
Computers and Operations Research 88 (2017) 280–289

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

An integer programming approach for the time-dependent traveling

salesman problem with time windows

Agustín Montero

a , c , ∗, Isabel Méndez-Díaz

a , d , Juan José Miranda-Bront a , b , c , ∗

a Departamento de Computación, FCEyN, Universidad de Buenos Aires, Pabellón I, Ciudad Universitaria, C1428EGA, CABA, Argentina
b Universidad Torcuato Di Tella, Av. Figueroa Alcorta 7350, C1428BCW, CABA, Argentina
c Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
d CONICET-Universidad de Buenos Aires. Instituto de Investigación en Ciencias de la Computación (ICC). Buenos Aires, Argentina

a r t i c l e i n f o

Article history:

Received 15 June 2016

Revised 9 May 2017

Accepted 26 June 2017

Available online 4 July 2017

Keywords:

Time-dependent TSP

Time windows

Integer linear programming

Branch-and-Cut

a b s t r a c t

Congestion in large cities and populated areas is one of the major challenges in urban logistics, and

should be addressed at different planning and operational levels. The Time Dependent Travelling Sales-

man Problem (TDTSP) is a generalization of the well known Traveling Salesman Problem (TSP) where the

travel times are not assumed to be constant along the day. The motivation to consider the time depen-

dency factor is that it enables to have better approximations to many problems arising from practice. In

this paper, we consider the Time-Dependent Traveling Salesman Problem with Time Windows (TDTSP-

TW), where the time dependence is captured by considering variable average travel speeds. We propose

an Integer Linear Programming model for the problem and develop an exact algorithm, which is com-

pared on benchmark instances with another approach from the related literature. The results show that

the approach is able to solve instances with up to 40 customers.

© 2017 Elsevier Ltd. All rights reserved.

b

i

g

b

e

m

v

h

f

t

t

p

d

(

T

i

f

p
1. Introduction and literature review

The use of the transportation infrastructure and the impact of

congestion have become one of the major issues in city planning

and urban logistics. Projections indicate that this effect is expected

to worsen in the medium and long term. Therefore, the current

traffic situation as well as the projected traffic scenarios are likely

to have, if not addressed correctly, a negative impact from a social,

economic and a environmental standpoint.

Most of the research related to the Vehicle Routing Problem

(VRP) considers that the travel time between two locations are

fixed along the time horizon. An updated description of variants

and methods can be found in Toth and Vigo (2014) . In the last few

years, there has been a trend to enrich these models by incorporat-

ing more complex travel time functions, aiming to obtain solutions

that are closer to real-world operations. These models are particu-

larly useful for urban logistics, where congestion may produce sig-

nificant variations in travel times during different moments of the

day. For instance, last mile deliveries, which are estimated to ac-

count of an important percentage of the total delivery costs, could
∗ Corresponding authors.

E-mail addresses: aimontero@dc.uba.ar (A. Montero), imendez@dc.uba.ar (I.

Méndez-Díaz), jmiranda@dc.uba.ar , jmiranda@utdt.edu (J.J. Miranda-Bront).

g

Q

t

l

e

http://dx.doi.org/10.1016/j.cor.2017.06.026

0305-0548/© 2017 Elsevier Ltd. All rights reserved.
e significantly improved by more realistic approaches, translating

nto a better service and a more efficient use of the resources.

Time-Dependent Vehicle Routing Problems (TDVRPs) is the name

iven to a family of problems that generalize the classical VRPs

y considering more complex travel time and cost functions, gen-

rally by incorporating some variability depending on the mo-

ent of the day an arc is traversed. A recent survey on TDVRP

ariants is available in Gendreau et al. (2015) , covering exact and

euristic algorithms. Commercial applications including traffic in-

ormation are, to the best of our knowledge, quite scarce in prac-

ice. Google Maps and Waze provide detailed directions including

raffic information, but limited to the quickest path between two

oints.

One of the variants that received some attention in the last

ecade is the so-called Time-Dependent Traveling Salesman Problem

TDTSP), which considers only one vehicle with infinite capacity.

herefore, the problem reduces to find a Hamiltonian tour at min-

mum total cost, while accounting for some particular travel time

unction. In this context, the name TDTSP has been used to refer to

roblems considering different travel time functions. The simplest

eneralization is the variant of the TDTSP considered in Picard and

ueyranne (1978) , which has applications within scheduling con-

exts and generalizes the well-known Traveling Deliveryman Prob-

em (see, e.g., Fischetti et al., 1993; Lucena, 1990; Méndez-Díaz

t al., 2008). The improvement with respect to the traditional TSP

http://dx.doi.org/10.1016/j.cor.2017.06.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.06.026&domain=pdf
mailto:aimontero@dc.uba.ar
mailto:imendez@dc.uba.ar
mailto:jmiranda@dc.uba.ar
mailto:jmiranda@utdt.edu
http://dx.doi.org/10.1016/j.cor.2017.06.026

A. Montero et al. / Computers and Operations Research 88 (2017) 280–289 281

i

d

a

G

(

c

t

t

(

(

m

p

f

t

p

E

t

c

D

R

m

t

c

a

e

(

(

s

f

t

a

j

s

t

T

s

c

T

d

n

t

a

4

t

I

p

(

t

c

e

(

w

t

a

s

T

s

w

l

p

a

u

p

m

d

t

i

F

b

m

a

c

w

t

o

i

k

f

t

r

i

d

m

a

n

S

r

i

d

2

e

I

w

V

s

V

(

F

W

a

s

v

b

a

f

w

f

c

z

a

s

0

s

t

t

t

c

i

t

a

v
s that it considers that the travel cost function between two cities

epends not only on the distance, but also on the position of the

rc in the tour. Exact approaches for this problem can be found in

ouveia and Voß (1995) , Abeledo et al. (2012) , Miranda-Bront et al.

2013) and Godinho et al. (2014) , where instances with up to 100

ustomers can be solved within reasonable computing times. To

he best of our knowledge, the best exact approach in the litera-

ure is the Branch-Price and Cut (BPC) proposed in Abeledo et al.

2012) .

A different approach is proposed in Malandraki and Daskin

1992) , where the travel time between two cities depends on the

oment of the day in which the arc is traversed. For this pur-

ose, the authors proposed partitioning the time horizon in dif-

erent time periods and the travel time is defined as a step func-

ion over these periods. This allows the model to capture, at least

artially, the effect of congestion in different moments of the day.

xact approaches for variants of this problem with minor modifica-

ions (i.e., different objective functions and operational constraints)

an be found in Stecco et al. (2008) , Albiach et al. (2008) , Méndez-

ıaz et al. (2011) , Miranda-Bront (2012) and Melgarejo et al. (2015) .

egarding applications, Furini et al. (2015) formulate a TDTSP to

odel an aircraft sequencing problem.

One of the major objections to the above model is that the

ravel times do not necessarily satisfy the FIFO (First In, First Out)

ondition, which is usually a desired property for the network from

 vehicle routing perspective. To overcome this difficulty, Ichoua

t al. (2003) builds upon the model proposed by Hill and Benton

1992) and propose a similar setting as in Malandraki and Daskin

1992) but for the average travel speed within each period. The re-

ulting travel times are computed based on the departure instant

rom the origin customer, assuming that the distance of the trip is

raveled at the average speed and that when crossing the bound-

ries between consecutive time periods, the average speed is ad-

usted. This model is able to capture the time dependency while

atisfying the FIFO condition on the travel times.

The model proposed by Ichoua et al. (2003) has recently caught

he attention of many researchers. Cordeau et al. (2012) tackles the

DTSP with the objective to minimize the makespan. They study

ome of the properties of the travel time function, including the

omputation of a lower bound obtained by solving an auxiliary

SP with constant travel times. They show that the bound is tight

epending on some parameters related to the travel speed defi-

itions and that, under some particular settings, the solution of

he auxiliary TSP is indeed optimal. They also propose a Branch

nd Cut (BC) algorithm and are able to solve instances with up to

0 vertices. Ghiani and Guerriero (2014) further exploit some of

he properties of the travel time function, and study its generality.

n a follow up paper, Arigliano et al. (2015) extend the ideas pro-

osed in Cordeau et al. (2012) to the TDTSP with Time Windows

TDTSP-TW). However, the results obtained are not as good as for

he TDTSP. A BC algorithm is evaluated on instances with up to 40

lients, obtaining mixed results.

Multi-vehicle versions of the TDVRP have also been tackled by

xact algorithms that consider the model proposed in Ichoua et al.

