Computers and Operations Research 88 (2017) 280-289

Contents lists available at ScienceDirect

mputers &
Operations Research

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

An integer programming approach for the time-dependent traveling
salesman problem with time windows

@ CrossMark

Agustin Montero®“* Isabel Méndez-Diaz*, Juan José Miranda-Bront "¢+

2 Departamento de Computacioén, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, C1428EGA, CABA, Argentina
b Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350, C1428BCW, CABA, Argentina

¢Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina

d CONICET-Universidad de Buenos Aires. Instituto de Investigacién en Ciencias de la Computacion (ICC). Buenos Aires, Argentina

ARTICLE INFO ABSTRACT

Article history:

Received 15 June 2016
Revised 9 May 2017
Accepted 26 June 2017
Available online 4 July 2017

Congestion in large cities and populated areas is one of the major challenges in urban logistics, and
should be addressed at different planning and operational levels. The Time Dependent Travelling Sales-
man Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the
travel times are not assumed to be constant along the day. The motivation to consider the time depen-
dency factor is that it enables to have better approximations to many problems arising from practice. In
this paper, we consider the Time-Dependent Traveling Salesman Problem with Time Windows (TDTSP-
TW), where the time dependence is captured by considering variable average travel speeds. We propose
an Integer Linear Programming model for the problem and develop an exact algorithm, which is com-
pared on benchmark instances with another approach from the related literature. The results show that

Keywords:

Time-dependent TSP

Time windows

Integer linear programming

Branch-and-Cut

the approach is able to solve instances with up to 40 customers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and literature review

The use of the transportation infrastructure and the impact of
congestion have become one of the major issues in city planning
and urban logistics. Projections indicate that this effect is expected
to worsen in the medium and long term. Therefore, the current
traffic situation as well as the projected traffic scenarios are likely
to have, if not addressed correctly, a negative impact from a social,
economic and a environmental standpoint.

Most of the research related to the Vehicle Routing Problem
(VRP) considers that the travel time between two locations are
fixed along the time horizon. An updated description of variants
and methods can be found in Toth and Vigo (2014). In the last few
years, there has been a trend to enrich these models by incorporat-
ing more complex travel time functions, aiming to obtain solutions
that are closer to real-world operations. These models are particu-
larly useful for urban logistics, where congestion may produce sig-
nificant variations in travel times during different moments of the
day. For instance, last mile deliveries, which are estimated to ac-
count of an important percentage of the total delivery costs, could

* Corresponding authors.
E-mail addresses: aimontero@dc.uba.ar (A. Montero), imendez@dc.uba.ar (I
Méndez-Diaz), jmiranda@dc.uba.ar, jmiranda@utdt.edu (J.J. Miranda-Bront).

http://dx.doi.org/10.1016/j.cor.2017.06.026
0305-0548/© 2017 Elsevier Ltd. All rights reserved.

be significantly improved by more realistic approaches, translating
into a better service and a more efficient use of the resources.

Time-Dependent Vehicle Routing Problems (TDVRPs) is the name
given to a family of problems that generalize the classical VRPs
by considering more complex travel time and cost functions, gen-
erally by incorporating some variability depending on the mo-
ment of the day an arc is traversed. A recent survey on TDVRP
variants is available in Gendreau etal. (2015), covering exact and
heuristic algorithms. Commercial applications including traffic in-
formation are, to the best of our knowledge, quite scarce in prac-
tice. Google Maps and Waze provide detailed directions including
traffic information, but limited to the quickest path between two
points.

One of the variants that received some attention in the last
decade is the so-called Time-Dependent Traveling Salesman Problem
(TDTSP), which considers only one vehicle with infinite capacity.
Therefore, the problem reduces to find a Hamiltonian tour at min-
imum total cost, while accounting for some particular travel time
function. In this context, the name TDTSP has been used to refer to
problems considering different travel time functions. The simplest
generalization is the variant of the TDTSP considered in Picard and
Queyranne (1978), which has applications within scheduling con-
texts and generalizes the well-known Traveling Deliveryman Prob-
lem (see, e.g., Fischetti etal, 1993; Lucena, 1990; Méndez-Diaz
etal.,, 2008). The improvement with respect to the traditional TSP

http://dx.doi.org/10.1016/j.cor.2017.06.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.06.026&domain=pdf
mailto:aimontero@dc.uba.ar
mailto:imendez@dc.uba.ar
mailto:jmiranda@dc.uba.ar
mailto:jmiranda@utdt.edu
http://dx.doi.org/10.1016/j.cor.2017.06.026

A. Montero et al./Computers and Operations Research 88 (2017) 280-289 281

is that it considers that the travel cost function between two cities
depends not only on the distance, but also on the position of the
arc in the tour. Exact approaches for this problem can be found in
Gouveia and VoR (1995), Abeledo etal. (2012), Miranda-Bront etal.
(2013) and Godinho etal. (2014), where instances with up to 100
customers can be solved within reasonable computing times. To
the best of our knowledge, the best exact approach in the litera-
ture is the Branch-Price and Cut (BPC) proposed in Abeledo etal.
(2012).

A different approach is proposed in Malandraki and Daskin
(1992), where the travel time between two cities depends on the
moment of the day in which the arc is traversed. For this pur-
pose, the authors proposed partitioning the time horizon in dif-
ferent time periods and the travel time is defined as a step func-
tion over these periods. This allows the model to capture, at least
partially, the effect of congestion in different moments of the day.
Exact approaches for variants of this problem with minor modifica-
tions (i.e., different objective functions and operational constraints)
can be found in Stecco etal. (2008), Albiach etal. (2008), Méndez-
Diaz etal. (2011), Miranda-Bront (2012) and Melgarejo etal. (2015).
Regarding applications, Furini etal. (2015) formulate a TDTSP to
model an aircraft sequencing problem.

One of the major objections to the above model is that the
travel times do not necessarily satisfy the FIFO (First In, First Out)
condition, which is usually a desired property for the network from
a vehicle routing perspective. To overcome this difficulty, Ichoua
etal. (2003) builds upon the model proposed by Hill and Benton
(1992) and propose a similar setting as in Malandraki and Daskin
(1992) but for the average travel speed within each period. The re-
sulting travel times are computed based on the departure instant
from the origin customer, assuming that the distance of the trip is
traveled at the average speed and that when crossing the bound-
aries between consecutive time periods, the average speed is ad-
justed. This model is able to capture the time dependency while
satisfying the FIFO condition on the travel times.

The model proposed by Ichoua etal. (2003) has recently caught
the attention of many researchers. Cordeau etal. (2012) tackles the
TDTSP with the objective to minimize the makespan. They study
some of the properties of the travel time function, including the
computation of a lower bound obtained by solving an auxiliary
TSP with constant travel times. They show that the bound is tight
depending on some parameters related to the travel speed defi-
nitions and that, under some particular settings, the solution of
the auxiliary TSP is indeed optimal. They also propose a Branch
and Cut (BC) algorithm and are able to solve instances with up to
40 vertices. Ghiani and Guerriero (2014) further exploit some of
the properties of the travel time function, and study its generality.
In a follow up paper, Arigliano etal. (2015) extend the ideas pro-
posed in Cordeau etal. (2012) to the TDTSP with Time Windows
(TDTSP-TW). However, the results obtained are not as good as for
the TDTSP. A BC algorithm is evaluated on instances with up to 40
clients, obtaining mixed results.

Multi-vehicle versions of the TDVRP have also been tackled by
exact algorithms that consider the model proposed in Ichoua etal.
(2003). Dabia etal. (2013) consider the TDVRP with time windows
with the objective of minimizing the overall duration instead of
the makespan. They propose a set partitioning model and develop
a Branch and Price (BP) algorithm, where the column generation
subproblem is tackled by means of a tailored labeling algorithm.
The authors conduct experiments on instances of different sizes,
showing that the approach is able to solve consistently instances
with 25 vertices and some of the ones having 100 customers. Re-
lated to this research is the work by Sun etal. (2015), where a
profitable TDTSP with time windows and precedence constraints
are considered. Indeed, this particular variant arises as the col-
umn generation subproblem of a TDVRP with time-windows and

precedence constraints. They propose an Integer Linear Program-
ming (ILP) model for the problem, which is not studied in detail
due to its performance in standard commercial solvers, and resort
to dynamic programming techniques.

