of Lecythidaceae with an emphasis on the circumscription
of neotropical genera: information from combined ndhF and trnL–F
sequence data. Am J Bot 94:289–301.

Nihei SS, De Carvalho CJB (2007) Phylogeny and classification of
Muscini (Diptera, Muscidae). Zool J Linn Soc 149:493–532.

O’Leary MA, Allard M, Novacek MJ, Meng J, Gatesy J (2004) Building
the Mammalian sector of the Tree of Life: combining different data
and a discussion of divergence times for Placental Mammals. In:
Cracraft J, Donoghue MJ (eds), Assembling the Tree of Life. Oxford
University Press, New York, pp 490–516.

O’Leary N, Yuan YW, Chemisquy MA, Olmstead RG (2009)
Reassignment of species of paraphyletic Junellia s. l. to the new genus
Mulguraea (Verbenaceae) and new circumscription of genus Junellia:
molecular and morphological congruence. Syst Bot 34:777–786.

Pickett KM, Randle CP (2005) Strange Bayes indeed: uniform
topological priors imply non-uniform clade priors. Mol Phylogenet
Evol 34:203–211.

Pitts JP, Wasbauer MS, Von Dohlen CD (2006) Preliminary
morphological analysis of relationships between the spider wasp
subfamilies (Hymenoptera: Pompilidae): revisiting an old problem.
Zool Scr 35:63–84.

Pramuk JB (2006) Phylogeny of South American Bufo (Anura:
Bufonidae) inferred from combined evidence. Zool J Linn Soc
146:407–452.

Prevosti FJ (2010) Phylogeny of the large extinct South American
Canids (Mammalia, Carnivora, Canidae) using a “total evidence”
approach. Cladistics 26:456–481.

Prevosti FJ, Chemisquy MA (2009) The impact of missing data on real
morphological phylogenies: influence of the number and distribution of
missing entries. Cladistics 25:1–14.

Randle CP, Pickett KM (2006) Are nonuniform clade priors important in
Bayesian Phylogenetic Analysis? A response to Brandley et al. Syst
Biol 55:147–151.

Reinert JF, Harbach RE, Kitching IJ (2004) Phylogeny and classification
of Aedini (Diptera: Culicidae), based on morphological characters of
all life stages. Zool J Linn Soc 142:289–368.

Rokas A, Melika G, Abe Y, Nieves–Aldrey JL, Cook JM, Stone GN
(2003) Lifecycle closure, lineage sorting, and hybridization revealed in
a phylogenetic analysis of European oak gallwasps (Hymenoptera:
Cynipidae: Cynipini) using mitochondrial sequence data. Mol
Phylogenet Evol 26:36–45.

Sanderson MJ, Donoghue MJ (1996) The relationship between
homoplasy and confidence in phylogenetic trees. In: Sanderson MJ,
Hufford L (eds), Homoplasy: The Recurrence of Similarity in
Evolution. Academic Press, New York, pp 67–89.

Sidor CA, Hopson JA (1998) Ghost lineages and “mammalness”:
assessing the temporal pattern of character acquisition in the
Synapsida. Paleobiology 24:254–273.

Sihvonen P (2005) Phylogeny and classification of the Scopulini moths
(Lepidoptera: Geometridae, Sterrhinae). Zool J Linn Soc 143:
473–530.

Sikes DS, Vamosi DM, Trumbo ST, Ricketts M, Venables C (2008)
Molecular systematics and biogeography of Nicrophorus in part – the
investigator species group (Coleoptera: Silphidae) using mixture model
MCMC. Mol Phylogenet Evol 48:646–666.

Simmons MP, Freudenstein JV (2011) Spurious 99% bootstrap and
jackknife support for unsupported clades. Mol Phylogenet Evol
61:177–191.

Swenson U, Anderberg AA (2005) Phylogeny, character evolution, and
classification of Sapotaceae (Ericales). Cladistics 21:101–130.

Wanntorp L, Kocyan A, van Donkelaar R, Renner SS (2006) Towards a
monophyletic Hoya (Marsdenieae, Apocynaceae): inferences from the
chloroplast trnL region and the rbcL–atpB spacer. Syst Bot 31:586–
596.