2003) . Dabia et al. (2013) consider the TDVRP with time windows

ith the objective of minimizing the overall duration instead of

he makespan. They propose a set partitioning model and develop

 Branch and Price (BP) algorithm, where the column generation

ubproblem is tackled by means of a tailored labeling algorithm.

he authors conduct experiments on instances of different sizes,

howing that the approach is able to solve consistently instances

ith 25 vertices and some of the ones having 100 customers. Re-

ated to this research is the work by Sun et al. (2015) , where a

rofitable TDTSP with time windows and precedence constraints

re considered. Indeed, this particular variant arises as the col-

mn generation subproblem of a TDVRP with time-windows and
recedence constraints. They propose an Integer Linear Program-

ing (ILP) model for the problem, which is not studied in detail

ue to its performance in standard commercial solvers, and resort

o dynamic programming techniques.

In this paper we tackle the version TDTSP-TW considered also

n Arigliano et al. (2015) . The contribution of this paper is two fold.

irstly, we propose an alternative approach for the TDTSP-TW that

uilds on the ILP formulation proposed by Sun et al. (2015) . This

odel is used to develop an exact algorithm following a Branch-

nd-Cut scheme (BC. We included several initial heuristics, prepro-

essing rules and incorporate several families of valid inequalities,

hich are used as cuts, in order to improve the overall computa-

ional times of the algorithm. Secondly, we evaluate our approach

n benchmark instances and compare our results with two sets of

nstances proposed by Arigliano et al. (2015) . To the best of our

nowledge, this is the first comparison of two exact approaches

or the TDTSP-TW, establishing a baseline for future approaches for

he TDTSP-TW and related problems and opening the discussion

egarding formulations, algorithms and benchmark instances.

The rest of the paper is organized as follows. In Section 2 we

ntroduce the notation used throughout the paper and provide the

etailed definition of the problem. In Section 3 we describe with

ore details some of the developments proposed for the TDTSP

nd TDTSP-TW with time-dependent travel speeds, and present a

ew formulation for the TDTSP-TW using the ideas proposed in

un et al. (2015) . Section 4 describes the details of the BC algo-

ithm based on this formulation. Computational results are shown

n Section 5 and finally we conclude and state some future research

irections in Section 6 .

. Problem definition

In this section we present the definitions and the basic prop-

rties of the TDTSP-TW with the travel time model proposed in

choua et al. (2003) .

For the definition of the network, consider a digraph D = (V, A) ,

ith V = { 0 , 1 , . . . , n, n + 1 } the set of vertices and A the set of arcs.

ertices 0 and n + 1 represent the depot, for which we do not con-

ider the incoming and outgoing arcs, respectively. We denote by

 0 = V \{ n + 1 } and V n +1 = V \{ 0 } . There is a time horizon [0, T]

typically a single day) in which vehicles move along the network.

or each vertex i ∈ V , we denote by p i to its processing time and

 i = [r i , d i] the corresponding (hard) time window, where r i and d i
re the release and deadline times, respectively. In particular, we

et W 0 = W n +1 = [0 , T] . We allow waiting times when arriving at a

ertex before its release time r i , but the vehicle must wait until r i
efore starting to process it. In addition, each arc (i, j) ∈ A has an

ssociated travel distance L ij . Without loss of generality, d i + p i ≤ T

or all i ∈ V . In addition, to simplify the notation in the manuscript,

e slightly modify the standard definition and assume that p i = 0

or i ∈ V . However, the models and formulae present in this paper

an be easily adapted to consider processing times.

The time dependency is modeled as follows. The planning hori-

on is partitioned into M intervals [T h , T h +1] , h = 0 , . . . , M − 1 . We

ssume that, for each arc (i, j) ∈ A , the average value of the travel

peed during the time interval [T h , T h +1] , denoted by v ijh , for h =
 , . . . , M − 1 , is known. This partition with its corresponding travel

peeds are referred as speed profiles . It is important to remark that

he speed profiles may differ among arcs. Based on this definition,

he main idea behind the speed model is to compute the travel

imes using the information of the distance to be traveled, i.e. L ij ,

ombined with the travel speeds v ijh defined for the arc. However,

t is not assumed that the travel speed remains fixed during the

rip and it may change whenever the boundaries of an interval

re crossed. We denote by τ ij (t) to the time-dependent travel time

alue on arc (i, j) ∈ A if departing from i at time t ∈ [0, T], and it

282 A. Montero et al. / Computers and Operations Research 88 (2017) 280–289

T

l

p

(

v

a

t

m

s

i

∑

x

f

t

x

a

s

l

w

b

m

f

c

t

p

w

t

i

a

o

f

H

i

w

3

f

T

g

b

(

p

f

d

T

p

t

t

c
can be computed following Algorithm 1 as proposed in Ichoua et al.

(2003) .

Algorithm 1 Computing the travel time of arc (i, j) at time t 0
(Ichoua et al., 2003).

1: t ← t 0
2: k ← k 0 : T k 0 ≤ t 0 ≤ T k 0 +1

3: d ← L i j

4: t ′ ← t + (d/ v i jk)

5: while t ′ > T k +1 do

6: d ← d − v i jk × (T k +1 − t)

7: t ← T k +1

8: t ′ ← t + (d/ v i jk +1)

9: k ← k + 1

10: end while

11: return t ′ − t 0

The TDTSP-TW involves finding a tour that visits each vertex

exactly once with the objective of minimizing the makespan of

the route. The route starts at vertex 0 and ends at vertex n + 1 ,

while processing each vertex within its defined time window and

computing the travel times following the speed model proposed in

Ichoua et al. (2003) .

Cordeau et al. (2012) propose expressing the travel speeds v ijh
as

v i jh = δi jh b h u i j , (1)

where u ij represents the maximum speed for arc (i, j) ∈ A dur-

ing the planning horizon, b h ∈ [0, 1] is the best congestion fac-

tor during interval [T h , T h +1] and δijh ∈ [0, 1] represents the heav-

iest degradation of the congestion factor of (i, j) ∈ A in interval

[T h , T h +1] with respect to the less congested arc in [T h , T h +1] . From a

practical standpoint, this decomposition allows the authors to for-

mulate alternative scenarios that can be used to compute lower

bounds for the problem. For instance, consider the TDTSP studied

in Cordeau et al. (2012) . If the travel speeds are increased by set-

ting δijh and b h to one, then the problem reduces to a classical TSP

with constant travel times. Therefore, computing the makespan

of this solution using these increased speeds represents a lower

bound for the problem. Furthermore, the authors show that this

solution is optimal also for the case having general values of b h
but fixed δijh , and that its objective function can be used to com-

pute a lower bound on the tour duration for subpaths that are part

of a feasible solution. These results are extended to the TDTSP-TW

in Arigliano et al. (2015) . Finally, we also remark some results re-

garding the generality of the speed model present in Ghiani and

Guerriero (2014) , where the authors show that any continuous

piecewise linear travel time function can be modeled by the travel

speeds defined in (1) .

3. ILP formulations

In this section we present two ILP formulations for the TDTSP-

W. We begin by showing the formulation proposed in Arigliano

et al. (2015) and describing some of its characteristics. We then

present our formulation, which is based on the one proposed by

Sun et al. (2015) .

3.1. Travel-speed relaxation based model

This section presents the formulation proposed in Arigliano

et al. (2015) , which we name LBF. We follow most of their nota-

tion, although the formulation is presented in a slightly different

way. Let P i be the set of simple paths p = (i 0 , . . . , i k) in G starting

at the depot and ending at i , i.e. i 0 = 0 and i k = i . Let LB p denote a
ower bound on the duration of any feasible solution having path

 ∈ P i , i ∈ V , and that LB p is indeed the makespan whenever p is a

feasible) Hamiltonian path from 0 to n + 1 . Let x ij be the classical

ariable taking value one iff arc (i, j) ∈ A is part of the solution,

nd z a variable that captures the makespan of the optimal solu-

ion. The LBF is shown below.

in z (2)

.t. z ≥ LB p

(
1 +

∑

(a,b) ∈ p
(x ab − 1)

)
, i ∈ V n +1 , p ∈ P i (3)

∑

 ∈ V \{ j,n +1 }
x i j = 1 , j ∈ V n +1 (4)

∑

j∈ V \{ i, 0 }
x i j = 1 , i ∈ V 0 (5)

i ∈ S

∑

j / ∈ S
x i j ≥ 1 , ∀ S ⊆ V 0 , | S| ≥ 2 (6)

∑

(a,b) ∈ p
x ab ≤ | p | − 1 , p infeasible path (7)

 i j ∈ { 0 , 1 } , (i, j) ∈ A (8)

The objective function (2) minimizes variable z , which accounts

or the makespan of the optimal solution. Constraints (3) adjust

he value of z by setting the lower bound LB p and the variables

 ij defining the solution. Constraints (4) and (5) are the outdegree

nd indegree constraints, respectively. Subtour Elimination Con-

traints (SEC) are imposed by constraints (6) . Solutions that vio-

ate the time windows constraint are forbidden by means of the

ell known Infeasible Path Elimination Constraints (IPEC), proposed

y Ascheuer et al. (2001) , in constraints (7) . Finally, the integral do-

ain of the variables are imposed by constraints (8) .