In this paper we tackle the version TDTSP-TW considered also
in Arigliano etal. (2015). The contribution of this paper is two fold.
Firstly, we propose an alternative approach for the TDTSP-TW that
builds on the ILP formulation proposed by Sun etal. (2015). This
model is used to develop an exact algorithm following a Branch-
and-Cut scheme (BC. We included several initial heuristics, prepro-
cessing rules and incorporate several families of valid inequalities,
which are used as cuts, in order to improve the overall computa-
tional times of the algorithm. Secondly, we evaluate our approach
on benchmark instances and compare our results with two sets of
instances proposed by Arigliano etal. (2015). To the best of our
knowledge, this is the first comparison of two exact approaches
for the TDTSP-TW, establishing a baseline for future approaches for
the TDTSP-TW and related problems and opening the discussion
regarding formulations, algorithms and benchmark instances.

The rest of the paper is organized as follows. In Section2 we
introduce the notation used throughout the paper and provide the
detailed definition of the problem. In Section3 we describe with
more details some of the developments proposed for the TDTSP
and TDTSP-TW with time-dependent travel speeds, and present a
new formulation for the TDTSP-TW using the ideas proposed in
Sun etal. (2015). Section4 describes the details of the BC algo-
rithm based on this formulation. Computational results are shown
in Section 5 and finally we conclude and state some future research
directions in Section 6.

2. Problem definition

In this section we present the definitions and the basic prop-
erties of the TDTSP-TW with the travel time model proposed in
Ichoua etal. (2003).

For the definition of the network, consider a digraph D = (V,A),
withV ={0,1,...,n,n+ 1} the set of vertices and A the set of arcs.
Vertices 0 and n + 1 represent the depot, for which we do not con-
sider the incoming and outgoing arcs, respectively. We denote by
Vo =V\{n+1} and V.1 =V\{0}. There is a time horizon [0, T]
(typically a single day) in which vehicles move along the network.
For each vertex i € V, we denote by p; to its processing time and
W, = [r;, d;] the corresponding (hard) time window, where r; and d;
are the release and deadline times, respectively. In particular, we
set Wp = W,,,1 = [0, T]. We allow waiting times when arriving at a
vertex before its release time r;, but the vehicle must wait until r;
before starting to process it. In addition, each arc (i, j) € A has an
associated travel distance L. Without loss of generality, d; + p; < T
for all i € V. In addition, to simplify the notation in the manuscript,
we slightly modify the standard definition and assume that p; = 0
for i ¢ V. However, the models and formulae present in this paper
can be easily adapted to consider processing times.

The time dependency is modeled as follows. The planning hori-
zon is partitioned into M intervals [Ty, Tj,¢], h=0,....M - 1. We
assume that, for each arc (i, j) € A, the average value of the travel
speed during the time interval [T, Ty 1], denoted by vy, for h=
0,...,M—1, is known. This partition with its corresponding travel
speeds are referred as speed profiles. It is important to remark that
the speed profiles may differ among arcs. Based on this definition,
the main idea behind the speed model is to compute the travel
times using the information of the distance to be traveled, i.e. L;,
combined with the travel speeds vy, defined for the arc. However,
it is not assumed that the travel speed remains fixed during the
trip and it may change whenever the boundaries of an interval
are crossed. We denote by 7(t) to the time-dependent travel time
value on arc (i, j) € A if departing from i at time t € [0, T], and it

282 A. Montero et al./Computers and Operations Research 88 (2017) 280-289

can be computed following Algorithm 1 as proposed in Ichoua etal.
(2003).

Algorithm 1 Computing the travel time of arc (i, j) at time t;
(Ichoua etal., 2003).
1: t <ty
: l((—kOITk0§t0§E<O+1
s d <L
<t 4+ (d/yiﬂ()
: while t’ > T, ; do
d—d -V x (T = 1)
t < Ty
t/ —t+ (d/Vijry1)
k<—k+1
: end while
: return t’' —ty

© XN U AN

—_
= o

The TDTSP-TW involves finding a tour that visits each vertex
exactly once with the objective of minimizing the makespan of
the route. The route starts at vertex 0 and ends at vertex n+1,
while processing each vertex within its defined time window and
computing the travel times following the speed model proposed in
Ichoua etal. (2003).

Cordeau etal. (2012) propose expressing the travel speeds v,
as

Vijh = Sijnbnsij, (1)

where u;; represents the maximum speed for arc (i, j) € A dur-
ing the planning horizon, b, € [0, 1] is the best congestion fac-
tor during interval [Ty, Ty,q] and 8y, € [0, 1] represents the heav-
iest degradation of the congestion factor of (i, j) € A in interval
[Ty, Ty, 1] with respect to the less congested arc in [T, Ty, ¢]. From a
practical standpoint, this decomposition allows the authors to for-
mulate alternative scenarios that can be used to compute lower
bounds for the problem. For instance, consider the TDTSP studied
in Cordeau etal. (2012). If the travel speeds are increased by set-
ting 8;;, and by, to one, then the problem reduces to a classical TSP
with constant travel times. Therefore, computing the makespan
of this solution using these increased speeds represents a lower
bound for the problem. Furthermore, the authors show that this
solution is optimal also for the case having general values of by
but fixed d,, and that its objective function can be used to com-
pute a lower bound on the tour duration for subpaths that are part
of a feasible solution. These results are extended to the TDTSP-TW
in Arigliano etal. (2015). Finally, we also remark some results re-
garding the generality of the speed model present in Ghiani and
Guerriero (2014), where the authors show that any continuous
piecewise linear travel time function can be modeled by the travel
speeds defined in (1).

3. ILP formulations

In this section we present two ILP formulations for the TDTSP-
TW. We begin by showing the formulation proposed in Arigliano
etal. (2015) and describing some of its characteristics. We then
present our formulation, which is based on the one proposed by
Sun etal. (2015).

3.1. Travel-speed relaxation based model

This section presents the formulation proposed in Arigliano
etal. (2015), which we name LBF. We follow most of their nota-
tion, although the formulation is presented in a slightly different
way. Let P; be the set of simple paths p = (i, ..., i) in G starting
at the depot and ending at i, i.e. ip = 0 and i, = i. Let LB, denote a

lower bound on the duration of any feasible solution having path
p e P;, i€V, and that LB, is indeed the makespan whenever p is a
(feasible) Hamiltonian path from 0 to n+ 1. Let x; be the classical
variable taking value one iff arc (i, j) € A is part of the solution,
and z a variable that captures the makespan of the optimal solu-
tion. The LBF is shown below.

min z (2)
S-t'ZZLBp(l‘f‘ > (Xab—1)>,i€Vn+1,P€7)i (3)
(a,b)ep
Yo oxj=1, jeVan (4)

ieV\{jn+1}

Z Xﬁ:], iGVO (5)
JjeV\{i.0}
DY xij=1, VScVp, S| =2 (6)
ieS j¢S

> xa < Ipl—1. p infeasible path (7)
(ab)ep
xj€{0,1}, (i,j) €A (8)

The objective function (2) minimizes variable z, which accounts
for the makespan of the optimal solution. Constraints (3) adjust
the value of z by setting the lower bound LB, and the variables
x;; defining the solution. Constraints (4) and (5) are the outdegree
and indegree constraints, respectively. Subtour Elimination Con-
straints (SEC) are imposed by constraints (6). Solutions that vio-
late the time windows constraint are forbidden by means of the
well known Infeasible Path Elimination Constraints (IPEC), proposed
by Ascheuer etal. (2001), in constraints (7). Finally, the integral do-
main of the variables are imposed by constraints (8).