Weisrock DW, Papenfuss TJ, Macey JR, Litvinchuk SN, Polymeni R,
Ugurtas IH, Zhao E, Jowkar H, Larson A (2006) A molecular
assessment of phylogenetic relationships and lineage accumulation
rates within the family Salamandridae (Amphibia, Caudata). Mol
Phylogenet Evol 41:368–383.

Wenzel JW, Siddall ME (1999) Noise. Cladistics 64:51–64.
Whitten WM, Blanco MA, Williams NH, Koehler S, Carnevali G, Singer

RB, Endara L, Neubig KM (2007) Molecular phylogenetics of
Maxillaria and related genera (Orchidaceae: Cymbidieae) based on
combined molecular data sets. Am J Bot 94:1860–1889.

Wills MA, Briggs DEG, Fortey RA, Wilkinson M, Sneath PHA (1998)
Arthropod relationships. In: Edgecombe GD (ed.), An Arthropod
Phylogeny Based on Fossil and Recent Taxa. Columbia University
Press, New York, pp 33–105.

Wu SH, Hibbett DS, Binder M (2001) Phylogenetic analyses of
Aleurodiscus s.l. and allied genera. Mycologia 93:720–731.

Yen SH, Robinson GS, Quicke DLJ (2005) The phylogenetic
relationships of Chalcosiinae (Lepidoptera, Zygaenoidea, Zygaenidae).
Zool J Linn Soc 143:161–341.

Zar JH (1984) Biostatistical Analysis. Prentice-Hall, Englewood Cliffs,
NJ.

J Zoolog Syst Evol Res (2013) 51(4), 260--273
© 2013 Blackwell Verlag GmbH

Evaluating the clade size effect 271



A
pp
en
di
x
1.

C
ha
ra
ct
er
is
tic
s
of

th
e
da
ta

se
ts
us
ed

in
th
e
an
al
ys
es

St
ud

y
nT

ax
nC

ha
r

C
I

Im
ba
la
nc
e

M
ea
n
su
pp

or
t

nN
od

es
D
D

B
r

G
C

SR

1
A
lis
ci
on

i
et

al
.(
20

03
)

12
3

20
62

0.
24
53

0.
55
7

3.
77

74
.3

79
.5
2

90
0.
74
9

2
A
nd

er
so
n
et

al
.(
20

04
)

63
29

43
0.
21
29

0.
6

14
.3
5

55
.7
3

59
.9
3

57
0.
29
3

3
A
rm

br
us
te
r
(2
00
4)

12
8

21
5

0.
19
54

0.
54
7

3.
78

56
62

.2
2

10
7

0.
70
7

4
B
ak
er

et
al
.
(2
00

0)
31

66
0.
45
51

0.
72
2

1.
95

42
.4
2

51
.0
5

19
0.
65
1

5
B
ar
kw

or
th

et
al
.(
20

08
)

10
3

24
79

0.
56
9

0.
65
3

1.
36
6

56
.1
9

66
.9
5

62
0.
8

6
B
ar
ns

et
al
.(
19

96
)

64
16

20
0.
34
58

0.
68
1

14
.5
4

55
.9

63
.7
2

50
0.
67
7

7
B
el
l
an

d
D
on

og
hu

e
(2
00

3)
23

30
25

0.
70
68

0.
8

20
.4

85
.2
5

90
.4

20
0.
64
8

8
B
er
be
e
an

d
T
ay
lo
r
(2
00

1)
52

15
31

0.
35
84

0.
70
8

8.
94

54
.2
1

69
.5
8

48
0.
43
7

9
W

hi
tt
en

et
al
.(
20

07
)

88
72

14
0.
55
76

0.
55
4

6.
47

69
.9
9

77
.2
5

73
0.
63
8

10
B
ro
w
n
et

al
.(
20

08
)

64
13

69
0.
41
2

0.
63
9

8.
3

48
.7
9

62
.3
3

61
0.
59
5

11
C
ab
re
ro
-S
a~ n
ud

o
(2
00
7)

10
0

94
0.
51
78

0.
58
3

2.
58

43
.7
8

54
.6
1

46
0.
80
5

12
Ja
ra
m
ill
o
et

al
.
(2
00
8)

18
1

17
15

0.
41
35

0.
43

10
.5
1

73
.2
8

81
.2
3

10
8

0.
73

13
C
he
m
is
qu

y
an

d
M
or
ro
ne

(2
01
0)

