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h i g h l i g h t s

• The concepts of disequilibrium and statistical complexity are employed to understand some paramagnetic phenomena.
• The Schottky effect receives special attention.
• q-entropies are found to best describe it when used to build up the statistical complexity.
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a b s t r a c t

We investigate connections between statistical quantifiers and paramagnetism. More
concretely, we apply the notions of (i) disequilibrium and (ii) statistical complexity, to a
paramagnetic system of non-coupled dipoles. Interesting insights are thereby obtained. In
particular, we encounter a kind of criticality, not associated to the temperature but to the
disequilibrium.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Disequilibrium and statistical complexity

Knowing about a system’s unpredictability/randomness does not by itself means that one is adequately grasping the
correlation structures that are reflected by the concomitant probability distribution (PD). One would wish to be able to
capture the relations amongst the components of a given system in a way analogous to that in which entropy describes
disorder. One has two extreme situations: (I) perfect order or (II)maximal randomness. These are not characterized endowed
with strong correlations [1]. Between (I) and (II) variegated correlation-degreesmay exist, represented by the characteristics
of the pertinent PD. How are they represented? The answer is not an easily formulated one. We remind that Seth Lloyd
encountered about 40 manners of defining a complexity, none of them satisfactory enough.
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A 1994-statement by Crutchfield is often mentioned [2,3] and repeated here again: Physics does have the tools for
detecting and measuring complete order equilibria and fixed point or periodic behavior and ideal randomness via temperature
and thermodynamic entropy or, in dynamical contexts, via the Shannon entropy rate and Kolmogorov complexity. What is still
needed, though, is a definition of structure and a way to detect and to measure it .

López-Ruiz, Mancini, and Calvet (LMC) [1] advanced an intriguing functional of the probability distribution that indeed
optimized Seth Lloyd’s requirements. LMC use a product between Boltzmann’s entropy (or information S, representing
disorder) and the so called disequilibrium D, that reflects on the richness of structural details, and augments with it.
Mathematically, D measures (in probability space) the distance from (a) the prevailing probability distribution to (b) the
uniform probability, thus revealing the amount of structural details [1,4,5]. Thus, D is related to order. In the case of N-
particles we have

D =

N∑
i=1

(
pi −

1
N

)2

. (1)

Here p1, p2, . . . , pN are the individual probabilities normalized to unity (
∑N

i=1 pi = 1) [1]. Our two ingredients S and D
are joined by LMC to produce the complexity CLMC [1,6–11]: CLMC = DS. This quantity vanishes in the two above extremal
instances (I) and (II).

Complexity can emerge as a property of large systems, which are too big to be understood in terms of the individual
behavior of elementary constituents, but not so large that the effect of the individual contributions is completely washed
out in statistical terms [12]. The most widespread notion of complex system refers to entities (made of many elementary
constituents) that interact in an elementary fashion. Here the collective behavior is much richer than what the simplicity of
the elementary behaviors would lead one to expect [12].

Paramagnetism is a collective phenomenamuch studied in statistical physics. It can, in the canonical ensemble, illustrate
magnetism in simple terms. It makes it possible to relate macroscopic magnetic properties to the collective behavior of the
microscopic magnetic moments. When the external magnetic field is created, the system experiences a state-change from
complete randomization to complete orientation of the dipoles (with the magnetic field). In this sense, the system exhibits
a behavior of the type order–disorder that would be amenable to study via the statistical complexity concept.

An interesting effect studied in the physics of solids is the so called Schottky anomaly: at low temperatures, a solid’s
specific heat capacity displays a peak. One speaks of an anomaly because, usually, either the heat capacity grows with the
temperature T , or instead remains constant. We find it in systems with a discrete (usually few) number of energy levels,
such that the energy grows in ladder-fashion, one step per available energy level. Given that the heat capacity is the energy
derivative with respect to T , it exhibits a large peak whenever a level to level jump takes place. Schottky’s anomaly is
commonly detected, at low temperatures, in paramagnetic materials [13].