A BC algorithm is developed in Arigliano etal. (2015) using this
formulation as starting point. Indeed, constraints (3) are used as
cuts, as well as the SEC. The IPEC constraints (7) are replaced by
the well-known tournament constraints. A set of valid inequalities,
polynomial in the number of time intervals H are considered as
well. Since H is rather small, they are directly included as a part of
the formulation. In addition, as mentioned before, a lower bound is
initially computed by solving an auxiliary problem, which is then
also used to tighten the bound LB,. Due to space limitations we
omit the details regarding the computation of this bound and re-
fer the reader to Cordeau etal. (2012) and Arigliano etal. (2015).
However, we remark that results reported indicate that the bound
is rather tight in most of the instances, both in the case with and
without time windows.

3.2. Travel-time breakpoints based model

An alternative formulation for the TDTSP-TW can be obtained
from the model proposed by Sun etal. (2015) for the Profitable
TDTSP with Time Windows and Pickup and Delivery. This problem
generalizes the TDTSP-TW since the vertices are not required to
be visited and also incorporates one-to-one precedences. Sun etal.
(2015) report that for this particular problem the model does not
produce good results when solved by a commercial solver.

One of the interesting features of this ILP formulation is that,
for each edge, it redefines the partitions of the time horizon in or-
der to obtain a linear travel time function within each of them.
The limits defining this new partition are referred as time break-
points and allow to easily embed the piecewise linear time func-
tion within an ILP formulation. Formally, let T = {T,”,... Ty} be
the new partition of the time horizon into time intervals (also
called time zones) for arc (i, j) € A. We denote the consecutive time

A. Montero et al./Computers and Operations Research 88 (2017) 280-289 283

breakpoints defining T € T as T = [wyn, Wp,1]. At this point,
we abuse notation and refer to each time zone T’J asme TV,
withm=1,..., |TiJ|. By definition, 7;i(t) becomes a linear function
within each time zone that represents the travel time for arc (i, j)
starting in time interval m. We denote by 9{}1 and n,."; to the coeffi-
cients of the linear function, such that

To formulate the model, Sun etal. (2015) define binary variables
x;?]? taking value 1 iff the vehicle traverses arc (i, j) € A starting

Tij(6) = 0;j'ti +

from i within time zone T,i{ € TU. For each vertex i € V, a contin-
uous nonnegative variable t; accounts for the time that i is visited
in the tour. The value of t; is decomposed to indicate time for a
given arc in a given zone. This is achieved by introducing continu-
ous variables t{J'.’ defined in the following fashion

th =

t ifxm=1,
i {’ y (10)

0 otherwise
We remark that similar decision variables have been considered in
the context of the TDTSP by Stecco etal. (2008).

By combining (9) and (10) and considering variables x7, ¢/ and

ij> i
t;, the travel time function for arc (i, j), T;(t;), can be defined in an
aggregated fashion as

Ti(t) = > M+ g, (11)
Tle Ty

The formulation proposed in Sun etal. (2015), which we name
TTBF, is shown next.

min tnq (12)

st Y. Y xgi=1 (13)

(0,j)eA me TOI

YooY x=1 jeVau (14)
(i,j)eA me Ti
dood xm= > > xp keVv (15)
ieV\{k} meTii ieV\{k} me Tii
= 3 (1+67)6" +nixj, () eA (16)
meTi

i EV() (17)

=Y Y4

(i.j)eA TieTii

xm max{wp, r;} < t,’? < x’” min{wp,, 1, d;},

(i,j) €A TV e TV T = [Wp, W] (18)
nsti=d, ieV (19)
XM e{0.1}, (i.j)eA TJeTl (20)

The objective function (12) minimizes the arrival time at ver-
tex n+ 1, which is indeed the makespan. Constraints (13) forces
the vehicle to leave the depot, and (14) stand for the indegree
equations. Constraints (15) establish the flow conservation between
arcs entering and leaving each vertex. Constraints (16) compute the
travel time between two vertices depending on the departure time
at the origin and provide a lower bound for the arrival time ¢; at
the node j € V. Constraints (17) together with (18) establish the
correct departure time at each vertex and arc. Note that, in par-
ticular, constraints (18) establish the correct relation between vari-
ables tl.';? and xZ” Finally, constraints (19) ensure that each vertex
is visited within its time window and constraints (20) define the
domain of the variables.

4. BC algorithm

Based on the TTBF formulation presented in the previous sec-
tion, we develop a BC algorithm for the TDTSP-TW. In this section
we describe the main ingredients of the algorithm, including the
preprocessing step, the construction of an initial feasible solution
and the cutting plane algorithm.

4.1. Preprocessing

This is one of the key components in many difficult optimiza-
tion problems and, based on the related literature, in particular for
routing problems with time windows. Following the experience re-
ported by Ascheuer etal. (2001), the preprocessing we apply con-
sists of three phases, which are applied in an iterative fashion until
no further changes are found. These phases are: arc removal and
variable fixing, tightening of the time windows, and the derivation
of precedences using the information provided by the time win-
dows.

The elimination of arcs has a major impact on the formulation
and allows to reduce the number of variables in the model. We ap-
ply a simple reduction using the information of the time windows
and the travel time at the release time of the origin vertex, based
on the fact that the FIFO condition is satisfied when traversing an
arc. Formally, an arc (i, j) € A is infeasible if

ri+7j(r) > d; (21)

and therefore it can be removed from A. This idea can be fur-
ther generalized to consider time-dependent information and re-
move additional edges. Let (i, j) € A and m e TV such that T,) =
[Wm, Wiy 1]. Firstly, if T,;j NW; = ¢, then we can set xg? = 0. Then, if

max{wpn, 1;} + 7jj(max{wp, 1;}) > d; (22)

traveling form i to j starting in travel time period m is not feasible
and therefore this time zone can be removed (or, equivalently, the
corresponding variable fixed to 0).

The tightening of the time windows consists in the adaptation
of three rules from the classical TSPTW considered in Ascheuer
etal. (2001), which allow to adjust the release and deadline times
of each vertex. The criteria are:

o If the earliest arrival time at a vertex k e V is later than the
current release time, then the latter can be increased.

M = max {rk, min,{ri + Tik(ri)}} (23)

Unnecessary waiting times at the successors of a vertex k e
V can be avoided by adjusting the release times. Consider k

e V, and an arc (k, j) € A. We define the set a’ {t<dg:
t+ 1 () =i} u{di}

. = max {r,, min min j 24
k X{ k (k.j)ch 1 {O{k}} ()

e The due date can also be adjusted in order to remove instants
which are not feasible to reach by at least one of its possi-
ble successors. Similarly to the previous case, we define ﬂ,ﬁ =
{t =1 :t+7;(t) =d;}. Assuming that at least one of these
sets is non-empty,

di = min {dk, max
(k.j)eA. Bl #

min{ﬂ,{}}. (25)

If the latest arrival time to k € V from any possible predecessor
is earlier than the actual deadline, then d; can be decreased as

m=mmhm%ym+m@n} (26)

284 A. Montero et al./Computers and Operations Research 88 (2017) 280-289

Finally, precedences are inferred using the information provided
by the time windows. We say that a vertex i precedes vertex j,
noted as i<j, if i must appear before vertex j in any feasible so-
lution of the TDTSP-TW. We remark that in the TDTSP-TW the
triangle inequality on the travel times does not necessarily hold.
This assumption is usually made in other vehicle routing variants.
Therefore, the travel time between two vertices cannot be used di-
rectly to define a precedence since it may be possible to find a
faster route by traveling through another vertex. We construct an
alternative graph P = (V,R) such that arc (i, j) € R iff i<j. Prece-
dences are defined in P by applying the following rules

e Leti je Vsuchthatd; <rj, theni <jeR

o Transitive closure: let i, j, k € V such thati < j, j < k € R, then
i<keR

e0<jeR j=1,...,n

e j<n+1eR j=1,....n

Clearly, if i<j € R, then the arc (j, i) can be removed from A.
We note that this rule is implicitly captured by the arc removal
rule. However, the definition of the precedences are exploited, as
explained later, by a well-known family of valid inequalities.