A BC algorithm is developed in Arigliano et al. (2015) using this

ormulation as starting point. Indeed, constraints (3) are used as

uts, as well as the SEC. The IPEC constraints (7) are replaced by

he well-known tournament constraints . A set of valid inequalities,

olynomial in the number of time intervals H are considered as

ell. Since H is rather small, they are directly included as a part of

he formulation. In addition, as mentioned before, a lower bound is

nitially computed by solving an auxiliary problem, which is then

lso used to tighten the bound LB p . Due to space limitations we

mit the details regarding the computation of this bound and re-

er the reader to Cordeau et al. (2012) and Arigliano et al. (2015) .

owever, we remark that results reported indicate that the bound

s rather tight in most of the instances, both in the case with and

ithout time windows.

.2. Travel-time breakpoints based model

An alternative formulation for the TDTSP-TW can be obtained

rom the model proposed by Sun et al. (2015) for the Profitable

DTSP with Time Windows and Pickup and Delivery. This problem

eneralizes the TDTSP-TW since the vertices are not required to

e visited and also incorporates one-to-one precedences. Sun et al.

2015) report that for this particular problem the model does not

roduce good results when solved by a commercial solver.

One of the interesting features of this ILP formulation is that,

or each edge, it redefines the partitions of the time horizon in or-

er to obtain a linear travel time function within each of them.

he limits defining this new partition are referred as time break-

oints and allow to easily embed the piecewise linear time func-

ion within an ILP formulation. Formally, let T i j = { T i j
1

, . . . , T
i j

M

} be

he new partition of the time horizon into time intervals (also

alled time zones) for arc (i, j) ∈ A . We denote the consecutive time

A. Montero et al. / Computers and Operations Research 88 (2017) 280–289 283

b

w

w

w

s

c

τ

x

f

u

i

g

o

t

W

t

t

a

τ

T

m

s

(

i

t

x

r

x

t

t

e

a

t

a

t

c

t

a

i

d

4

t

w

p

a

4

t

r

p

s

n

v

o

d

a

p

a

o

a

r

a

t

m

[

m

t

a

c

o

e

o

reakpoints defining T
i j

m

∈ T i j as T
i j

m

= [w m

, w m +1] . At this point,

e abuse notation and refer to each time zone T
i j

m

as m ∈ T ij ,

ith m = 1 , . . . , | T i j | . By definition, τ ij (t) becomes a linear function

ithin each time zone that represents the travel time for arc (i, j)

tarting in time interval m . We denote by θm

i j
and ηm

i j
to the coeffi-

ients of the linear function, such that

i j (t i) = θm

i j t i + ηm

i j , ∀ t i ∈ T i j
m

. (9)

To formulate the model, Sun et al. (2015) define binary variables

m

i j
taking value 1 iff the vehicle traverses arc (i, j) ∈ A starting

rom i within time zone T
i j

m

∈ T i j . For each vertex i ∈ V , a contin-

ous nonnegative variable t i accounts for the time that i is visited

n the tour. The value of t i is decomposed to indicate time for a

iven arc in a given zone. This is achieved by introducing continu-

us variables t m

i j
defined in the following fashion

m

i j =

{
t i if x m

i j
= 1 ,

0 otherwise
(10)

e remark that similar decision variables have been considered in

he context of the TDTSP by Stecco et al. (2008) .

By combining (9) and (10) and considering variables x m

i j
, t m

i j
and

 i , the travel time function for arc (i, j), τ ij (t i), can be defined in an

ggregated fashion as

i j (t i) =

∑

T i j
m ∈ T i j

θm

i j t
m

i j + ηm

i j x
m

i j . (11)

The formulation proposed in Sun et al. (2015) , which we name

TBF, is shown next.

in t n +1 (12)

.t.
∑

(0 , j) ∈ A

∑

m ∈ T 0 j
x m

0 j = 1 (13)

∑

i, j) ∈ A

∑

m ∈ T i j

x m

i j = 1 , j ∈ V n +1 (14)

∑

 ∈ V \{ k }

∑

m ∈ T i j

x m

ik =

∑

i ∈ V \{ k }

∑

m ∈ T i j

x m

ki , k ∈ V (15)

t j ≥
∑

m ∈ T ij

(
1 + θm

ij

)
t m

ij + ηm

ij x
m

ij , (i, j) ∈ A (16)

 i =

∑

(i, j) ∈ A

∑

T i j
m ∈ T i j

t m

i j , i ∈ V 0 (17)

m

i j max { w m

, r i } ≤ t m

i j ≤ x m

i j min { w m +1 , d i } ,
(i, j) ∈ A, T i j

m

∈ T i j , T i j
m

= [w m

, w m +1] (18)

 i ≤ t i ≤ d i , i ∈ V (19)

m

i j ∈ { 0 , 1 } , (i, j) ∈ A, T i j
m

∈ T i j (20)

The objective function (12) minimizes the arrival time at ver-

ex n + 1 , which is indeed the makespan. Constraints (13) forces

he vehicle to leave the depot, and (14) stand for the indegree

quations. Constraints (15) establish the flow conservation between

rcs entering and leaving each vertex. Constraints (16) compute the

ravel time between two vertices depending on the departure time

t the origin and provide a lower bound for the arrival time t j at

he node j ∈ V . Constraints (17) together with (18) establish the

orrect departure time at each vertex and arc. Note that, in par-

icular, constraints (18) establish the correct relation between vari-

bles t m

i j
and x m

i j
. Finally, constraints (19) ensure that each vertex

s visited within its time window and constraints (20) define the

omain of the variables.
. BC algorithm

Based on the TTBF formulation presented in the previous sec-

ion, we develop a BC algorithm for the TDTSP-TW. In this section

e describe the main ingredients of the algorithm, including the

reprocessing step, the construction of an initial feasible solution

nd the cutting plane algorithm.

.1. Preprocessing

This is one of the key components in many difficult optimiza-

ion problems and, based on the related literature, in particular for

outing problems with time windows. Following the experience re-

orted by Ascheuer et al. (2001) , the preprocessing we apply con-

ists of three phases, which are applied in an iterative fashion until

o further changes are found. These phases are: arc removal and

ariable fixing, tightening of the time windows, and the derivation

f precedences using the information provided by the time win-

ows.

The elimination of arcs has a major impact on the formulation

nd allows to reduce the number of variables in the model. We ap-

ly a simple reduction using the information of the time windows

nd the travel time at the release time of the origin vertex, based

n the fact that the FIFO condition is satisfied when traversing an

rc. Formally, an arc (i, j) ∈ A is infeasible if

 i + τi j (r i) > d j (21)

nd therefore it can be removed from A . This idea can be fur-

her generalized to consider time-dependent information and re-

ove additional edges. Let (i, j) ∈ A and m ∈ T ij such that T
i j

m

=
 w m

, w m +1] . Firstly, if T
i j

m

∩ W i = ∅ , then we can set x m

i j
= 0 . Then, if

ax { w m

, r i } + τi j (max { w m

, r i }) > d j (22)

raveling form i to j starting in travel time period m is not feasible

nd therefore this time zone can be removed (or, equivalently, the

orresponding variable fixed to 0).

The tightening of the time windows consists in the adaptation

f three rules from the classical TSPTW considered in Ascheuer

t al. (2001) , which allow to adjust the release and deadline times

f each vertex. The criteria are:

• If the earliest arrival time at a vertex k ∈ V is later than the

current release time, then the latter can be increased.

r k = max

{

r k , min

(i,k) ∈ A
{ r i + τik (r i) }

}

(23)

• Unnecessary waiting times at the successors of a vertex k ∈
V can be avoided by adjusting the release times. Consider k

∈ V , and an arc (k, j) ∈ A . We define the set α j

k
= { t ≤ d k :

t + τk j (t) = r j } ∪ { d k } .

r k = max

{

r k , min

(k, j) ∈ A
min { α j

k
}
}

(24)

• The due date can also be adjusted in order to remove instants

which are not feasible to reach by at least one of its possi-

ble successors. Similarly to the previous case, we define β j

k
=

{ t ≥ r k : t + τk j (t) = d j } . Assuming that at least one of these

sets is non-empty,

d k = min

{

d k , max
(k, j) ∈ A,β j

k

 = ∅

min { β j

k
}
}

. (25)

• If the latest arrival time to k ∈ V from any possible predecessor

is earlier than the actual deadline, then d k can be decreased as

d k = min

{

d k , min { d i + τik (d i) }
}

. (26)

(i,k) ∈ A

284 A. Montero et al. / Computers and Operations Research 88 (2017) 280–289

i

w

i

i

c

i

A

n

c

p

q

T

V

f

x

4

l

l

t

f

a

N

4

a

C

i

a

π

T

a

S

δ

i

t

σ

A

t

i

V

1

σ

is valid for the TTBF.