1.2. Our goal

We aim here to show that statistical complexity and disequilibrium can shed some light into structural details of
paramagnetic phenomena, the Schottky anomaly in particular, in the case of anM-level system.

First, we will focus on the paramagnetism system of non-coupled magnetic moments of spin J , and then we will study
with more detail the system with total spin J = 1/2, which constitutes an important example of a two-level system.

The structure of this paper is the following. In Section 2 we recapitulate the relevant background, i.e., the pertinent
formalism in the canonical ensemble. The main results of the paper are in Section 3, in which we apply our ideas to
paramagnetic systems of order J . In Section 4 we focus attention on a paramagnetic system with spin total J = 1/2. In
Section 5 we concentrate our effort on the q-statistical complexities constructed with Rényi’s and Tsallis’ entropies, and we
discuss their main properties (for the model in question with J = 1/2). Finally, we draw some conclusions in Section 6.

2. Disequilibrium in the canonical ensemble

In this section, we begin reviewing some notions for the canonical ensemble developed by López-Ruiz in Ref. [4,14],
in which the system considered is a classical ideal gas in thermal equilibrium, i.e., N identical particles in a volume V at
temperature T . However, for our present purposes, instead of a classical system we deal with a discrete system of identical
levels of energy Ei, labeled with i = 1, 2, . . . ,N . The pertinent Boltzmann probability distribution then reads [15]

pi =
e−βEi

QN (V , T )
, (2)

where, as usual, β = 1/kBT and kB is Boltzmann’s constant. The canonical partition function QN is

QN (V , T ) =

∑
i

e−β Ei , (3)

and the Helmholtz’ free energy A is related to QN as [15]

A(N, V , T ) = −kBT lnQN (V , T ). (4)
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R. López-Ruiz shows in Ref. [14] that, in this context, the disequilibrium D(N, V , T ) becomes

D(N, V , T ) = e2β [A(N,V ,T )−A(N,V ,T/2)]. (5)

LR replaces now T by T/2 in Eq. (4) and inserts this into Eq. (5), finding

D(N, V , T ) =
QN (V , T/2)
[QN (V , T )]2

, (6)

an important expression as we will see below.

3. Paramagnetic systems

3.1. The paramagnetic model

We provide here a brief description of a non-interacting magnetic systemwhich consists of N identical magnetic dipoles
of moments µ and total spin J in the presence of the external magnetic field H = Hẑ, oriented along z-axis. The magnetic
dipolemoments in the direction of the external field have arbitrary values. The potential energy of the dipoles is E = −Nµ·H,
where µ = gµB

√
J(J + 1), g being the Landé factor and µB the Bohr magneton [15,16]. In such scenario, the corresponding

partition function becomes [15]

QN (J, η) =

(
sinh(η(J + 1/2))

sinh(η/2)

)N

, (7)

with a parameter η defined by

η =
gµBH
kBT

, (8)

where T is the temperature. The relevant thermodynamic quantities thatwewill consider in the present proposal are [15,16]

A = −NkBT ln
(
sinh(η(J + 1/2))

sinh(η/2)

)
, (9)

S = NkB

[
ln
(
sinh(η(J + 1/2))

sinh(η/2)

)
− ηJBJ (η)

]
, (10)

and

M = gµBNJBJ (η), (11)

for the Helmholtz free energy, entropy, and mean magnetization in the direction of the field, respectively. The Brillouin
function BJ of order J is defined as [15,16]

BJ (η) =
1
J

(
(J + 1/2) coth(η(J + 1/2)) −

1
2
coth(η/2)

)
, (12)

and plays an important role in these considerations. Illuminating references are [2,17]. Here we focus on what we can learn
from the concept of disequilibrium, not considered in the two references just cited.