4.2. Initial heuristic

Finding a feasible solution for the TDTSP-TW is an NP-
Complete problem. Therefore, we adopt a similar strategy as in
Ascheuer etal. (2001) and generalize several constructive heuristics
as well some local search operators to the time-dependent case
in order to find an initial feasible solution. Due to space limita-
tions, we skip the implementation details and refer the reader to
Ascheuer etal. (2001) for the general definition of each of them.

We sequentially apply the following constructive heuristics:

o Sorting heuristics: A tour is constructed by simply ordering the
vertices according to a particular criterion, and then feasibil-
ity is checked. Such criteria are: vertex index, release date, due
date, mid points of the time windows.

Nearest Feasible Neighbor: A partial path is iteratively extended
by including at the end a feasible vertex which results in the
smallest increase in the (partial) makespan of the solution, if
any exists.

Insertion heuristics: A partial path is enlarged by inserting a
vertex not considered so far between two consecutive vertices.
Two criteria are considered to decide where and which vertex
to insert, resulting in two different insertion heuristics. The first
criterion regards the feasible insertion that results in the small-
est increase of the makespan. The other criterion aims to the
feasibility of the solution, and selects the vertex that has the
smallest number of feasible insertion points.

The best solution, if any, is then selected and the following list
of operators is applied until no further improvements are found:
or-exchange, arc-reversal, swap, arc-reinsertion, node-reinsertion
and two-node exchange. The resulting solution is then transferred
to the BC algorithm, aiming to have a good upper bound on the
makespan of the optimal solution and therefore being able to
prune the enumeration tree efficiently.

4.3. Cutting planes

We now describe the cutting plane algorithm developed aim-
ing to improve the quality of the lower bound provided by the LP
relaxation. In this sense, as opposed to the approach in Arigliano
etal. (2015), none of the following cuts are necessary for the for-
mulation. In addition, as mentioned in the previous section, the
approach in Arigliano etal. (2015) considers the computation of an

initial lower bound by solving an auxiliary TSPTW subproblem!,
which is also used later as part of a set of restrictions that are
included as lazy constraints. As we observed in preliminary exper-
iments, the effectiveness of their approach appears to be tightly
coupled to the quality of this initial lower bound.

A different strategy has been adopted and we avoid comput-
ing and using in our approach the initial lower bound proposed in
Arigliano etal. (2015). Therefore, we resort to traditional BC tech-
niques and evaluate a more aggressive cutting plane algorithm in
combination with the TTBF. For this purpose, we included four ex-
ponential families of valid inequalities that have been proved to be
quite effective when applied to TSP and TSPTW contexts.

We remark that valid inequalities that are feasible for the
TSPTW can be easily incorporated and considered for the TTBF.
Variables x;; can be defined in terms of the variables x}’} by the
following identity
Xijj = Z XIT

meTl

4.3.1. Subtour elimination constraints

The formulation TTBF does not allow subtours as feasible so-
lutions. Constraints (16) eliminate subtours on integer feasible so-
lutions. However, SECs (6) usually produce good improvements in
the value of the LP relaxation by cutting fractional solutions. There-
fore, we decided to include the SECs as cutting planes to the TTBF
as well. The SECs are separated using the routine proposed in
Nagamochi etal. (1994).

4.3.2. Precedence-constrained TSP inequalities

The precedences computed during the preprocessing phase
allow us to include valid inequalities from the Precedence-
Constrained TSP proposed in Balas etal. (1995).

The first family of cuts we consider are the so-called 7-
inequalities. For S € V\{0, n + 1}, define the set of predecessors of S
as
w(S)={ieV\{O,n+1} : i< j for some jeS}.

The intuition behind the inequality is that, in a feasible solution,
any vertex i € SN7(S) cannot be the last vertex visited in S. For
S8 cVv\{0,n+1}, let S=V\S and
3(5.S)={G,j)eA :ieS jeS}.

Then, the m-inequality defined by

Z X =1 (27)

(i.j)ed(S\7 (5).5\ (5))
is valid for the TTBF. Similarly, the o-inequalities exploit informa-
tion about successors. Let S € V\{0,n + 1} and
o(S)={jeV\{0,n+1} : i< j for some ic S}.

A vertex j € SNo(S) cannot be the first vertex of S visited in the
tour. Then, the o-inequality

> xij > 1 (28)
(1.)e8S\o (5).5\0 (5))
is valid for the TTBF.

Finally, we further consider the (r, o)-inequalities. Let X, Y c
W0} be such that i<j for every pairi € X, j € Y, and let Q := {0, n +
1}ur (X)Uo (Y). Then for any ScV such that XcS, Y € S, the (7,
o)-inequality

Z x> 1 (29)
(i,)e8(S\Q.5\Q)
is valid for the TTBF.

1 We remark that such TSPTW minimizes the makespan and not the travel time
or the travel costs.

A. Montero et al./Computers and Operations Research 88 (2017) 280-289 285

The BC algorithm includes these inequalities as cutting planes
in a similar fashion as in Ascheuer etal. (2001) and Dash etal.
(2012). An exact separation procedure is considered for the sep-
aration of the weak version of the 7 and o inequalities, which are
obtained from the original inequalities by replacing 7 (S) and o(S)
by 7(j) and o (j), respectively, for j € S. Whenever a violated weak
inequality is found, then the corresponding 7 and o inequalities
(27) and (28) are included in the formulation. Note that the weak
7w and o inequalities are dominated by the original version.

Regarding the (7, o)-inequalities, we consider the simple ver-
sion which accounts for sets X = {i} and Y = {j} such that i<j. For
the separation routine, we also follow the approach proposed in
Balas etal. (1995).

Within the BC, the cutting plane algorithm is executed until no
violated cuts are identified.

5. Computational results

We conducted computational experiments in order to evaluate
the behavior of the approach proposed in this paper and com-
pare the results with another exact algorithm from the related lit-
erature. The algorithms are coded in C++, using g++4.8.4 and
an Ubuntu Linux 14.04 LTS as operating system, using CPLEX 12.4
Callable Library as LP and MILP solver. The experiments are run on
a Workstation with an Intel Core i7-2600 3.4GHz CPU and 16Gb of
RAM.

The algorithms are evaluated on two sets of instances. We first
consider the instances reported in Arigliano etal. (2015), which are
constructed by extending the instances generated in Cordeau etal.
(2012) to the case with time windows. The original instances are
randomly generated considering different settings for three con-
centric zones, aiming to emulate different customers distributions
within the center of the city. In addition, alternative scenarios are
defined by considering different maximum speeds, congestion fac-
tors and traffic patterns for the different zones. Following the no-
tation introduced in (1), the congestion of the instances is partially
captured by the values ;, and A = min; jj, §;j,. The latter charac-
terizes the interval where the degradation of the congestion factor
belongs.

Based on this information, Arigliano etal. (2015) extend the in-
stances by incorporating time windows for the customers in such a
way that at least one feasible solution exists. They consider values
of n=15,20,30,40, A =0.7,0.8,0.9,0.98 and two different traf-
fic patterns, with 30 instances for each combination of these pa-
rameters. This gives a total of 960 instances.”> We refer the reader
to Arigliano etal. (2015) and Cordeau etal. (2012) for the detailed
information regarding the construction and characteristics of the
instances.

The second set of instances is also proposed by Arigliano etal.
(2015)° but aim to evaluate different characteristics such as the
size of the time windows and present a significantly larger num-
ber of time periods. We consider for our experiments a subset of
the so-called w100 instances corresponding to the combinations of
n=15,20,30 and A =0.7,0.8,0.9,0.98 for the above mentioned
patterns. The first 9 instances for each combination are considered,
giving a total of 216 instances. We use this to evaluate the impact
of the number of travel time periods on a BC algorithm based on
TTBF, since it depends on this parameter. The selection of w100 re-
lies on the fact that, on average, the size of the time windows is
similar to the original set of instances.