1 We remark that such TSPTW minimizes the makespan and not the travel time

or the travel costs.
Finally, precedences are inferred using the information provided

by the time windows. We say that a vertex i precedes vertex j ,

noted as i ≺j , if i must appear before vertex j in any feasible so-

lution of the TDTSP-TW. We remark that in the TDTSP-TW the

triangle inequality on the travel times does not necessarily hold.

This assumption is usually made in other vehicle routing variants.

Therefore, the travel time between two vertices cannot be used di-

rectly to define a precedence since it may be possible to find a

faster route by traveling through another vertex. We construct an

alternative graph P = (V, R) such that arc (i, j) ∈ R iff i ≺j . Prece-

dences are defined in P by applying the following rules

• Let i, j ∈ V such that d i < r j , then i ≺ j ∈ R .
• Transitive closure: let i, j, k ∈ V such that i ≺ j , j ≺ k ∈ R , then

i ≺ k ∈ R .
• 0 ≺ j ∈ R , j = 1 , . . . , n .
• j ≺ n + 1 ∈ R, j = 1 , . . . , n .

Clearly, if i ≺j ∈ R , then the arc (j, i) can be removed from A .

We note that this rule is implicitly captured by the arc removal

rule. However, the definition of the precedences are exploited, as

explained later, by a well-known family of valid inequalities.

4.2. Initial heuristic

Finding a feasible solution for the TDTSP-TW is an N P -

Complete problem. Therefore, we adopt a similar strategy as in

Ascheuer et al. (2001) and generalize several constructive heuristics

as well some local search operators to the time-dependent case

in order to find an initial feasible solution. Due to space limita-

tions, we skip the implementation details and refer the reader to

Ascheuer et al. (2001) for the general definition of each of them.

We sequentially apply the following constructive heuristics:

• Sorting heuristics: A tour is constructed by simply ordering the

vertices according to a particular criterion, and then feasibil-

ity is checked. Such criteria are: vertex index, release date, due

date, mid points of the time windows.
• Nearest Feasible Neighbor: A partial path is iteratively extended

by including at the end a feasible vertex which results in the

smallest increase in the (partial) makespan of the solution, if

any exists.
• Insertion heuristics: A partial path is enlarged by inserting a

vertex not considered so far between two consecutive vertices.

Two criteria are considered to decide where and which vertex

to insert, resulting in two different insertion heuristics. The first

criterion regards the feasible insertion that results in the small-

est increase of the makespan. The other criterion aims to the

feasibility of the solution, and selects the vertex that has the

smallest number of feasible insertion points.

The best solution, if any, is then selected and the following list

of operators is applied until no further improvements are found:

or-exchange, arc-reversal, swap, arc-reinsertion, node-reinsertion

and two-node exchange. The resulting solution is then transferred

to the BC algorithm, aiming to have a good upper bound on the

makespan of the optimal solution and therefore being able to

prune the enumeration tree efficiently.

4.3. Cutting planes

We now describe the cutting plane algorithm developed aim-

ing to improve the quality of the lower bound provided by the LP

relaxation. In this sense, as opposed to the approach in Arigliano

et al. (2015) , none of the following cuts are necessary for the for-

mulation. In addition, as mentioned in the previous section, the

approach in Arigliano et al. (2015) considers the computation of an
nitial lower bound by solving an auxiliary TSPTW subproblem

1 ,

hich is also used later as part of a set of restrictions that are

ncluded as lazy constraints. As we observed in preliminary exper-

ments, the effectiveness of their approach appears to be tightly

oupled to the quality of this initial lower bound.

A different strategy has been adopted and we avoid comput-

ng and using in our approach the initial lower bound proposed in

rigliano et al. (2015) . Therefore, we resort to traditional BC tech-

iques and evaluate a more aggressive cutting plane algorithm in

ombination with the TTBF. For this purpose, we included four ex-

onential families of valid inequalities that have been proved to be

uite effective when applied to TSP and TSPTW contexts.

We remark that valid inequalities that are feasible for the

SPTW can be easily incorporated and considered for the TTBF.

ariables x ij can be defined in terms of the variables x m

i j
by the

ollowing identity

 i j =

∑

m ∈ T i j

x m

i j .

.3.1. Subtour elimination constraints

The formulation TTBF does not allow subtours as feasible so-

utions. Constraints (16) eliminate subtours on integer feasible so-

utions. However, SECs (6) usually produce good improvements in

he value of the LP relaxation by cutting fractional solutions. There-

ore, we decided to include the SECs as cutting planes to the TTBF

s well. The SECs are separated using the routine proposed in

agamochi et al. (1994) .

.3.2. Precedence-constrained TSP inequalities

The precedences computed during the preprocessing phase

llow us to include valid inequalities from the Precedence-

onstrained TSP proposed in Balas et al. (1995) .

The first family of cuts we consider are the so-called π-

nequalities. For S ⊆ V \{ 0 , n + 1 } , define the set of predecessors of S

s

(S) = { i ∈ V \{ 0 , n + 1 } : i ≺ j for some j ∈ S} .
he intuition behind the inequality is that, in a feasible solution,

ny vertex i ∈ S ∩ π (S) cannot be the last vertex visited in S . For

, S ′ ⊆ V \{ 0 , n + 1 } , let S̄ = V \ S and

(S, S ′) = { (i, j) ∈ A : i ∈ S, j ∈ S ′ } .
Then, the π-inequality defined by ∑

(i, j) ∈ δ(S\ π(S) , ̄S \ π(S))

x i j ≥ 1 (27)

s valid for the TTBF. Similarly, the σ -inequalities exploit informa-

ion about successors. Let S ⊆ V \{ 0 , n + 1 } and

(S) = { j ∈ V \{ 0 , n + 1 } : i ≺ j for some i ∈ S} .
 vertex j ∈ S ∩ σ (S) cannot be the first vertex of S visited in the

our. Then, the σ -inequality ∑

(i, j) ∈ δ(̄S \ σ (S) ,S\ σ (S))

x i j ≥ 1 (28)

s valid for the TTBF.

Finally, we further consider the (π , σ)-inequalities. Let X, Y ⊂
 \ {0} be such that i ≺j for every pair i ∈ X, j ∈ Y , and let Q := { 0 , n +
 } ∪ π(X) ∪ σ (Y) . Then for any S ⊂ V such that X ⊆S , Y ⊆ S̄ , the (π ,

)-inequality ∑

(i, j) ∈ δ(S\ Q , ̂ S \ Q)
x i j ≥ 1 (29)

A. Montero et al. / Computers and Operations Research 88 (2017) 280–289 285

i

(

a

o

b

i

(

π

s

t

B

v

5

t

p

e

a

C

a

R

c

c

(

r

c

w

d

t

t

c

t

b

s

w

o

fi

r

t

i

i

(

s

b

t

n

p

g

o

T

l

s

t

t

r

a

T

a

s

n

n

t

s

m

o

l

o

s

o

s

t

t

r

T

T

t

C

h

i

r

n

o
The BC algorithm includes these inequalities as cutting planes

n a similar fashion as in Ascheuer et al. (2001) and Dash et al.

2012) . An exact separation procedure is considered for the sep-

ration of the weak version of the π and σ inequalities, which are

btained from the original inequalities by replacing π (S) and σ (S)

y π (j) and σ (j), respectively, for j ∈ S . Whenever a violated weak

nequality is found, then the corresponding π and σ inequalities

27) and (28) are included in the formulation. Note that the weak

and σ inequalities are dominated by the original version.

Regarding the (π , σ)-inequalities, we consider the simple ver-

ion which accounts for sets X = { i } and Y = { j} such that i ≺j . For

he separation routine, we also follow the approach proposed in

alas et al. (1995) .

Within the BC, the cutting plane algorithm is executed until no

iolated cuts are identified.

. Computational results

We conducted computational experiments in order to evaluate

he behavior of the approach proposed in this paper and com-

are the results with another exact algorithm from the related lit-

rature. The algorithms are coded in C++, using g++ 4.8.4 and

n Ubuntu Linux 14.04 LTS as operating system, using CPLEX 12.4

allable Library as LP and MILP solver. The experiments are run on

 Workstation with an Intel Core i7-2600 3.4GHz CPU and 16Gb of

AM.

The algorithms are evaluated on two sets of instances. We first

onsider the instances reported in Arigliano et al. (2015) , which are

onstructed by extending the instances generated in Cordeau et al.

2012) to the case with time windows. The original instances are

andomly generated considering different settings for three con-

entric zones, aiming to emulate different customers distributions

ithin the center of the city. In addition, alternative scenarios are

efined by considering different maximum speeds, congestion fac-

ors and traffic patterns for the different zones. Following the no-

ation introduced in (1) , the congestion of the instances is partially

aptured by the values δijh and
 = min i, j,h δi jh . The latter charac-

erizes the interval where the degradation of the congestion factor

elongs.