28
17

62
0.
72
98

0.
52
6

8.
77

67
.3
3

82
.9
5

20
0.
66
6

14
C
he
m
is
qu

y
an

d
M
or
ro
ne

(2
01
2)

92
82

4
0.
58
42

0.
64
3

8.
96

80
.1
1

85
53

0.
85
4

15
C
he
m
is
qu

y
et

al
.(
20

10
)

13
1

81
8

0.
61
46

0.
44
9

4.
26

60
.0
4

69
.5
9

69
0.
81
5

16
de

Jo
ng

et
al
.
(1
99

6)
75

10
3

0.
26
92

0.
7

2.
34

38
.6
5

52
.2
7

29
0.
66
7

17
D
es

M
ar
ai
s
et

al
.(
20

03
)

22
23

42
0.
78
18

0.
78
9

10
.3
7

76
.5
8

84
.0
5

19
0.
73
8

18
D
oh

rm
an

n
et

al
.(
20

08
)

51
34

35
0.
56
31

0.
53
3

9.
35

80
.3
9

86
.4
1

46
0.
76

19
E
dw

ar
ds

et
al
.(
20

05
)

38
61

50
0.
79
46

0.
55
2

12
.3
5

85
.3
2

88
.1
9

31
0.
77
4

20
Fr
ei
ta
s
an
d
B
ro
w
n
(2
00
4)

96
23

4
0.
22
42

0.
53
1

3.
28

65
.1
3

72
.5
1

61
0.
64
7

21
G
ar
ey

et
al
.(
19

96
)

55
19

34
0.
33
65

0.
65
9

18
.5
1

71
.3
8

88
.3
6

47
0.
45
7

22
G
as
pa
ri
ni

et
al
.
(2
00

6)
59

25
7

0.
36
64

0.
64
3

1.
34

45
.0
4

53
.8

56
0.
66

23
G
au
di
n
(2
00
4)

46
20

1
0.
32
61

0.
77
5

3.
49

45
.1
2

58
41

0.
57
8

24
G
ra
nt

et
al
.
(2
00

6)
12

2
17

4
0.
20
32

0.
60
4

1.
4

22
.4
9

38
.1

47
0.
52
3

25
Il
ve
s
an

d
T
ay
lo
r
(2
00
8)

15
27

32
0.
92
82

0.
57
1

13
.5
6

93
93

.4
4

9
0.
92
5

26
Ja
m
es

(2
00

4)
89

84
0.
27
6

0.
5

1.
38

40
.7
4

49
.0
6

34
0.
69

27
Jo

rd
an

et
al
.(
20

03
)

68
23

26
0.
51
4

0.
58
5

14
.9
8

82
.6
6

87
.5
2

57
0.
73
1

28
K
ai
la

(2
00
4)

15
6

19
3

0.
15
91

0.
63
2

3.
33

43
.0
7

55
.1
6

10
1

0.
63
5

29
K
el
ch

an
d
B
al
dw

in
(2
00

3)
52

13
03

0.
67
36

0.
12
5

7.
67

87
.6
7

90
.3
3

12
0.
63
2

30
K
om

ar
ek

an
d
B
eu
te
l
(2
00
7)

56
81

0.
30
11

0.
7

3.
17

42
.3
9

52
.8
7

23
0.
62
4

31
L
es
ch
en

an
d
B
uc
kl
ey

(2
00

7)
54

12
1

0.
20
78

0.
68
6

1.
57

14
.7
5

29
.9
2

51
0.
43
6

32
L
in
dg

re
n
an
d
B
uc
kl
ey

(2
00
4)

78
10

1
0.
57
4

0.
42
86

1.
93

72
.1
8

75
.1
4

28
0.
89
9

33
L
ip
sc
om

b
(1
98
9)

86
13

8
0.
75
65

0.
48
8

1.
92

41
.3
6

52
.2
4

50
0.
73
2

34
M
or
i
et

al
.(
20

07
)

11
1

32
21

0.
70
11

0.
49
3

6.
57

48
.6
8

82
.7
2

82
0.
83
1

35
N
ih
ei

an
d
B
ar
ro
s
de

C
ar
va
lh
lo

(2
00
7)