We begin by analyzing some particular characteristics as well as
the impact of the preprocessing phase in both set of instances. The

2 We note that the information regarding four particular instances is missing in
the package, and therefore in practice we only discarded these instances.
3 Although no results reported by the time of writing.

results are aggregated by the number of vertices, n, and reported
as averages:

o # tot-edges: total number of time-dependent edges.

« # feas-edges: number of feasible time-dependent edges, that is,
feasible combinations among (i, j) € A and m € T, after the pre-
processing step.

 avg-tt-bp: average number of feasible travel time breakpoints
per edge (after preprocessing).

e min-tt-bp: minimum number of feasible travel speeds break-
points per edge (after preprocessing).

e max-tt-bp: maximum number of feasible travel speeds break-
points per edge (after preprocessing).

The summary results for the preprocessing phase is shown in
Table 1. For each of the metrics described below, we report the
average (avg.), minimum (min.) and maximum (max.) over all in-
stances for the corresponding value of n. We first note that the
number of feasible edges after applying the preprocessing is sig-
nificantly reduced with respect to the total number of edges. Af-
ter this phase, only 10% of the edges remain feasible in the first
set of instances and 5% in the second one, w100. This difference
may be related with the number of avg-tt-bp obtained as a result
of the definition of the travel speed profiles, which is significantly
larger for the w100 instances. This is one of the key ingredients of
our approach, which showed to be very effective on this set of in-
stances. Secondly, we remark the difference regarding the number
of travel time breakpoints between the two sets of instances. The
set w100 presents a higher level of granularity in the definition of
the speed profiles and, therefore, this impacts in the number of
travel time breakpoints defined for each edge.

Regarding the methods, we consider the following exact algo-
rithms:

o LBF-BC: BC algorithm proposed in Arigliano etal. (2015).

o TTBF-CPLEX: Formulation TTBF using CPLEX’ default algorithm.
We include SEC for |S| = 2 as part of the formulation.

o TTBF-BC: BC algorithm described in Section4. CPLEX’ dynamic
search and primal reductions are automatically disabled.

o TTBF-CB: BC algorithm but the cutting plane phase described
in Section4 is run only at the root node. When finished, a new
ILP is built including the inequalities added during the cutting
phase and solved by CPLEX’ default algorithm.

TTBF-CPLEX acts as a baseline to evaluate the other approaches.
TTBF-BC and TTBF-CB further investigate the impact of the cut-
ting plane algorithm when combined in two different settings with
CPLEX. TTBF-CB is considered to make evident some particular be-
haviors.

For each combination of parameters, we report the following
information:

e OPT: Number of instances solved to optimality within the set
considered.*

o Time: computational times in seconds.

e Nodes: number of nodes explored in the enumeration tree.

%rG: % gap at the root node.

o %fG: % gap at the end of the execution.

Except for the number of instances solved, the remaining met-
rics are reported as averages over the instances in the group.

We impose a limit of 3600 seconds for the execution time run-
ning in a single-thread. The computing time (Time) is averaged
only over the solved instances. Similarly, %fG is averaged only con-
sidering the instances that are not solved to optimality. Gaps %rG
and %fG are computed as (zpagr — 2)/2, Where zpeq represents the

4 We are considering the missing instances as unsolved.

286 A. Montero et al./Computers and Operations Research 88 (2017) 280-289
Table 1
Preprocessing statistics for both sets of instances.
Set n Value # tot-edges # feas-edges avg-tt-bp min-tt-bp max-tt-bp
Original 15 avg. 1785 264 1.67 1.00 4.94
min. 1785 177 113 1.00 3.00
max. 1785 404 2.35 1.00 5.00
20 avg. 3080 437 1.62 1.00 5.00
min. 3080 295 119 1.00 5.00
max. 3080 627 219 1.00 5.00
30 avg. 6720 850 1.50 1.00 5.00
min. 6720 629 111 1.00 5.00
max. 6720 1168 1.95 1.00 5.00
40 avg. 11,760 1425 145 1.00 5.00
min. 11,760 1042 111 1.00 5.00
max. 11,760 1871 1.86 1.00 5.00
w100 15 avg. 36,962 1906 13.01 133 88.32
min. 36,592 1586 10.37 1.00 48.00
max. 37,199 2493 17.81 3.00 139.00
20 avg. 63,918 3489 14.33 1.38 11211
min. 63,552 3078 12.61 1.00 81.00
max. 64,201 3876 16.28 3.00 140.00
30 avg. 139,621 7219 13.80 1.01 137.67
min. 138,715 6077 12.01 1.00 119.00
max. 140,229 7666 14.62 2.00 142.00
Table 2
Results for Arigliano etal. instances for Traffic Pattern A, n = 15, 20, 30, 40.
A V| LBF-BC TTBF-CPLEX TTBF-BC TTBF-CB
OPT %rG %fG Nodes Time OPT %G %fG Nodes Time OPT %G %fG ~ Nodes Time OPT %rG %fG ~ Nodes Time
098 15 30 0.24 0.00 570 380 30 13596 0.00 35510 33.83 30 4292 0.00 546 1.93 30 4292 000 1730 1.98
20 27 003 000 1030 1141 30 173.89 0.00 893 3.92 29 2445 0.00 213 1.50 30 2585 000 1206 719
011 o011 - - 1 6639 013 - -
30 25 001 O 0 050 29 34321 0.00 6459 3063 29 4578 0.00 695 13.62 29 4578 0.00 1770 10.31
40 18 0.06 0.00 3 176 21 399.74 0.00 3809 3623 27 6207 0.00 11556 38335 28 6137 000 10,231 119.26
251 235 - - 9 579.48 210.80 - - 3 162.79 494 - - 2 223.06 017 - -
090 15 30 041 000 2767 16.00 30 66.82 0.00 234 0.23 30 1052 0.00 28 0.13 30 1052 0.00 100 0.17
20 25 032 000 5927 5989 30 211.52 0.00 10,565 8.49 30 4410 0.00 311 1.95 30 4410 000 696 1.45
080 071 - -
30 25 024 0.00 879 27.87 28 263.65 0.00 883 4.04 30 3750 0.00 2327 9827 30 3750 000 6600 @ 85.61
0.89 0.84 - 2 44704 6617 - -
40 10 022 0.00 300 40.73 23 36705 0.00 7297 4728 27 58.80 000 5014 20146 26 5340 000 5081 58.61
214 188 - - 7 510.79 16941 - - 3 196.73 4.08 - - 4 19737 463 - -
080 15 30 0.76 0.00 813 576 30 84.09 0.00 8682 10.01 30 3574 0.00 9309 8995 30 3574 0.00 14,463 16.10
20 22 072 0.00 4021 5350 30 169.98 0.00 3722 2.54 30 2928 0.00 362.63 174 30 2928 000 639 111
099 061 - -
30 14 010 0.00 1150 3789 30 31213 0.00 46,040 8317 30 4545 0.00 1297 3505 30 4545 0.00 2817 13.64
222 117 - -
40 11 0.53 0.00 615 4766 28 33559 0.00 23,538 12396 30 56.52 0.00 1905 9468 30 5652 000 2269 2538
210 125 - - 2 57136 5480 - -
070 15 29 131 000 1387 970 30 11059 0.00 736 0.68 30 3203 0.00 51 0.26 30 3203 000 152 0.35
193 190 - -
20 21 1.00 0.00 116 165 29 12787 0.00 5332 2998 30 4709 000 20393 28332 30 4709 0.00 12,580 61.95
198 114 - - 1 37692 1.20 - -
30 16 063 000 1337 921 27 21750 0.00 21,517 6821 29 4228 0.00 5967 13455 29 4228 0.00 15386 63.87
301 197 - - 3 488.82 5040 - - 1 17625 420 - - 1 17625 2.64 - -
40 12 1.00 0.00 240 26 21910 0.00 16,686 13425 25 4738 0.00 467 14166 28 4485 0.00 5075 44.83
31 173 - - 3 580.01 152.75 - - 4 63.01 038 - - 1 180.78 0.74 - -

objective function of the best feasible solution for the instance
(eventually, the optimal solution) and z the value being considered,
i.e. the lower bound at the root node or the lower bound of the ob-
jective value available in the enumeration tree when reaching the
time limit. For each combination of parameters, the results are dis-
aggregated between solved and unsolved instances.