Based on this information, Arigliano et al. (2015) extend the in-

tances by incorporating time windows for the customers in such a

ay that at least one feasible solution exists. They consider values

f n = 15 , 20 , 30 , 40 ,
 = 0 . 7 , 0 . 8 , 0 . 9 , 0 . 98 and two different traf-

c patterns, with 30 instances for each combination of these pa-

ameters. This gives a total of 960 instances. 2 We refer the reader

o Arigliano et al. (2015) and Cordeau et al. (2012) for the detailed

nformation regarding the construction and characteristics of the

nstances.

The second set of instances is also proposed by Arigliano et al.

2015) 3 but aim to evaluate different characteristics such as the

ize of the time windows and present a significantly larger num-

er of time periods. We consider for our experiments a subset of

he so-called w100 instances corresponding to the combinations of

 = 15 , 20 , 30 and
 = 0 . 7 , 0 . 8 , 0 . 9 , 0 . 98 for the above mentioned

atterns. The first 9 instances for each combination are considered,

iving a total of 216 instances. We use this to evaluate the impact

f the number of travel time periods on a BC algorithm based on

TBF, since it depends on this parameter. The selection of w100 re-

ies on the fact that, on average, the size of the time windows is

imilar to the original set of instances.

We begin by analyzing some particular characteristics as well as

he impact of the preprocessing phase in both set of instances. The
2 We note that the information regarding four particular instances is missing in

he package, and therefore in practice we only discarded these instances.
3 Although no results reported by the time of writing.

s

a
esults are aggregated by the number of vertices, n , and reported

s averages:

• # tot-edges: total number of time-dependent edges.
• # feas-edges: number of feasible time-dependent edges, that is,

feasible combinations among (i, j) ∈ A and m ∈ T
i j

m

after the pre-

processing step.
• avg-tt-bp: average number of feasible travel time breakpoints

per edge (after preprocessing).
• min-tt-bp: minimum number of feasible travel speeds break-

points per edge (after preprocessing).
• max-tt-bp: maximum number of feasible travel speeds break-

points per edge (after preprocessing).

The summary results for the preprocessing phase is shown in

able 1 . For each of the metrics described below, we report the

verage (avg.), minimum (min.) and maximum (max.) over all in-

tances for the corresponding value of n . We first note that the

umber of feasible edges after applying the preprocessing is sig-

ificantly reduced with respect to the total number of edges. Af-

er this phase, only 10% of the edges remain feasible in the first

et of instances and 5% in the second one, w 100. This difference

ay be related with the number of avg-tt-bp obtained as a result

f the definition of the travel speed profiles, which is significantly

arger for the w 100 instances. This is one of the key ingredients of

ur approach, which showed to be very effective on this set of in-

tances. Secondly, we remark the difference regarding the number

f travel time breakpoints between the two sets of instances. The

et w 100 presents a higher level of granularity in the definition of

he speed profiles and, therefore, this impacts in the number of

ravel time breakpoints defined for each edge.

Regarding the methods, we consider the following exact algo-

ithms:

• LBF-BC: BC algorithm proposed in Arigliano et al. (2015) .
• TTBF-CPLEX: Formulation TTBF using CPLEX’ default algorithm.

We include SEC for | S| = 2 as part of the formulation.
• TTBF-BC: BC algorithm described in Section 4 . CPLEX’ dynamic

search and primal reductions are automatically disabled.
• TTBF-CB: BC algorithm but the cutting plane phase described

in Section 4 is run only at the root node. When finished, a new

ILP is built including the inequalities added during the cutting

phase and solved by CPLEX’ default algorithm.

TBF-CPLEX acts as a baseline to evaluate the other approaches.

TBF-BC and TTBF-CB further investigate the impact of the cut-

ing plane algorithm when combined in two different settings with

PLEX. TTBF-CB is considered to make evident some particular be-

aviors.

For each combination of parameters, we report the following

nformation:

• OPT: Number of instances solved to optimality within the set

considered. 4

• Time: computational times in seconds.
• Nodes: number of nodes explored in the enumeration tree.
• %rG: % gap at the root node.
• %fG: % gap at the end of the execution.

Except for the number of instances solved, the remaining met-

ics are reported as averages over the instances in the group.

We impose a limit of 3600 seconds for the execution time run-

ing in a single-thread. The computing time (Time) is averaged

nly over the solved instances. Similarly, %fG is averaged only con-

idering the instances that are not solved to optimality. Gaps %rG

nd %fG are computed as (z best − z) /z, where z best represents the
4 We are considering the missing instances as unsolved .

286 A. Montero et al. / Computers and Operations Research 88 (2017) 280–289

Table 1

Preprocessing statistics for both sets of instances.

Set n Value # tot-edges # feas-edges avg-tt-bp min-tt-bp max-tt-bp

Original 15 avg. 1785 264 1.67 1.00 4.94

min. 1785 177 1.13 1.00 3.00

max. 1785 404 2.35 1.00 5.00

20 avg. 3080 437 1.62 1.00 5.00

min. 3080 295 1.19 1.00 5.00

max. 3080 627 2.19 1.00 5.00

30 avg. 6720 850 1.50 1.00 5.00

min. 6720 629 1.11 1.00 5.00

max. 6720 1168 1.95 1.00 5.00

40 avg. 11,760 1425 1.45 1.00 5.00

min. 11,760 1042 1.11 1.00 5.00

max. 11,760 1871 1.86 1.00 5.00

w 100 15 avg. 36,962 1906 13.01 1.33 88.32

min. 36,592 1586 10.37 1.00 48.00

max. 37,199 2493 17.81 3.00 139.00

20 avg. 63,918 3489 14.33 1.38 112.11

min. 63,552 3078 12.61 1.00 81.00

max. 64,201 3876 16.28 3.00 140.00

30 avg. 139,621 7219 13.80 1.01 137.67

min. 138,715 6077 12.01 1.00 119.00

max. 140,229 7666 14.62 2.00 142.00

Table 2

Results for Arigliano et al. instances for Traffic Pattern A, n = 15 , 20 , 30 , 40 .

 | V | LBF-BC TTBF-CPLEX TTBF-BC TTBF-CB

OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time

0.98 15 30 0.24 0.00 570 3.80 30 135.96 0.00 35,510 33.83 30 42.92 0.00 546 1.93 30 42.92 0.00 1730 1.98

20 27 0.03 0.00 1030 11.41 30 173.89 0.00 893 3.92 29 24.45 0.00 213 1.50 30 25.85 0.00 1206 7.19

0.11 0.11 – – 1 66.39 0.13 – –

30 25 0.01 0 0 0.50 29 343.21 0.00 6459 30.63 29 45.78 0.00 695 13.62 29 45.78 0.00 1770 10.31

40 18 0.06 0.00 3 1.76 21 399.74 0.00 3809 36.23 27 62.07 0.00 11,556 383.35 28 61.37 0.00 10,231 119.26

2.51 2.35 – – 9 579.48 210.80 – – 3 162.79 4.94 – – 2 223.06 0.17 – –

0.90 15 30 0.41 0.00 2767 16.00 30 66.82 0.00 234 0.23 30 10.52 0.00 28 0.13 30 10.52 0.00 100 0.17

20 25 0.32 0.00 5927 59.89 30 211.52 0.00 10,565 8.49 30 44.10 0.00 311 1.95 30 44.10 0.00 696 1.45

0.80 0.71 – –

30 25 0.24 0.00 879 27.87 28 263.65 0.00 883 4.04 30 37.50 0.00 2327 98.27 30 37.50 0.00 6600 85.61

0.89 0.84 – 2 447.04 66.17 – –

40 10 0.22 0.00 300 40.73 23 367.05 0.00 7297 47.28 27 58.80 0.00 5014 201.46 26 53.40 0.00 5081 58.61

2.14 1.88 – – 7 510.79 169.41 – – 3 196.73 4.08 – – 4 197.37 4.63 – –

0.80 15 30 0.76 0.00 813 5.76 30 84.09 0.00 8682 10.01 30 35.74 0.00 9309 89.95 30 35.74 0.00 14,463 16.10

20 22 0.72 0.00 4021 53.50 30 169.98 0.00 3722 2.54 30 29.28 0.00 362.63 1.74 30 29.28 0.00 639 1.11

0.99 0.61 – –

30 14 0.10 0.00 1150 37.89 30 312.13 0.00 46,040 83.17 30 45.45 0.00 1297 35.05 30 45.45 0.00 2817 13.64

2.22 1.17 – –

40 11 0.53 0.00 615 47.66 28 335.59 0.00 23,538 123.96 30 56.52 0.00 1905 94.68 30 56.52 0.00 2269 25.38

