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Abstract In advanced water treatment processes, the degra-
dation efficiency of contaminants depends on the reactivity of
the hydroxyl radical toward a target micropollutant. The pres-
ent study predicts the hydroxyl radical rate constant in water
(kOH) for 118 emerging micropollutants, by means of quanti-
tative structure-property relationships (QSPR). The
conformation-independent QSPR approach is employed, to-
gether with a large number of 15,251 molecular descriptors
derived with the PaDEL, Epi Suite, andMold2 freewares. The
best multivariable linear regression (MLR) models are found
with the replacement method variable subset selection tech-
nique. The proposed five-descriptor model has the following

statistics for the training set: R2
train ¼ 0:88, RMStrain = 0.21,

while for the test set is R2
test ¼ 0:87, RMStest = 0.11. This

QSPR serves as a rational guide for predicting oxidation pro-
cesses of micropollutants.

Keywords Reaction rate constant .Watermicropollutant .

Quantitative structure-property relationships . Replacement
method .Molecular descriptors

Introduction

Determining the presence of organic micropollutants in the
aquatic environment at the low-nanogram per liter level is
considered of great concern, as the risk these compounds have
on the environment and human health is still inconclusive
(Luo et al. 2014; Sudhakaran et al. 2012).

Although conventional treatment processes have observed
insufficient removals of many micropollutants from drinking
water, advanced technologies have shown great abilities to
degrade or remove many of these micropollutants. In particu-
lar, hydroxyl radical-based advanced oxidation processes
(AOPs) are effective means for degrading micropollutants
during drinking water treatment (Bagheri and Mohseni
2015; Jin et al. 2012). Hydroxyl radicals react relatively
non-selectively with organic contaminants (Sudhakaran and
Amy 2013) and can be generated by various combinations
of reactants such as UV/H2O2, O3/H2O2, Fenton/photo-
Fenton, and UV/TiO2.

During oxidative water treatments, the transformation effi-
ciency of micropollutants depends on the reactivity of the hy-
droxyl radical toward a target micropollutant. Therefore, rate
constants are needed to predict the extension to which
micropollutants are degraded after a specified treatment duration
(Jin et al. 2012; Lee and Gunten 2012). Nowadays, kinetic data
are available for a large number of compounds for the reaction
with hydroxyl radicals (Buxton et al. 1988). However, due to the
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complexity of analytical methods and the high experimentation
cost, there is still a gap for kinetic data of emerging
micropollutants (Jin et al. 2012; Sudhakaran et al. 2012).

Predictive models from the quantitative structure-property
relationships (QSPR) theory (Benfenati 2013; Hansch and
Leo 1995; Puzyn et al. 2010; Roy 2015) are a fast and cost-
effective alternative to experimental evaluation. By means of
the QSPR technique, an experimental property of a chemical
compound, i.e., the reaction rate constant with hydroxyl rad-
ical (kOH), can be predicted through the knowledge of its
chemical structure. The structure is quantified by means of a
set of suitable molecular descriptors, in other words, numeri-
cal quantities carrying specific information on the constitu-
tional, topological, geometrical, hydrophobic, and/or electron-
ic aspects (Diudea 2001; Katritzky and Goordeva 1993;
Todeschini and Consonni 2009). Therefore, a set of descrip-
tors is statistically correlated to the experimental property,
resulting in a mathematical model that can be used to find
out useful structure-property parallelisms.

The application of the QSPR theory to water treatment
studies is relatively new, and only a few QSPR models have
been proposed using different approaches for ozonation, chlo-
rination, AOPs, membrane filtration, and activated carbon ad-
sorption (Borhani et al. 2016; Delgado et al. 2012). In some
kOH modeling studies of organic compounds, Hammett-type
relationships have been applied; the main disadvantage of
such method is only applicable to substituted aromatic com-
pounds with known substituent constants (Lee and von
Gunten 2012; Peres et al. 2010; Zimbron and Reardon
2005). A few QSPR studies based on descriptor selection
techniques involve advanced statistical methods, like principal
component analysis (PCA) and genetic algorithms (Kusic
et al. 2009; Sudhakaran and Amy 2013; Toropov et al.
2012). The application of group contribution methods for
kOH prediction (Minakata et al. 2009; Monod and Doussin
2008) faces the problem of availability of data for all possible
functional groups and the assumption of additivity of rate
constants. All such established QSPR would not be specific
to the new emerging micropollutants having diverse molecu-
lar structures.