The results obtained on the first set of instances for methods
LBF-BC, TTBF-CPLEX, TTBF-BC and TTBF-CB for traffic patterns A
and B defined in Arigliano etal. (2015) are presented in Tables 2
and 3, respectively. In both cases, the main message of the ta-
bles is that TTBF-CB produces the best results in terms of number
of instances solved, the average computing time and number of
nodes explored during the enumeration. Another observation in-
volves TTBF-CPLEX, which is able to solve more instances that LBF-

BC for both traffic patterns. This is somehow an unexpected behav-
ior given the complex developments included in LBF-BC. However,
the behavior exhibited regarding the relation between %rG and %fG
supports our initial observation with respect to the ILP model be-
hind LBF-BC. The initial lower bound considered is very tight in
general, but in terms of a BC algorithm the formulation finds diffi-
culties to improve this bound and close the gap to prove optimal-
ity. Indeed, the authors report that the cutting plane algorithm is
not able to improve this bound at the root node, and we observed
that in many of the instances solved the optimality is proved be-
fore starting the enumeration. Based on limited extra experimenta-
tion, our conjecture is that constraints (3), despite that LB, may be
tight, is a weak inequality from an ILP perspective. However, fur-

A. Montero et al./Computers and Operations Research 88 (2017) 280-289 287
Table 3
Results for Arigliano etal.. instances for Traffic Pattern B, n = 15, 20, 30, 40.
A V] LBF-BC TTBF-CPLEX TTBF-BC TTBF-CB
OPT %rG %fG Nodes Time OPT %G %G Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG ~ Nodes Time
098 15 27 019 000 1056 58.09 29 9562 0.00 493 0.50 29 2794 0.00 52 0.20 29 2794 0.00 68 0.18
020 021 - -
20 17 016 0.00 820 4592 29 213.62 0.00 1772 3.21 29 3942 0.00 191 1.32 29 3942 0.00 460 112
022 021 - -
30 13 024 000 511 14.67 28 23442 0.00 10,857 25.35 29 48.06 0.00 13377 262.09 29 4806 0.00 7307 28.37
144 058 - - 1 489.71 122.26 394,706 3605.55
40 9 013 0.00 0 078 25 46120 0.00 47470 24529 29 84.04 0.00 3437 14436 29 84.04 0.00 8619 5123
1.00 073 - - 5 625.61 17873 - - 1 11632 010 - - 1 11632 010 - -
090 15 27 099 0.00 800 550 30 6701 0.00 1975 1.66 30 2534 0.00 75 0.26 30 2534 0.00 227 0.31
333 155
20 20 095 000 3281 4016 30 126224 0.00 4872 8.57 30 2889 0.00 1070 9.52 30 2889 0.00 2974 522
111 099 - -
30 18 1.00 0.00 673 18.41 30 24546 0.00 1721 11.04 30 2748 0.00 61 1.87 30 2748 0.00 469 2.61
1.03 0.88 - -
40 10 0.70 0.00 205 2521 25 24224 0.00 7196 12341 27 5256 000 1556 135.00 28 5141 0.00 5707 6213
193 070 - - 5 616.07 201.78 - - 3 9520 015 - - 2 13254 022 - -
080 15 28 235 000 1072 785 30 8155 0.00 3938 317 30 43.81 0.00 607 2.27 30 43.81 0.00 998 113
460 371 - -
20 13 196 000 3595 4158 29 121.78 0.00 1740 2.81 29 2659 0.00 133 0.98 29 2659 0.00 346 0.85
272 205 - -
30 7 191 0.00 592 1584 30 25918 0.00 22,822 8452 29 43.80 0.00 1643 1941 30 4635 0.00 9415 3754
364 225 - - 1 12013 0.81 - -
40 11 148 0.00 26 8.03 28 321.02 0.00 13,829 12060 29 5232 000 582 58.87 29 5779 0.00 2654 3142
340 172 - - 2 648.64 359.83 - - 1 22020 597 - - 1 6180 0.68 - -
070 15 29 464 000 4561 3827 30 9092 0.00 553 0.79 30 3123 0.00 171 0.61 30 3123 0.00 307 0.60
590 548
20 16 3.69 0.00 1633 2735 28 15751 0.00 5480 5.50 28 3950 0.00 119 0.93 28 3950 0.00 421 114
414 324 - -
30 6 370 000 O 044 29 25641 0.00 10,644 61.09 30 5828 0.00 2694 2984 30 5828 0.00 1478 8.68
535 371 - - 1 47882 1362 - -
40 3 0.99 0.00 0 1.08 26 25827 0.00 18,352 126.08 25 4386 0.00 326 4197 30 5644 0.00 9376 94.45
0.03 2.80 - 4 400.83 11526 - - 5 11936 090 - -

ther experiments and investigations should be conducted to obtain
stronger evidence.

The comparison between TTBF-CPLEX and TTBF-BC also
presents some interesting patterns. Firstly, TTBF-BC is able to solve
more instances, and this tendency is clearer as n increases. The av-
erage %rG and %fG are significantly better for TTBF-BC, sometimes
obtaining differences of about one order of magnitude. In addition,
we can observe large %rG for some combinations under both traf-
fic patterns and for both algorithms, with larger values for TTBF-
CPLEX. Recall that %rG is relative to the lower bound evaluated,
and therefore values larger than 100% indicate that when leaving
the root node, the value of the LP relaxation after the cutting phase
is about 1/3 of the optimal value. However, both TTBF-CPLEX and
TTBF-BC, despite these large values, are able to close most of the
instances. Regarding the comparison between TTBF-BC and LBF-BC
follows a similar tendency as with respect to TTBF-CPLEX, but with
a larger difference in favor of TTBF-BC.

At this point, it is important to note that the inclusion of user
cuts within CPLEX disables some specific procedures (reductions,
dynamic search, etc). To assess the impact of the valid inequalities,
we consider TTBF-CB that includes the cutting plane at the root
node and then the resulting ILP is solved using CPLEX’s default al-
gorithm. In this fashion, we are able to capture the impact of im-
proving the %rG produced by the cutting planes. The results show
that TTBF-CB is the most effective approach on this, solving more
instances to optimality in less computational time.

We now restrict the analysis to the instances with n = 40.> The
results follow the same pattern as the ones described before, but
the difference in terms of the number of instances solved to op-
timality is accentuated. Indeed, when restricted to n =40, from

5 We believe the %rG of LBF-BC for A = 0.7, Traffic Pattern B is indeed a typo
and should be multiplied by 100.

a total of 240 instances TTBF-CB is able to solve to optimality
228, TTBF-BC 219 instances and TTBF-CPLEX 202, while LBF-BC can
solve 84. Large average %rG can be observed for the unsolved in-
stances, which are significant when observing %fG. This suggests
that both algorithms over TTBF are able to reduce, combining cut-
ting planes with node enumeration, the difference between the
lower and upper bounds.

Tables 4 and 5° show the results for the second set of instances
considered for traffic patterns A and B, respectively. These tables
show the results for TTBF-CPLEX, TTBF-BC and TTBF-CB since there
are no public reports on LBF-BC. This experiment aims to evaluate
the impact of the number of travel time breakpoints in the formu-
lation, which is captured by the definition of the instances consid-
ered. Firstly, all methods produce reasonable results although the
number of travel time periods per edge is larger than in the first
set of instances. We observed an increment in the number of vari-
ables and constraints in the TTBF, although based on limited ex-
periments the formulation seems to be more sensitive to the size
of the time windows.