2.10 1.25 – – 2 571.36 54.80 – –

0.70 15 29 1.31 0.00 1387 9.70 30 110.59 0.00 736 0.68 30 32.03 0.00 51 0.26 30 32.03 0.00 152 0.35

1.93 1.90 – –

20 21 1.00 0.00 116 1.65 29 127.87 0.00 5332 29.98 30 47.09 0.00 20,393 283.32 30 47.09 0.00 12,580 61.95

1.98 1.14 – – 1 376.92 1.20 – –

30 16 0.63 0.00 1337 9.21 27 217.50 0.00 21,517 68.21 29 42.28 0.00 5967 134.55 29 42.28 0.00 15,386 63.87

3.01 1.97 – – 3 488.82 50.40 – – 1 176.25 4.20 – – 1 176.25 2.64 – –

40 12 1.00 0.00 6 2.40 26 219.10 0.00 16,686 134.25 25 47.38 0.00 467 141.66 28 44.85 0.00 5075 44.83

3.11 1.73 – – 3 580.01 152.75 – – 4 63.01 0.38 – – 1 180.78 0.74 – –

B

i

t

s

h

g

c

i

n

t

f

t

t
objective function of the best feasible solution for the instance

(eventually, the optimal solution) and z the value being considered,

i.e. the lower bound at the root node or the lower bound of the ob-

jective value available in the enumeration tree when reaching the

time limit. For each combination of parameters, the results are dis-

aggregated between solved and unsolved instances.

The results obtained on the first set of instances for methods

LBF-BC, TTBF-CPLEX, TTBF-BC and TTBF-CB for traffic patterns A

and B defined in Arigliano et al. (2015) are presented in Tables 2

and 3 , respectively. In both cases, the main message of the ta-

bles is that TTBF-CB produces the best results in terms of number

of instances solved, the average computing time and number of

nodes explored during the enumeration. Another observation in-

volves TTBF-CPLEX, which is able to solve more instances that LBF-
C for both traffic patterns. This is somehow an unexpected behav-

or given the complex developments included in LBF-BC. However,

he behavior exhibited regarding the relation between %rG and %fG

upports our initial observation with respect to the ILP model be-

ind LBF-BC. The initial lower bound considered is very tight in

eneral, but in terms of a BC algorithm the formulation finds diffi-

ulties to improve this bound and close the gap to prove optimal-

ty. Indeed, the authors report that the cutting plane algorithm is

ot able to improve this bound at the root node, and we observed

hat in many of the instances solved the optimality is proved be-

ore starting the enumeration. Based on limited extra experimenta-

ion, our conjecture is that constraints (3) , despite that LB p may be

ight, is a weak inequality from an ILP perspective. However, fur-

A. Montero et al. / Computers and Operations Research 88 (2017) 280–289 287

Table 3

Results for Arigliano et al.. instances for Traffic Pattern B, n = 15 , 20 , 30 , 40 .

 | V | LBF-BC TTBF-CPLEX TTBF-BC TTBF-CB

OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time

0.98 15 27 0.19 0.00 1056 58.09 29 95.62 0.00 493 0.50 29 27.94 0.00 52 0.20 29 27.94 0.00 68 0.18

0.20 0.21 – –

20 17 0.16 0.00 820 45.92 29 213.62 0.00 1772 3.21 29 39.42 0.00 191 1.32 29 39.42 0.00 460 1.12

0.22 0.21 – –

30 13 0.24 0.00 511 14.67 28 234.42 0.00 10,857 25.35 29 48.06 0.00 13,377 262.09 29 48.06 0.00 7307 28.37

1.44 0.58 – – 1 489.71 122.26 394,706 3605.55

40 9 0.13 0.00 0 0.78 25 461.20 0.00 47,470 245.29 29 84.04 0.00 3437 144.36 29 84.04 0.00 8619 51.23

1.00 0.73 – – 5 625.61 178.73 – – 1 116.32 0.10 – – 1 116.32 0.10 – –

0.90 15 27 0.99 0.00 800 5.50 30 67.01 0.00 1975 1.66 30 25.34 0.00 75 0.26 30 25.34 0.00 227 0.31

3.33 1.55

20 20 0.95 0.00 3281 40.16 30 126.24 0.00 4872 8.57 30 28.89 0.00 1070 9.52 30 28.89 0.00 2974 5.22

1.11 0.99 – –

30 18 1.00 0.00 673 18.41 30 245.46 0.00 1721 11.04 30 27.48 0.00 61 1.87 30 27.48 0.00 469 2.61

1.03 0.88 – –

40 10 0.70 0.00 205 25.21 25 242.24 0.00 7196 123.41 27 52.56 0.00 1556 135.00 28 51.41 0.00 5707 62.13

1.93 0.70 – – 5 616.07 201.78 – – 3 95.20 0.15 – – 2 132.54 0.22 – –

0.80 15 28 2.35 0.00 1072 7.85 30 81.55 0.00 3938 3.17 30 43.81 0.00 607 2.27 30 43.81 0.00 998 1.13

4.60 3.71 – –

20 13 1.96 0.00 3595 41.58 29 121.78 0.00 1740 2.81 29 26.59 0.00 133 0.98 29 26.59 0.00 346 0.85

2.72 2.05 – –

30 7 1.91 0.00 592 15.84 30 259.18 0.00 22,822 84.52 29 43.80 0.00 1643 19.41 30 46.35 0.00 9415 37.54

3.64 2.25 – – 1 120.13 0.81 – –

40 11 1.48 0.00 26 8.03 28 321.02 0.00 13,829 120.60 29 52.32 0.00 582 58.87 29 57.79 0.00 2654 31.42

3.40 1.72 – – 2 648.64 359.83 – – 1 220.20 5.97 – – 1 61.80 0.68 – –

0.70 15 29 4.64 0.00 4561 38.27 30 90.92 0.00 553 0.79 30 31.23 0.00 171 0.61 30 31.23 0.00 307 0.60

5.90 5.48

20 16 3.69 0.00 1633 27.35 28 157.51 0.00 5480 5.50 28 39.50 0.00 119 0.93 28 39.50 0.00 421 1.14

4.14 3.24 – –

30 6 3.70 0.00 0 0.44 29 256.41 0.00 10,644 61.09 30 58.28 0.00 2694 29.84 30 58.28 0.00 1478 8.68

5.35 3.71 – – 1 478.82 13.62 – –

40 3 0.99 0.00 0 1.08 26 258.27 0.00 18,352 126.08 25 43.86 0.00 326 41.97 30 56.44 0.00 9376 94.45

0.03 2.80 – – 4 400.83 115.26 – – 5 119.36 0.90 – –

t

s

p

m

e

o

w

fi

C

a

t

i

T

i

f

a

c

d

w

n

g

p

t

i

r

t

t

a

a

2

s

s

t

t

l

c

s

a

t

l

e

n

s

a

p

o

d

t

i

i

s

s

s

6
her experiments and investigations should be conducted to obtain

tronger evidence.

The comparison between TTBF-CPLEX and TTBF-BC also

resents some interesting patterns. Firstly, TTBF-BC is able to solve

ore instances, and this tendency is clearer as n increases. The av-

rage %rG and %fG are significantly better for TTBF-BC, sometimes

btaining differences of about one order of magnitude. In addition,

e can observe large %rG for some combinations under both traf-

c patterns and for both algorithms, with larger values for TTBF-

PLEX. Recall that %rG is relative to the lower bound evaluated,

nd therefore values larger than 100% indicate that when leaving

he root node, the value of the LP relaxation after the cutting phase

s about 1/3 of the optimal value. However, both TTBF-CPLEX and

TBF-BC, despite these large values, are able to close most of the

nstances. Regarding the comparison between TTBF-BC and LBF-BC

ollows a similar tendency as with respect to TTBF-CPLEX, but with

 larger difference in favor of TTBF-BC.

At this point, it is important to note that the inclusion of user

uts within CPLEX disables some specific procedures (reductions,

ynamic search , etc). To assess the impact of the valid inequalities,

e consider TTBF-CB that includes the cutting plane at the root

ode and then the resulting ILP is solved using CPLEX’s default al-

orithm. In this fashion, we are able to capture the impact of im-

roving the %rG produced by the cutting planes. The results show

hat TTBF-CB is the most effective approach on this, solving more

nstances to optimality in less computational time.

We now restrict the analysis to the instances with n = 40 . 5 The

esults follow the same pattern as the ones described before, but

he difference in terms of the number of instances solved to op-

imality is accentuated. Indeed, when restricted to n = 40 , from
5 We believe the %rG of LBF-BC for
 = 0 . 7 , Traffic Pattern B is indeed a typo

nd should be multiplied by 100.