3.2. Disequilibrium

Replacing Eq. (7) into Eq. (6) that defines to the disequilibrium in the canonical ensemble, we arrive at D for the
paramagnetic system. Its analytical form is given by

DN (J, η) =

(
tanh(η/2)

tanh(η(J + 1/2))

)N

. (13)

Remember that the disequilibrium is a quantifier of a system’s structural details’ richness. We draw in Fig. 1 the shape of the
disequilibrium per dipole that we call dJ (η) = (DN (J, η))1/N . Note that 0 ≤ dJ (η) ≤ 1. We see that dJ (η) grows with η until
it saturates for medium η-values. This saturation is an artifact of the discrete level structure of the system. It does not occur
in the case of a gas, for instance. The saturation entails that there exist a maximum degree of structure that the system can
attain. This degree is minimal at very high temperatures, as expected.

Note the following asymptotic limiting cases: for η → 0, we get dJ (0) ≈ 1/(2J +1), and for η → ∞ we obtain dJ (∞) = 1
for all J . For J → ∞ the disequilibrium d∞(η) → 0 for η = 0.
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Fig. 1. Disequilibrium per dipole dJ (η) as a function of η = gµBH/kBT for J = 1/2, 1, 3/2, 2, 5/2, and 7/2. J = 1/2 is the red curve and the dotted curve
represents the case J = ∞ (classical case). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Behavior of the statistical complexity per dipole cJ (η) as a function of η = gµBH/kBT for J = 1/2, 1, 3/2, 2, 5/2, and 7/2. J = 1/2 is the red curve
and the dotted curve represents the limit at J = ∞. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

3.3. Statistical complexity

We use here a slightly modified complexity (per dipole) definition introduced by Catalan et al. in Ref. [18], to avoid
possible negative values. For the LMC-statistical complexity per dipole, this version is given by

cJ (η) = dJ (η) eS/NkB , (14)

with dJ (η) defined in Eq. (13) and the entropy given by Eq. (10). In view of this, thus cJ becomes

cJ (η) =
cosh(η(J + 1/2))

cosh(η/2)
e−ηJBJ (η). (15)

It is clear, from Eq. (15), that cJ (η) vanishes for total disorder (η = 0, cJ (0) = 1, for all J) but remains finite (althoughminimal)
for perfect order. η → ∞ corresponds to cj(∞) → 0 (maximal order). For J = ∞, the statistical complexity is given by the
dotted curve, attaining there its maximum value. Here all conceivable orientation are possible. The situation here described
is observed in Figs. 2 and 3.

4. Two-level model

4.1. The model

An important case, much studied in the literature, is that of the spin-1/2 system, in which J = 1/2 and g = 2. Each dipole
has two orientations: ϵ and −ϵ, with ϵ = µBH [15]. Thus, setting η = 2βϵ in Eq. (7) and using hyperbolic identities, the
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Fig. 3. Behavior of the statistical complexity per dipole cJ (η) as a function of η = gµBH/kBT for J = 1/2 and ∞. We indicate the regions of order and
disorder, respectively.

partition function now becomes

QN (β, ϵ) = (2 cosh(βϵ))N . (16)

Let us here introduce the main thermodynamic quantities that we will use later. These are [15]

A = −NkBT ln(2 cosh(βϵ)), (17)

S = −

(
∂A
∂T

)
H

= NkB ln(2 cosh(βϵ)) − βϵ tanh(βϵ), (18)

M = −

(
∂A
∂H

)
T

= NµB tanh(βϵ), (19)

and

CH = NkB(βϵ)2sech2(βϵ), (20)

for the Helmholtz free energy, entropy, magnetization and specific heat, respectively.
Writing ∆ = 2ϵ for the energy difference between the two allowed states of the dipole (gap of energy), the specific heat

is re-expressed as [13,15]

CH = NkB(β∆)2
eβ∆

(1 + eβ∆)2
. (21)

This form is known as the Schottky specific heat and is characterized by a broad peak with an excitation ∆. The maximum
of CH/NkB occurs at βm ≈ 2.4/∆, or approximately for kBTm/ϵ ≈ 0.8333, i.e., for the temperature Tm ≈ 0.42∆/kB. Thus for
a two-level system the temperature of the peak is directly proportional to the splitting between the energy levels [13]. This
important result will be relevant for the developments of the next sections.