In a recent QSPR study reported by Jin et al. (Jin et al.
2015), the authors predict the reaction rate constant with hy-
droxyl radical (kOH) inwater of 118 emergingmicropollutants,
composed of endocrine disruptor chemicals (EDCs) and phar-
maceuticals and personal care products (PPCPs). A special
attention is paid on model validation, applicability domain
analysis, and mechanistic interpretation. The dataset is ran-
domly split into a training set of 89 compounds for model
calibration and a validation set with 29 compounds for testing
its predictive capability. The multivariable linear regression
(MLR) method analyzes 951 0D-3D Dragon molecular de-
scriptors through the forward stepwise procedure. The best
QSPR established includes seven descriptors related to the

electronegativity, polarizability, and double bonds of the com-
pounds. With outliers identified and removed, the final model
fits the training set very well and shows good robustness and
internal predictivity.

In this work, we report a new alternative QSPR model for
the kOH parameter in the same molecular set studied by Jin
et al. (2015), however, using the conformation-independent
QSPR approach which does not consider the conformational
representation of the chemical structure, by only relying on its
constitutional and topological representations. It is to be no-
ticed that this method cannot be defined as Bgeometry
independent,^ because also the 2D descriptors used depend
on the geometry (the molecular graph), not on the conforma-
tion: the two concepts are different.

The conformation-independent QSPR approach emerges
as an important alternative methodology where the conforma-
tional representation of the chemical compounds is not con-
sidered (Aranda et al. 2016; Duchowicz et al. 2014;
Duchowicz et al. 2012; Duchowicz et al. 2015). Therefore,
neither experimental information on the X-ray crystal struc-
ture of the compound conformations is required nor the ge-
ometry optimization calculation of their molecular structure.
The exclusion of such 3D-structural aspects avoids ambigui-
ties due to the existence of compounds in various conforma-
tional states, which would also lead to the loss of predictive
capability of the QSPR model.

Materials and methods

Experimental dataset

The 118 experimental kOH [M−1s−1] values of emerging
micropollutants collected from the literature (Jin et al. 2015)
range in the interval (5.4 107, 1.7 1010) and for modeling
purposes are converted into decimal logarithmic units
(logkOH). The micropollutants include many EDCs and
PPCPs and are highly heterogeneous with different chemical
classes, such as phenols, polycyclic aromatic hydrocarbons,
alkanes, halogenated aromatic compounds, and organophos-
phorus compounds. The complete list of compounds studied
here appear in Table 1S as Supplementary material.

Structural representation and molecular descriptor
calculation

The molecules are drawn in MDL mol (V2000) format with
ACDLabs ChemSketch freeware (2016). All file format con-
versions are performed with Open Babel for Windows (2016).

The conformation-independent molecular descriptors are
computed as follows. First of all, we use the Pharmaceutical
Data Exploration Laboratory (PaDEL) freeware version 2.20
(2016), because it has the advantage that it is a freely available
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and open source program. PaDEL allows us to calculate 1444
0D-2D descriptors and nine fingerprint types (13,020 bits)
(Yap 2011), with molecules in MDL mol (V2000) format.
Additional molecular descriptors are also calculated with the
molecular descriptors from 2D structures (Mold2) freeware
(Hong et al. 2008), which generates 779 1D and 2D structural
variables with molecules in MDL sdf format. Finally, eight
semiempirical descriptors are calculated (in decimal logarith-
mic units) from the Estimation Program Interface (EPI Suite
4.11, 2016) freeware modules, with molecules in SMILES
format. EPI Suite uses a series of group contribution factors
for calculating: (i) the octanol/water partition coefficient
logKowEPI; (ii) the water solubilities logSw1EPI and
logSw2EPI: the second parameter is based on logKowEPI;
(iii) the Henry’s law constant at 25 °C logKHEPI; (iv) the soil
sorption partition coefficients logKoc1 and logKoc2: the first
parameter is based on the first order molecular connectivity
index, while the second one is based on logKowEPI; (v) the
octanol-air partition coefficient logKoa, based on the ratio
KowEPI and the dimensionless KHEPI; and (vi) the
bioconcentration factor logBCF.