L

t

0

t

 total of 240 instances TTBF-CB is able to solve to optimality

28, TTBF-BC 219 instances and TTBF-CPLEX 202, while LBF-BC can

olve 84. Large average %rG can be observed for the unsolved in-

tances, which are significant when observing %fG. This suggests

hat both algorithms over TTBF are able to reduce, combining cut-

ing planes with node enumeration, the difference between the

ower and upper bounds.

Tables 4 and 5 6 show the results for the second set of instances

onsidered for traffic patterns A and B, respectively. These tables

how the results for TTBF-CPLEX, TTBF-BC and TTBF-CB since there

re no public reports on LBF-BC. This experiment aims to evaluate

he impact of the number of travel time breakpoints in the formu-

ation, which is captured by the definition of the instances consid-

red. Firstly, all methods produce reasonable results although the

umber of travel time periods per edge is larger than in the first

et of instances. We observed an increment in the number of vari-

bles and constraints in the TTBF, although based on limited ex-

eriments the formulation seems to be more sensitive to the size

f the time windows.

The comparison regarding TTBF-CPLEX and TTBF-BC is slightly

ifferent from the previous case. TTBF-CPLEX is capable of solving

o optimality more instances than TTBF-BC despite the significant

mprovements in %rG due to the inclusion of specific valid inequal-

ties. However, TTBF-CB is able to solve almost all instances in this

et in smaller computing times. Overall, TTBF-CPLEX solves 202 in-

tances out of the 216, TTBF-BC 187 and TTBF-CB 214. These results

how that there is a great potential for improvements when com-
We include some details for
 = 0 . 7 and n = 30 for TTBF-BC. The value of the

P relaxation when leaving the root node is close to (z best) and, when rouned to

wo decimals, the resulting value is zero. TTBF-BC exits the root node with a gap of

.92% and is not able to find the optimal solution during the enumeration, reaching

he time limit with a final gap of 0.22%.

288 A. Montero et al. / Computers and Operations Research 88 (2017) 280–289

Table 4

Results for set w 100 for Traffic Pattern A, n = 15 , 20 , 30 .

 | V | TTBF-CPLEX TTBF-BC TTBF-CB

OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time

0.98 15 9 103.03 0.00 6753 31.52 9 61.91 0.00 2336 18.12 9 61.91 0.00 1571 9.28

20 9 118.23 0.00 3158 22.12 9 45.88 0.00 12,201 102.78 9 45.88 0.00 18,034 104.03

30 7 177.01 0.00 40,940 483.12 3 37.02 0.00 16,311 273.60 8 55.29 0.00 5306 87.30

2 459.93 3.82 – – 6 73.97 0.11 – – 1 112.48 6.55 – –

0.9 15 9 107.48 0.00 20,794 75.19 9 53.82 0.00 2810 17.60 9 53.82 0.00 1630 9.27

20 9 72.28 0.00 2579 15.40 8 34.46 0.00 6319 53.96 9 35.97 0.00 1914 14.39

1 48.06 0.24 – –

30 7 146.10 0.00 70,178 495.79 7 36.66 0.00 24,407 475.71 9 52.19 0.00 24,054 227.78

2 160.95 0.35 – – 2 106.55 0.08 – –

0.8 15 9 108.42 0.00 7268 25.66 9 48.76 0.00 4003 24.56 9 48.76 0.00 1464 7.61

20 9 83.21 0.00 10,345 57.79 9 36.85 0.00 16,370 139.96 9 36.85 0.00 4886 33.38

30 7 85.18 0.00 10,202 187.26 5 21.50 0.00 298 19.53 9 42.19 0.00 41,493 311.34

2 140.37 4.61 – – 4 68.05 0.88 – –

0.7 15 9 94.93 0.00 2433 9.36 9 43.26 0.00 5037 31.71 9 43.26 0.00 2854 20.84

20 8 52.06 0.00 9446 54.21 8 13.41 0.00 32,113 273.97 9 28.98 0.00 4345 26.75

1 191.94 2.28 – – 1 153.53 0.14 – –

30 8 56.15 0.00 19,060 169.49 7 23.22 0.00 21,797 460.29 9 37.37 0.00 40,394 349.54

1 281.37 0.08 – – 2 86.90 0.04 – –

Table 5

Results for set w 100 for Traffic Pattern B, n = 15 , 20 , 30 .

 | V | TTBF-CPLEX TTBF-BC TTBF-CB

OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time OPT %rG %fG Nodes Time

0.98 15 9 102.01 0.00 6956 22.80 9 54.86 0.00 39,266 226.50 9 54.86 0.00 2474 10.98

20 9 124.80 0.00 3360 35.03 9 40.37 0.00 24,601 197.37 9 40.37 0.00 2426 17.66

30 8 219.78 0.00 85,279 767.11 5 26.24 0.00 41,713 805.62 9 59.48 0.00 51,077 282.95

1 331.06 0.08 – – 4 101.03 0.05 – –

0.9 15 9 106.17 0.00 3427 14.40 9 40.20 0.00 3114 19.53 9 40.20 0.00 1465 8.77

20 9 86.06 0.00 4401 29.82 9 39.39 0.00 12,436 129.32 9 39.39 0.00 2483 16.57

30 7 109.38 0.00 4902 73.66 6 40.29 0.00 18,956 346.44 9 42.98 0.00 3274 62.02

2 138.99 0.06 – – 3 48.37 0.20 – –

0.8 15 9 78.20 0.00 1228 4.92 9 37.22 0.00 2597 12.39 9 37.22 0.00 973 4.23

20 8 55.04 0.00 1608 9.02 9 24.02 0.00 35,523 320.04 9 24.02 0.00 722 10.33

1 212.64 1.91 – –

30 7 91.14 0.00 18,160 283.68 6 39.45 0.00 64,414 929.72 8 40.20 0.00 29,023 242.36

2 0.96 0.51 – – 3 28.92 0.68 – – 1 1.82 0.93 – –

0.7 15 9 62.44 0.00 917 3.07 9 12.34 0.00 445 2.93 9 12.34 0.00 894 3.45

20 9 44.77 0.00 76,853 414.20 7 0.43 0.00 20 1.42 9 24.71 0.00 49,460 295.91

2 109.70 1.93 – –

30 9 30.02 0.00 36,105 195.43 8 10.84 0.00 18,857 294.06 9 9.63 0.00 14,222 161.79

1 0.00 0.00 – –

6

g

c

f

t

c

t

e

a

o

s

p

b

i

d

u

t
bining problem-specific with general purpose ILP techniques which

should be exploited and investigated in more detail.

Finally, we would like to make a comment with respect to

a particular behavior observed during the experimentation. The

travel time calculation proposed in Algorithm 1 assumes contin-

uous (rational) information for computing travel times, and the

models allow arrivals and departure to occur at fractional time in-

stants. Therefore, the computation of the arrival/departure at each

vertex is subject to numerical errors. This may affect not only

the values of the objective function but, given the presence of

time windows, the feasibility of a solution. Indeed, we experienced

feasibility issues in some particular cases with both formulations

TTBF-BC and TTBF-CB, related mainly to CPLEX’s feasibility toler-

ance parameter. Furthermore, we noted some isolated cases where

the default value of the parameter relative MIP gap tolerance pro-

duced some of the algorithms to terminate before proving opti-

mality. In these cases, the optimal solution can be found when

readjusting this parameter. Therefore, special considerations must

be taken into account regarding numerical problems when tackling

this version of the TDTSP-TW.
g

r

p
. Conclusions and future research

This article presents an exact algorithm for the TDTSP-TW, a

eneralization of the TSPTW where the travel time between two

ities is not constant along the day. We propose an ILP formulation

ollowing the research in Sun et al. (2015) . Based on this formula-

ion, we develop a two tailored BC algorithms including prepro-

essing rules, initial heuristics and valid inequalities, which proved

o be effective. Compared to the approach proposed in Arigliano

t al. (2015) , the proposed BC approaches TTBF-BC and TTBF-CB are

ble to solve 929 and 940 instances, respectively, out of a total

f 960, which represents a difference of more than 300 instances

olved. In addition, computing times and the number of nodes ex-

lored are significantly reduced.

As future work, several research lines are worth investigating

ased on the results shown in this paper. Firstly, further research

s needed regarding formulations and exact algorithms for time-

ependent problems in general, and for the TDTSP-TW in partic-

lar. Alternative models which are able to effectively incorporate

he time dependency could have a significant impact from an al-

orithmic perspective. In this same direction, further investigations

egarding particular valid inequalities that account for the time de-

endency may produce improvements in the lower bounds pro-

A. Montero et al. / Computers and Operations Research 88 (2017) 280–289 289

v

t

t

b

p

n

T

t

d

i

w

a

t

g

t

m

t

t

r

l

A

2

2

a

t

c

c

R

A

A

A

A

B

C

D

D

F

F

G

G

G

G

H

I

L

M

M

M

M

M

M

N

P

S

S

P
ided by the LP relaxation which, combined with effective heuris-

ic techniques, would improve the computation times and increase

he size of the instances consistently solved. In addition, it would

e very interesting to evaluate the behavior of extensions of the

roposed approach in other time-dependent problems, such as the

atural extension to the multiple vehicle case as well as in the

DTSP.