4.2. Disequilibrium and energy gap

Setting J = 1/2 in Eq. (13), the disequilibrium per dipole turns out to be

d1/2(β, ϵ) =
tanh(βϵ)
tanh(2βϵ)

, (22)

that, after a some manipulation of the hyperbolic functions, in terms of the gap of energy ∆ it can be rewritten as

d1/2(β, ∆) =
1 + e−2β∆

(1 + e−β∆)2
. (23)

We illustrate things in Fig. 4. We see that the disequilibrium attain its minimum value equal to 1/2 in β∆ = 0 and tends to
1 for β∆ → ∞.
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Fig. 4. Disequilibrium d1/2(β, ∆) as a function of ∆/kBT .

Fig. 5. Gap ∆/kBT versus disequilibrium d1/2(β, ∆).

Furthermore, we can determine the gap as a function of the disequilibrium by setting u = exp(−β∆) into Eq. (23), which
gives

d1/2 =
1 + u2

(1 + u)2
. (24)

Solving above equation we get

β∆ = − ln

(
−d1/2 +

√
2d1/2 − 1

d1/2 − 1

)
, (25)

that expresses the gap energy as a function of disequilibrium (see Fig. 5). One appreciates the fact that for the maximum
disequilibrium d = 1, β∆ grows in unbounded fashion.

4.3. Disequilibrium and magnetic properties

Considering the definition of the magnetization (19) together with the hyperbolic identities, we find a relation between
the disequilibrium with the magnetization, which looks like

d1/2(β, ϵ) =
m(β, ϵ)
m(2β, ϵ)

, (26)

where we have defined m(β, ϵ) = M(β, ϵ)/NµB as the magnetization for dipole. In Fig. 6 we illustrate the shape of the
disequilibrium curve and of the magnetization-one, for all temperatures.
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Fig. 6. Magnetization per dipolem(β, ϵ) (blue curve) and disequilibrium d1/2(β, ϵ) (red curve) as a function of kBT/ϵ. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Dependence of the magnetization per dipolem(β, ϵ) with the disequilibrium d1/2(β, ϵ).

For high temperatures, kBT ≫ µBH or βϵ ≪ 1 (kBT/ϵ ≫ 1), tanh(βϵ) ≈ βϵ, and the ensuing result is d(β, ϵ) → 1/2,
whereas m(β, ϵ) → 0. On the other hand, for low temperatures, kBT ≪ µBH or βϵ ≫ 1 (kBT/ϵ ≪ 1), since tanh(βϵ) → 1.
Now we have d(β, ϵ) → 1 and m(β, ϵ) → 1.

Moreover, after a bit of algebraic manipulation, and using the identity tanh(2βϵ) = 2 tanh(βϵ)/(1 + tanh2(βϵ)), we can
cast the disequilibrium as

d1/2(β, ϵ) =
1
2

+
1
2
m2(β, ϵ). (27)

At H = 0 and β = 0 we have d1/2(0, 0) = 1/2 because m(0, 0) = 0. Thus, from the above equation we can recast the
magnetization in terms of d1/2 as follows

m(β, ϵ) =

(
d1/2(β, ϵ) − d1/2(0, 0)

d1/2(0, 0)

)1/2

. (28)

Its behavior is represented in Fig. 7. Of course, ifm grows, d1/2 must increase, as the degree of order augments.
As just stated,when the disequilibrium increases, themagnetization grows aswell. The ensuing degree of order augments

until we reach a state of magnetic saturation (complete alignment of the dipoles). In the other extreme, zero magnetization
implies complete randomization of the dipoles (complete disorder). So as to investigate the behavior of the magnetization
near this ‘‘zero magnetization-point’’, lets us introduce the expansion parameter [19]