Therefore, the total number of non-conformational molec-
ular descriptors explored in this work is 15,251. It is our in-
tention to capture, with such a great number of descriptors, the
most relevant structural characteristics affecting the studied
property.

Model development

Molecular descriptor selection in MLR

The 15,251 non-conformational molecular descriptors calcu-
lated with PaDEL, Mold2, and EPI Suite are analyzed in order
to remove the Bcollinear^ descriptors, that is to say, the line-
arly dependent pairs are identified, and only one variable from
each pair is kept for further analysis. This process leads to a set
containing 2899 linearly independent 0D-2D descriptors.

We employ the replacement method (RM) technique
(Duchowicz et al. 2006) in order to generate MLR models
on the training set, by searching in a pool having D = 2899
descriptors for optimal subsets containing d descriptors (d is
much lower than D), with smallest values for the standard
deviation (Strain) or the root mean square error (RMStrain).

The main idea behind the RM is that one can approach the
minimum of Strain by judiciously taking into account the rela-
tive errors of the coefficients of the least-squares model given
by a set of d descriptors. In other words, we should find the
global minimum of Strain(d) in a subspace ofD ! /[d ! (D − d)!]
points d, where D represents the total number of available
descriptors. The quality of the results achieved with this tech-
nique approaches that obtained by performing an exact
(combinatorial) full search of molecular descriptors although,
of course, requires much less computational work. This

technique has been shown to compare favorably with the ge-
netic algorithm approach (Morales et al. 2006).

Table 2S includes a list of mathematical equations involved
in the present study. All the MATLAB-programmed (Matlab
7.6.0.324, 2008) algorithms used in our calculations are avail-
able upon request.

Model validation

The best choice for validating a QSPR model consists on
testing its ability to predict the property of compounds not
considered during the model development, by comparing such
predictions with the experimental values. For this purpose, the
complete molecular set is split into training (train) and test
(test) sets. The training set is used to calibrate the model and
to obtain its optimized parameters, while the test set includes
compounds Bnever seen^ during the calibration and demon-
strates the true predictive power.

It is known that randomly splitting the compounds into the
training and test sets does not lead to a rational selection, as such
sets should have similar structure-property relationships. For
this purpose, the split of the dataset is carried out by means of
the balanced subset method (BSM) (Rojas et al. 2015); a pro-
cedure developed in our group that ensures that the training set is
representative of the test set. The BSM is based on the k-means
cluster analysis (k-MCA) method (Kaufman and Rousseeuw
2005): the essence of k-MCA is to create k-clusters or groups
of compounds, in such a way that compounds in the same clus-
ter are very similar in terms of distance metrics (i.e., Euclidean
distance), and compounds in different clusters are very distinct.

In addition, we also partition the dataset with the property
sampling method (PSM) (Leonard and Roy 2006) as done by
Jin et al. (2015), in order to compare such results with those
obtained with our BSM. In the PSM, the compounds are
sorted according to their descending experimental property
values, then taking one compound out of every four com-
pounds. Compounds taken out are used as the test set and
the remaining ones as the training set.

The linear regression models are theoretically validated
through leave-one-out cross-validation (loo) (Golbraikh and
Tropsha 2002). According to the specialized literature, the loo
explained variance (R2

loo ) should be greater than 0.5 for a
validated model, although this is a necessary but not sufficient
condition for its predictive power. A more rigorous leave-
30%-out cross-validation (l30%o) is also practiced on the ob-
tained linear model (200,000 cases).