88
11
2

0.
22
7

0.
46
9

2.
91

51
.1
8

61
.3
6

44
0.
68
3

36
O
’L
ea
ry

et
al
.
(2
00

4)
68

18
4

0.
21
48

0.
58
3

2.
97

49
.9

60
.3
7

30
0.
50
7

37
O
’L
ea
ry

et
al
.(
20

09
)

70
11

64
0.
48
75

0.
73
8

6.
69

56
.8
7

6.
64

62
0.
76
1

38
Pi
tts

et
al
.
(2
00

6)
84

77
0.
30
81

0.
58
5

1.
7

37
.0
3

48
.3
9

56
0.
69
6

39
Pr
am

uk
(2
00
6)

64
83

0.
23
48

0.
66
7

1.
85

62
.5

69
.9

20
0.
60
9

40
P
re
vo
st
i
(2
01

0)
25

12
49

0.
41
77

0.
82
4

18
74

.5
5

83
16

0.
47
6

41
R
ei
ne
rt
et

al
.
(2
00

4)
12

3
17

2
0.
12
14

0.
43

1.
85

69
.9

68
.5

85
0.
58
3

42
R
ok

as
et

al
.(
20

03
)

31
43

3
0.
68

0
3.
28

85
.4
3

87
.2
8

7
0.
81
8

43
Sh

iv
on

en
(2
00
5)

92
14

1
0.
26
64

0.
57
1

3.
49

45
.1
2

58
74

0.
55
4

44
Si
ke
s
et

al
.(
20

08
)

50
21

29
0.
48
68

0.
62
5

17
.9
3

74
.8
1

79
.2
6

42
0.
77
8

45
Sw

en
so
n
an
d
A
nd

er
be
rg

(2
00
5)

99
78

0.
17
93

0.
46

2.
43

18
.9
8

30
.5
2

53
0.
55
8

46
W

an
nt
or
p
et

al
.(
20

06
)

44
17

87
0.
73
41

0.
42
9

1.
94

48
56

.4
4

18
0.
64
3

47
W

ei
sr
oc
k
et

al
.(
20

06
)

96
27

65
0.
21
98

0.
59
8

30
.5
2

78
.9
8

85
.3
1

88
0.
58
8

J Zoolog Syst Evol Res (2013) 51(4), 260--273
© 2013 Blackwell Verlag GmbH

272 CHEMISQUY and PREVOSTI



T
ab
le

.
(c
on

tin
ue
d)

St
ud

y
nT

ax
nC

ha
r

C
I

Im
ba
la
nc
e

M
ea
n
su
pp

or
t

nN
od

es
D
D

B
r

G
C

SR

48
W
ill
s
et

al
.
(1
99
8)

64
97

0.
30
65

0.
41
7

1.
8

48
.4
7

56
.6

15
0.
61
9

49
W

u
et

al
.(
20

01
)

71
99

7
0.
52
61

0.
56
3

2.
08

43
.6

52
.1
1

52
0.
68
4

50
Y
en

et
al
.
(2
00
5)

20
7

41
4

0.
22
34

0.
60
1

4.
51

57
.5
8

68
.9

18
6

0.
70
4

nT
ax
,
nu

m
be
r
of

ta
xa
;
nC

ha
r,
nu

m
be
r
of

ch
ar
ac
te
rs
;
C
I,
C
on

si
st
en
cy

In
de
x;

nN
od

es
,
nu

m
be
r
of

no
de
s
of

th
e
st
ri
ct

co
ns
en
su
s;

D
D
,
da
ta

de
ci
si
ve
ne
ss
;
B
r,
B
re
m
er

su
pp
or
t;
SR

,
sy
m
m
et
ri
c
re
sa
m
pl
in
g
ex
pr
es
se
d
in

ab
so
lu
te

fr
eq
ue
nc
ie
s;
C
G
,
SR

ex
pr
es
se
d
in

fr
eq
ue
nc
y
di
ff
er
en
ce
s.

M
ol
ec
ul
ar

da
ta

se
ts
ar
e
in

bo
ld
.

Supporting Information
Additional Supporting Information may be found in the online
version of this article:
Table S1. Quadric function regressions of the number of syna-

pomorphies on the node size. None of the matrices was statisti-
cally significant after the Bonferroni adjustment.
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