δ =
d1/2(β, ϵ) − d1/2(0, 0)

d1/2(0, 0)
, (29)
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Fig. 8. Specific heat CH/NkB (black curve), statistical complexity c1/2(β, ϵ) (red curve) and entropy S/NkB defined in Eq. (18) (blue curve) as a function
of ϵ/kBT . The peak value of CH/NkB occurs at βϵ ≈ 1.2 and for c1/2(ϵ, β) is at βϵ ≈ 1. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

entailing, in terms of the new variable δ, that

m(δ) = δ1/2, (30)

so that δ constitutes a kind of ‘‘order’’ parameter, with 1/2 being the critical-point exponent, and d1/2(0, 0) a critical point in
the md1/2-plane. When the magnetization vanishes (H = 0, β → 0). We see that δ is a measure of distance to the critical
point d1/2(0, 0). In fact, the critical exponent of the functionm(δ), according to Ref. [19], must satisfy

λ = lim
δ→0

lnm(δ)
ln δ

= lim
δ→0

ln δ1/2

ln δ
=

1
2
, (31)

showing that λ = 1/2 is indeed the critical exponent of the magnetization m(δ). Moreover, a λ positive entails that m(δ)
tends to zero at the critical point [19]. Since 1/2 ≤ d1/2 ≤ 1, then the range of δ is 0 ≤ δ ≤ 1. Our curve m(δ) = δ1/2 versus
δ looks exactly like that reported in Ref. [19], Fig. 3.25(b), page 137. From Eqs. (27) and (30) we also get

d1/2 =
1
2

(1 + δ) , (32)

which illuminates the behavior of the disequilibrium vs. the order parameter.
Note that we have obtained an exponent for the critical point that is not related to the temperature, but to the

disequilibrium. Of course, here no phase transition is involved.
In addition, given thatm = M/NµB, we can recast δ as

δ =

(
M

NµB

)2

, (33)

an expression that quantifies the degree of ordering of the dipoles. When the magnetization is zero (M = 0) it is clear that
δ = 0 (perfect disorder). When the system reaches magnetic saturation (M = µBH), we have δ = 1 (perfect order). The case
δ = 1/2 entails thatM =

√
2NµB/2. Thus, half of the system’s dipoles are ordered and the other half are not.

4.4. Statistical complexity and specific heat

In view of Eqs. (18) and (22), the LMC-statistical complexity per dipole becomes

c1/2(β, ϵ) = 2
sinh(βϵ)
tanh(2βϵ)

e−βϵ tanh(βϵ). (34)

The maximum of c1/2(β, ϵ) occurs for βϵ ≈ 1, that is β∆ ≈ 2.
In Fig. 8 we compare significant thermodynamic quantities like specific heat and entropy with the LMC-statistical

complexity c1/2(ϵ, β) for dipole.Wenote that, although the statistical complexity experiences an anomalous behavior similar
to that of the specific heat, the peak values for CH/NkB and c1/2(ϵ, β) do not exactly coincide. The entropy does not display
this type of anomaly. Now, the definition of statistical complexity is not unique. It depends on the information quantifier
considered. We can improve the complexity performance by replacing Shannon’s quantifier by another one. This is the
subject of next Section.
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5. Statistical complexity with q-entropies

In order to getmore insight into the structure of the system,wewill nowappeal to q-entropies, thatwill replace Shannon’s
in the statistical complexity. We center our effort on Rényi’s and Tsallis’ entropies.

5.1. Rényi’s entropy

Rényi’s entropy Rq is an entropic functional of great relevance, because its manifold applications. Rényi’s information
measure is a generalization of the Shannon one, quantifying a system’s diversity, uncertainty, or randomness. The degree of
generalization is parameterized by a real parameter q. It is used in variegated areas of scientific research. One can mention,
for instance, ecology, quantum information, the Heisenberg XY spin chain model, theoretical computer science, diffusion
processes, several biological processes (a small sample is that of Refs. [20–31]). Rq is defined as [32]

Rq =
kB

1 − q
ln
∑

i

pqi , (35)

where q is a real parameter, with 0 < q < ∞, and i = 1, 2, . . . ,M labels the energy-levels. For q = 1 we get the usual,
Shannon’s, thermodynamic entropy R1 ≡ S. We have added, for convenience, the Boltzmann constant to the definition of
Rq.