The comparison regarding TTBF-CPLEX and TTBF-BC is slightly
different from the previous case. TTBF-CPLEX is capable of solving
to optimality more instances than TTBF-BC despite the significant
improvements in %rG due to the inclusion of specific valid inequal-
ities. However, TTBF-CB is able to solve almost all instances in this
set in smaller computing times. Overall, TTBF-CPLEX solves 202 in-
stances out of the 216, TTBF-BC 187 and TTBF-CB 214. These results
show that there is a great potential for improvements when com-

6 We include some details for A = 0.7 and n = 30 for TTBF-BC. The value of the
LP relaxation when leaving the root node is close to (zye) and, when rouned to
two decimals, the resulting value is zero. TTBF-BC exits the root node with a gap of
0.92% and is not able to find the optimal solution during the enumeration, reaching
the time limit with a final gap of 0.22%.

288 A. Montero et al./Computers and Operations Research 88 (2017) 280-289

Table 4
Results for set w100 for Traffic Pattern A, n = 15, 20, 30.
A V] TTBF-CPLEX TTBF-BC TTBF-CB
OPT %G %G Nodes Time OPT %G %fG Nodes Time OPT %G %G Nodes Time
098 15 9 103.03 0.00 6753 31.52 9 61.91 0.00 2336 18.12 9 6191 0.00 1571 9.28
20 9 118.23 0.00 3158 2212 9 45.88 0.00 12,201 102.78 9 45.88 0.00 18,034 104.03
30 7 177.01 0.00 40,940 483.12 3 37.02 0.00 16,311 273.60 8 55.29 0.00 5306 87.30
2 45993 382 - - 6 73.97 0.11 - - 1 11248 655 - -
0.9 5 9 107.48 0.00 20,794 7519 9 53.82 0.00 2810 17.60 9 53.82 0.00 1630 9.27
20 9 72.28 0.00 2579 15.40 8 34.46 0.00 6319 53.96 9 35.97 0.00 1914 14.39
1 48.06 024 - -
30 7 146.10 0.00 70,178 49579 7 36.66 0.00 24,407 475.71 9 5219 0.00 24,054 227.78
2 16095 035 - - 2 106.55 0.08 - -
0.8 15 9 108.42 0.00 7268 25.66 9 48.76 0.00 4003 24.56 9 48.76 0.00 1464 7.61
20 9 83.21 000 10,345 57.79 9 36.85 0.00 16,370 13996 9 36.85 0.00 4886 33.38
30 7 85.18 0.00 10,202 187.26 5 21.50 0.00 298 19.53 9 4219 0.00 41,493 311.34
2 140.37 4.61 - - 4 68.05 0.88 - .
0.7 15 9 94.93 0.00 2433 9.36 9 43.26 0.00 5037 31.71 9 43.26 0.00 2854 20.84
20 8 52.06 0.00 9446 54.21 8 13.41 0.00 32,113 27397 9 28.98 0.00 4345 26.75
1 191.94 228 - - 1 15353 014 - -
30 8 56.15 0.00 19,060 16949 7 23.22 000 21,797 46029 9 37.37 0.00 40,394 349.54
1 281.37 008 - - 2 86.90 004 - -
Table 5
Results for set w100 for Traffic Pattern B, n = 15, 20, 30.
A V| TTBF-CPLEX TTBF-BC TTBF-CB
OPT %1G %fG Nodes Time OPT %1G %fG Nodes Time OPT %1G %G Nodes Time
098 15 9 102.01 0.00 6956 22.80 9 54.86 0.00 39266 22650 9 54.86 0.00 2474 10.98
20 9 12480 0.00 3360 35.03 9 40.37 0.00 24,601 197.37 9 4037 0.00 2426 17.66
30 8 219.78 0.00 85279 76711 5 26.24 0.00 41,713 80562 9 59.48 000 51,077 282.95
1 331.06 0.08 - - 4 101.03 005 - -
0.9 15 9 106.17 0.00 3427 14.40 9 40.20 0.00 3114 19.53 9 40.20 0.00 1465 8.77
20 9 86.06 0.00 4401 29.82 9 39.39 0.00 12,436 12932 9 39.39 0.00 2483 16.57
30 7 10938 0.00 4902 73.66 6 40.29 0.00 18956 346.44 9 4298 0.00 3274 62.02
2 13899 006 - - 3 48.37 020 - -
0.8 15 9 78.20 0.00 1228 4,92 9 37.22 0.00 2597 12.39 9 37.22 0.00 973 4.23
20 8 55.04 0.00 1608 9.02 9 24.02 0.00 35523 32004 9 2402 000 722 10.33
1 21264 191 - -
30 7 91.14 0.00 18,160 28368 6 39.45 0.00 64,414 92972 8 4020 0.00 29,023 242.36
2 0.96 0.51 - - 3 28.92 068 - - 1 1.82 093 - -
0.7 15 9 62.44 0.00 917 3.07 9 12.34 0.00 445 2.93 9 1234 0.00 894 3.45
20 9 44.77 0.00 76,853 414.20 7 0.43 0.00 20 1.42 9 24.71 000 49460 29591
2 109.70 193 - -
30 9 30.02 0.00 36,105 195.43 8 10.84 0.00 18,857 29406 9 9.63 0.00 14,222 161.79
1 0.00 000 - -

bining problem-specific with general purpose ILP techniques which
should be exploited and investigated in more detail.

Finally, we would like to make a comment with respect to
a particular behavior observed during the experimentation. The
travel time calculation proposed in Algorithm 1 assumes contin-
uous (rational) information for computing travel times, and the
models allow arrivals and departure to occur at fractional time in-
stants. Therefore, the computation of the arrival/departure at each
vertex is subject to numerical errors. This may affect not only
the values of the objective function but, given the presence of
time windows, the feasibility of a solution. Indeed, we experienced
feasibility issues in some particular cases with both formulations
TTBF-BC and TTBF-CB, related mainly to CPLEX’s feasibility toler-
ance parameter. Furthermore, we noted some isolated cases where
the default value of the parameter relative MIP gap tolerance pro-
duced some of the algorithms to terminate before proving opti-
mality. In these cases, the optimal solution can be found when
readjusting this parameter. Therefore, special considerations must
be taken into account regarding numerical problems when tackling
this version of the TDTSP-TW.

6. Conclusions and future research

This article presents an exact algorithm for the TDTSP-TW, a
generalization of the TSPTW where the travel time between two
cities is not constant along the day. We propose an ILP formulation
following the research in Sun etal. (2015). Based on this formula-
tion, we develop a two tailored BC algorithms including prepro-
cessing rules, initial heuristics and valid inequalities, which proved
to be effective. Compared to the approach proposed in Arigliano
etal. (2015), the proposed BC approaches TTBF-BC and TTBF-CB are
able to solve 929 and 940 instances, respectively, out of a total
of 960, which represents a difference of more than 300 instances
solved. In addition, computing times and the number of nodes ex-
plored are significantly reduced.

As future work, several research lines are worth investigating
based on the results shown in this paper. Firstly, further research
is needed regarding formulations and exact algorithms for time-
dependent problems in general, and for the TDTSP-TW in partic-
ular. Alternative models which are able to effectively incorporate
the time dependency could have a significant impact from an al-
gorithmic perspective. In this same direction, further investigations
regarding particular valid inequalities that account for the time de-
pendency may produce improvements in the lower bounds pro-

A. Montero et al./Computers and Operations Research 88 (2017) 280-289 289

vided by the LP relaxation which, combined with effective heuris-
tic techniques, would improve the computation times and increase
the size of the instances consistently solved. In addition, it would
be very interesting to evaluate the behavior of extensions of the
proposed approach in other time-dependent problems, such as the
natural extension to the multiple vehicle case as well as in the
TDTSP.