Regarding the experimental settings, it would be interesting

o construct a larger set of benchmark instances considering also

ifferent construction patterns. Ideally, it would be interesting to

nclude instances with real travel time information as well. This

ould provide a more diverse environmental context for the evalu-

tion and comparison of the algorithm, and in particular regarding

heir applicability in practice.

Finally, we remark that VRPs usually assume data to be inte-

er. Considering the numerical instability during the experimen-

ation, it would be interesting to adapt the current travel speed

odel, and its corresponding travel time computation, to be able

o work with discretized times while preserving its main charac-

eristics. From a practical point of view, travel times could be rep-

esented as minutes, half minutes, seconds, etc., depending on the

evel of granularity required by the operations involved.

cknowledgments

This research is partially supported by FONC y T grant PICT-2013-

460 from the Government of Argentina, and by UBAC y T grant

0 02010 010 0 6 6 6 from Universidad de Buenos Aires, Argentina. The

uthors are grateful to the anonymous referees, the associate edi-

ors and the general editor for their careful reading and valuable

omments, which helped improving a previous version of the arti-

le.

eferences

beledo, H., Fukasawa, R., Pessoa, A., Uchoa, E., 2012. The time dependent traveling
salesman problem: polyhedra and algorithm. Math. Programm. Comput. 5 (1),

27–55. doi: 10.1007/s12532-012-0047-y .

lbiach, J., Sanchis, J.M., Soler, D., 2008. An asymmetric tsp with time windows and
with time-dependent travel times and costs: an exact solution through a graph

transformation. Eur. J. Oper. Res. 189 (3), 789–802. http://dx.doi.org/10.1016/j.
ejor.2006.09.099 .

rigliano, A. , Ghiani, G. , Grieco, A. , Guerriero, E. , 2015. Time Dependent Traveling
Salesman Problem with Time Windows: Properties and an Exact Algorithm.

Technical Report .

scheuer, N. , Fischetti, M. , Grötschel, M. , 2001. Solving the asymmetric travelling
salesman problem with time windows by branch-and-cut. Math. Program. 90

(3), 475–506 .
alas, E., Fischetti, M., Pulleyblank, W.R., 1995. The precedence-constrained asym-

metric traveling salesman polytope. Math. Program. 68, 241–265. doi: 10.1007/
BF01585767 .
ordeau, J.-F. , Ghiani, G. , Guerriero, E. , 2012. Analysis and branch-and-cut algorithm
for the time-dependent travelling salesman problem. Transp. Sci. 48 (1), 46–58 .

abia, S. , Ropke, S. , van Woensel, T. , De Kok, T. , 2013. Branch and price for the
time-dependent vehicle routing problem with time windows. Transp. Sci. 47 (3),

380–396 .
ash, S., Günlük, O., Lodi, A ., Tramontani, A ., 2012. A time bucket formulation for

the traveling salesman problem with time windows. INFORMS J. Comput. 24 (1),
132–147. doi: 10.1287/ijoc.1100.0432 .

ischetti, M. , Laporte, G. , Martello, S. , 1993. The delivery man problem and cumula-

tive matroids. Oper. Res. 41 (6), 1055–1064 .
urini, F. , Kidd, M.P. , Persiani, C.A. , Toth, P. , 2015. Improved rolling horizon ap-

proaches to the aircraft sequencing problem. J. Scheduling 18 (5), 435–447 .
endreau, M. , Ghiani, G. , Guerriero, E. , 2015. Time-dependent routing problems: a

review. Comput. Oper. Res. 64, 189–197 .
hiani, G., Guerriero, E., 2014. A note on the ichoua, gendreau, and potvin (2003)

travel time model. Transp. Sci. 48 (3), 458–462. doi: 10.1287/trsc.2013.0491 .

odinho, M.T., Gouveia, L., Pesneau, P., 2014. Natural and extended formulations for
the time-Dependent traveling salesman problem. Discrete Appl. Math. 164, 138–

153. doi: 10.1016/j.dam.2011.11.019 .
ouveia, L. , Voß, S. , 1995. A classification of formulations for the (time-dependent)

traveling salesman problem. Eur. J. Oper. Res. 2217 (93) .
ill, A.V. , Benton, W. , 1992. Modelling intra-city time-dependent travel speeds for

vehicle scheduling problems. J. Oper. Res. Soc. 343–351 .

choua, S. , Gendreau, M. , Potvin, J.-Y. , 2003. Vehicle dispatching with time-depen-
dent travel times. Eur. J. Oper. Res. 144 (2), 379–396 .

ucena, A. , 1990. Time-dependent traveling salesman problem—the deliveryman
case. Networks 20 (6), 753–763 .

alandraki, C. , Daskin, M.S. , 1992. Time dependent vehicle routing problems: for-
mulations, properties and heuristic algorithms. Transp. Sci. 26 (3), 185–200 .

elgarejo, P.A. , Laborie, P. , Solnon, C. , 2015. A time-dependent no-overlap con-

straint: application to urban delivery problems. In: Integration of AI and OR
Techniques in Constraint Programming. Springer, pp. 1–17 .

éndez-Dıaz, I. , Miranda-Bront, J. , Toth, P. , Zabala, P. , 2011. Infeasible path formula-
tions for the time-dependent tsp with time windows. In: 10 th Cologne-Twente

Workshop on Graphs and Combinatorial Optimization CTW 2011, pp. 198–
202 .

éndez-Díaz, I. , Zabala, P. , Lucena, A. , 2008. A new formulation for the traveling

deliveryman problem. Discrete Appl. Math. 156 (17), 3223–3237 .
iranda-Bront, J.J. , 2012. Integer Programming approaches to the Time Dependent

Travelling Salesman Problem. Facultad de Ciencias Exactas y Naturales. Univer-
sidad de Buenos Aires .

iranda-Bront, J.J., Méndez-Díaz, I., Zabala, P., 2013. Facets and valid inequalities for
the time-dependent travelling salesman problem. Eur. J. Oper. Res. doi: 10.1016/

j.ejor.2013.05.022 .

agamochi, H., Ono, T., Ibaraki, T., 1994. Implementing an efficient minimum capac-
ity cut algorithm. Math. Program. 67 (1), 325–341. doi: 10.1007/BF01582226 .

icard, J.-C. , Queyranne, M. , 1978. The time-dependent traveling salesman problem
and its application to the tardiness problem in one-machine scheduling. Oper.

Res. 26 (1), 86–110 .
tecco, G., Cordeau, J.-F., Moretti, E., 2008. A branch-and-cut algorithm for a produc-

tion scheduling problem with sequence-dependent and time-dependent setup
times. Comput. Oper. Res. 35 (8), 2635–2655. http://dx.doi.org/10.1016/j.cor.

2006.12.021 .

un, P. , Dabia, S. , Veelenturf, L.P. , Van Woensel, T. , 2015. The Time-Dependent
Pro_table Pickup and Delivery Traveling Salesman Problem with Time Windows.

Technical Report. Eindhoven University of Technology .
. Toth and D. Vigo, editors. Vehicle Routing: Problems, Methods, and Applications,

Second Edition. MOS-SIAM Series on Optimization. 2014.

http://dx.doi.org/10.1007/s12532-012-0047-y
http://dx.doi.org/10.1016/j.ejor.2006.09.099
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0003
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0004
http://dx.doi.org/10.1007/BF01585767
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0006
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0007
http://dx.doi.org/10.1287/ijoc.1100.0432
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0009
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0010
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0011
http://dx.doi.org/10.1287/trsc.2013.0491
http://dx.doi.org/10.1016/j.dam.2011.11.019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0014
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0015
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0016
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0017
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0018
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0019
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0020
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0022
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0022
http://dx.doi.org/10.1016/j.ejor.2013.05.022
http://dx.doi.org/10.1007/BF01582226
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0025
http://dx.doi.org/10.1016/j.cor.2006.12.021
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027
http://refhub.elsevier.com/S0305-0548(17)30161-2/sbref0027

	An integer programming approach for the time-dependent traveling salesman problem with time windows
	1 Introduction and literature review
	2 Problem definition
	3 ILP formulations
	3.1 Travel-speed relaxation based model
	3.2 Travel-time breakpoints based model

	4 BC algorithm
	4.1 Preprocessing
	4.2 Initial heuristic
	4.3 Cutting planes
	4.3.1 Subtour elimination constraints
	4.3.2 Precedence-constrained TSP inequalities

	5 Computational results
	6 Conclusions and future research
	 Acknowledgments
	 References