For the two-level system addressed in Section 4, it is clear that
2∑

i=1

pqi = 2Q−q
1 cosh(qβϵ), (36)

where the sum runs over the energy levels and we have used the partition function (16) with N = 1. Thus, Rq per dipole
becomes

Rq

kB
= ln

(
2 cosh(qβϵ)
(2 cosh(βϵ))q

)1/(1−q)

. (37)

Motivated by the above discussion, we propose here to adopt a Rényi-version, or q-statistical complexity (also studied by
Sánchez-Moreno et al. in Ref. [33]), defined as

cRq (β, ϵ) = d(β, ϵ) eRq(β,ϵ)/kB , (38)

with the disequilibrium d(β, ϵ) being that of Eq. (5). Of course, we have replaced the ordinary Shannon entropy by Rényi’s
one (for some properties see Ref. [4]).

Considering the above spin 1/2-system, and making use of Eqs. (22) and (37), after some algebraic manipulation we
obtain

cRq (β, ϵ) = cosh(2βϵ) cosh(qβϵ)1/(1−q)(cosh(βϵ))(q−2)/(1−q). (39)

In Fig. 9 we display the behavior of cRq (given by (39)) for several values of q. In this graph, we also plot the specific heat for
the 1/2-system. Clearly, the peak-value of the q-statistical complexity diminishes as q decreases. Given that we select q at
will, we can find that optimum curve so that the positions of the complexity-peak and the specific heat-one coincide. The
resulting q-value turns out to be q = 0.51. Thus, our present scenario is best described not by Shannon’s entropy but by this
specific Rényi one.

5.2. Tsallis’ entropy

Tsallis’ entropy is a generalization of the standard Shannon entropy S which is defined as [34–36]

Sq = kB
1 −

∑
i p

q
i

q − 1
, (40)

with q any real number. In the limit q → 1 one recovers S1 = S. Note we have again added the Boltzmann constant.
Sq constitutes a great advance in statistical mechanics and has been applied in variegated scientific disciplines with great
success [34–36].

For our two-level system, taking into account Eq. (36), we immediately obtain Sq per dipole

Sq
kB

=
1 − 21−q cosh(βϵ)−q cosh(qβϵ)

q − 1
. (41)

The Tsallis-version of the statistical complexity is

cTq (β, ϵ) = d(β, ϵ) eSq(β,ϵ)/kB , (42)

whose ingredients are the disequilibrium (22) and the entropy Sq (41). The behavior of cTq is displayed in Fig. 10.
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Fig. 9. Specific heat CH/NkB (black curve) and statistical complexity cRq (β, ϵ) − 1 as a function of ϵ/kBT for q = 0, 0.2, 0.4, 0.51, 0.6, 0.8, and 1. The solid
red curve corresponds to the q = 1 case. Dotted curves represent cRq for other values of q. The dotted blue curve corresponds to q = 0. The magenta (solid)
curve is the optimum one with q = 0.51. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 10. Specific heat CH/NkB (black curve) and statistical complexity cTq (β, ϵ) − 1 as a function of ϵ/kBT for q = 0, 0.2, 0.29, 0.4, 0.6, 0.8, and 1. The solid
red curve corresponds to the q = 1 case. Dotted curves represent cTq for other values of q. Th dotted blue curve corresponds to q = 0. The magenta (solid)
curve is the optimum one, with q = 0.294. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

6. Conclusions

Complementing studies made in Refs. [2,3], we have analyzed in this work the behavior of the disequilibrium D and the
statistical complexity CLMC for a paramagnetic system of non-coupled dipoles.

We have seen that the D-notion yields interesting insights. One appreciates that CLMC matches exactly the peaks of the
heat capacity in a Rényi’s entropy-scenario with q = 0.294 and in a Tsallis entropy-environment with q = 0.51.

This makes the q-entropies a primordial tool to obtain fine details of the structure of our systems, together with the
statistical complexity. The Schottky effect is explained by the fact that the associated peak takes place at the temperatures
for which the system exhibits its maximum degree of q-complexity. Finally, we have seen that a kind of criticality-like effect
emerges, that can be associated to D.
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