Regarding the experimental settings, it would be interesting
to construct a larger set of benchmark instances considering also
different construction patterns. Ideally, it would be interesting to
include instances with real travel time information as well. This
would provide a more diverse environmental context for the evalu-
ation and comparison of the algorithm, and in particular regarding
their applicability in practice.

Finally, we remark that VRPs usually assume data to be inte-
ger. Considering the numerical instability during the experimen-
tation, it would be interesting to adapt the current travel speed
model, and its corresponding travel time computation, to be able
to work with discretized times while preserving its main charac-
teristics. From a practical point of view, travel times could be rep-
resented as minutes, half minutes, seconds, etc., depending on the
level of granularity required by the operations involved.

Acknowledgments

This research is partially supported by FONCyT grant PICT-2013-
2460 from the Government of Argentina, and by UBACyT grant
20020100100666 from Universidad de Buenos Aires, Argentina. The
authors are grateful to the anonymous referees, the associate edi-
tors and the general editor for their careful reading and valuable
comments, which helped improving a previous version of the arti-
cle.

References

Abeledo, H., Fukasawa, R., Pessoa, A., Uchoa, E., 2012. The time dependent traveling
salesman problem: polyhedra and algorithm. Math. Programm. Comput. 5 (1),
27-55. doi:10.1007/s12532-012-0047-y.

Albiach,]., Sanchis,].M., Soler, D., 2008. An asymmetric tsp with time windows and
with time-dependent travel times and costs: an exact solution through a graph
transformation. Eur.]. Oper. Res. 189 (3), 789-802. http://dx.doi.org/10.1016/j.
€jor.2006.09.099.

Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., 2015. Time Dependent Traveling
Salesman Problem with Time Windows: Properties and an Exact Algorithm.
Technical Report.

Ascheuer, N., Fischetti, M., Grétschel, M., 2001. Solving the asymmetric travelling
salesman problem with time windows by branch-and-cut. Math. Program. 90
(3), 475-506.

Balas, E., Fischetti, M., Pulleyblank, W.R., 1995. The precedence-constrained asym-
metric traveling salesman polytope. Math. Program. 68, 241-265. doi:10.1007/
BF01585767.

Cordeau, J.-F,, Ghiani, G., Guerriero, E., 2012. Analysis and branch-and-cut algorithm
for the time-dependent travelling salesman problem. Transp. Sci. 48 (1), 46-58.

Dabia, S., Ropke, S., van Woensel, T., De Kok, T., 2013. Branch and price for the
time-dependent vehicle routing problem with time windows. Transp. Sci. 47 (3),
380-396.

Dash, S., Giinliik, O., Lodi, A., Tramontani, A., 2012. A time bucket formulation for
the traveling salesman problem with time windows. INFORMS]. Comput. 24 (1),
132-147. doi:10.1287/ijoc.1100.0432.

Fischetti, M., Laporte, G., Martello, S., 1993. The delivery man problem and cumula-
tive matroids. Oper. Res. 41 (6), 1055-1064.

Furini, F, Kidd, M.P, Persiani, C.A., Toth, P, 2015. Improved rolling horizon ap-
proaches to the aircraft sequencing problem.]. Scheduling 18 (5), 435-447.
Gendreau, M., Ghiani, G., Guerriero, E., 2015. Time-dependent routing problems: a

review. Comput. Oper. Res. 64, 189-197.

Ghiani, G., Guerriero, E., 2014. A note on the ichoua, gendreau, and potvin (2003)
travel time model. Transp. Sci. 48 (3), 458-462. doi:10.1287/trsc.2013.0491.
Godinho, M.T,, Gouveia, L., Pesneau, P.,, 2014. Natural and extended formulations for
the time-Dependent traveling salesman problem. Discrete Appl. Math. 164, 138-

153. doi:10.1016/j.dam.2011.11.019.

Gouveia, L., VoR, S., 1995. A classification of formulations for the (time-dependent)
traveling salesman problem. Eur. J. Oper. Res. 2217 (93).

Hill, A.V., Benton, W., 1992. Modelling intra-city time-dependent travel speeds for
vehicle scheduling problems.]. Oper. Res. Soc. 343-351.

Ichoua, S., Gendreau, M., Potvin, J.-Y., 2003. Vehicle dispatching with time-depen-
dent travel times. Eur.]. Oper. Res. 144 (2), 379-396.

Lucena, A., 1990. Time-dependent traveling salesman problem—the deliveryman
case. Networks 20 (6), 753-763.

Malandraki, C., Daskin, M.S., 1992. Time dependent vehicle routing problems: for-
mulations, properties and heuristic algorithms. Transp. Sci. 26 (3), 185-200.
Melgarejo, P.A., Laborie, P, Solnon, C., 2015. A time-dependent no-overlap con-
straint: application to urban delivery problems. In: Integration of Al and OR

Techniques in Constraint Programming. Springer, pp. 1-17.

Méndez-Diaz, 1., Miranda-Bront, J., Toth, P., Zabala, P., 2011. Infeasible path formula-
tions for the time-dependent tsp with time windows. In: 10 th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization CTW 2011, pp. 198-
202.

Méndez-Diaz, 1., Zabala, P, Lucena, A., 2008. A new formulation for the traveling
deliveryman problem. Discrete Appl. Math. 156 (17), 3223-3237.

Miranda-Bront,].J., 2012. Integer Programming approaches to the Time Dependent
Travelling Salesman Problem. Facultad de Ciencias Exactas y Naturales. Univer-
sidad de Buenos Aires.

Miranda-Bront,].J., Méndez-Diaz, 1., Zabala, P., 2013. Facets and valid inequalities for
the time-dependent travelling salesman problem. Eur.]. Oper. Res. doi:10.1016/
j.ejor.2013.05.022.

Nagamochi, H., Ono, T., Ibaraki, T.,, 1994. Implementing an efficient minimum capac-
ity cut algorithm. Math. Program. 67 (1), 325-341. doi:10.1007/BF01582226.
Picard, J.-C., Queyranne, M., 1978. The time-dependent traveling salesman problem
and its application to the tardiness problem in one-machine scheduling. Oper.

Res. 26 (1), 86-110.

Stecco, G., Cordeau, J.-F., Moretti, E., 2008. A branch-and-cut algorithm for a produc-
tion scheduling problem with sequence-dependent and time-dependent setup
times. Comput. Oper. Res. 35 (8), 2635-2655. http://dx.doi.org/10.1016/j.cor.
2006.12.021.

Sun, P, Dabia, S., Veelenturf, L.P, Van Woensel, T., 2015. The Time-Dependent
Pro_table Pickup and Delivery Traveling Salesman Problem with Time Windows.
Technical Report. Eindhoven University of Technology.

P. Toth and D. Vigo, editors. Vehicle Routing: Problems, Methods, and Applications,
Second Edition. MOS-SIAM Series on Optimization. 2014.

http://dx.doi.org/10.1007/s12532-012-0047-y
http://dx.doi.org/10.1016/j.ejor.2006.09.099
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://dx.doi.org/10.1007/BF01585767
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://dx.doi.org/10.1287/ijoc.1100.0432
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://dx.doi.org/10.1287/trsc.2013.0491
http://dx.doi.org/10.1016/j.dam.2011.11.019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0022
http://dx.doi.org/10.1016/j.ejor.2013.05.022
http://dx.doi.org/10.1007/BF01582226
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://dx.doi.org/10.1016/j.cor.2006.12.021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027

	An integer programming approach for the time-dependent traveling salesman problem with time windows
	1 Introduction and literature review
	2 Problem definition
	3 ILP formulations
	3.1 Travel-speed relaxation based model
	3.2 Travel-time breakpoints based model

	4 BC algorithm
	4.1 Preprocessing
	4.2 Initial heuristic
	4.3 Cutting planes
	4.3.1 Subtour elimination constraints
	4.3.2 Precedence-constrained TSP inequalities

	5 Computational results
	6 Conclusions and future research
	 Acknowledgments
	 References