We also validate our established QSPR models with the
newly proposed mean absolute error (MAE)-based criteria
(Roy et al. 2016). These authors provide some useful guide-
lines for determining the quality of predictions based on the
MAE parameter and its standard deviation computed from the
test set predictions after omitting 5% high residual data points,
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in order to obviate the influence of any rarely occurring high
prediction errors that may significantly affect the quality of
predictions for the whole external test set. It is considered that
an error of 10% of the training set range should be acceptable,
while an error value more than 20% of the training set range
should be a very high error.

Finally, we scramble the experimental property values with
Y-randomization (Rücker et al. 2007) and 10,000 cases, as a
way of checking that the model is not a result of chance cor-
relation when RMSrand is greater than RMStrain.

Applicability domain

A predictive QSPR model is only able to predict molecules
falling within its applicability domain (AD), so that the pre-
dicted property is not a result of substantial extrapolation (un-
reliable prediction) (Gramatica 2007; Roy et al. 2015;
Jaworska et al. 2005). The AD definition is dependent on
the model’s descriptors and the experimental property. In this
way, through the AD definition, it is possible to confirm the
validity of the developed models for the training and test set
compounds and to identify outliers.

In this work, we determine the AD through two alternative
methodologies. The first one is based on the well-known le-
verage approach (Eriksson et al. 2003), where a test set com-
pound i must have a calculated leverage hi smaller than the
warning leverage h∗. The second one is based on a simple
standardization approach (Roy et al. 2015): a given test set
compound i having d standardized descriptor values sik , k =
1 , … , d must have a maximum value smax

ik ≤3. In the case

that smax
ik > 3 and its minimum value smin

ik < 3, then the snewi
parameter has to be calculated and must fulfill the condition:
snewi ¼ sih i þ 1:28⋅σsi ≤3, where 〈si〉 is the mean of sik values
for i and σsi is the standard deviation for such values.

Importance of model descriptors

In order to find out the relative importance of the jth descriptor in
the linear model, the regression coefficients are standardized (bsj ,
see Table 1S). The larger is the absolute value of bsj , the greater is
the importance of such descriptor (Draper and Smith 1981).

Results and discussion

We split the dataset into training and test sets with the first
partitioning method, the PSM as originally used by Jin et al.
(2015). About 25% of the total dataset is used for the valida-
tion set (29 molecules). Then, the most representative molec-
ular descriptors of the training set are searched through the
RM technique. The best MLR models based on 1–7 structural
features are listed in Table 1, while a brief description of the
descriptor’s meanings is supplied in Table 3S.

From Table 1, it is appreciated that the RMStrain parameter
continuously improves with the addition of molecular descrip-
tors to the linear equation, a typical behavior in variable subset
selection, butRMStest does not significantly improve beyond the
number of four descriptors. In order to keep the model’s size as
small as possible, we select such model as the best linear regres-
sion QSPR found with the PSM partition. This non-
conformational four-descriptor model has an acceptable statis-

tics: R2
train ¼ 0:89, R2

test ¼ 0:77, RMStrain = 0.17, and RMStest =
0.34 and can also be favorably compared to the previous report-
ed conformational-dependent seven-descriptor model, achieved
with the forward stepwise procedure (Jin et al. 2015):
R2
train ¼ 0:81, R2

test ¼ 0:79, RMStrain = 0.22, and RMStest =
0.31. In terms of model’s size, our equation has a better quality.

It is our intention now to improve the present QSPR study
by applying the second partitioning method of BSM. We ap-
ply the k-MCA-based procedure for splitting the dataset into
Ntrain = 89 and Ntest = 29 compounds (refer to Table 1S), thus
ensuring a design of balanced molecular sets. The cluster cen-
troid locations in terms of descriptor values are provided as a
87 × 117 matrix in the c1.txt file (Supplementary material).

The results shown in Table 1 clearly reflect that the new
training set of 91 compounds from the BSM represents better
the dataset than the training set from PSM, as RMStest is lower
than RMStrain for BSM contrary to PSM. This means that the
training set molecules are able to explain the structure-
property behavior for the test set molecules. In Table 1, the
selected QSPR involves the following five descriptors:

logkOH ¼ −0:43 AATS0eþ 1:50 SIC5−0:91 PC200−0:33 KC3738−0:03 AC:CX7þ 11:91 ð1Þ

Ntrain ¼ 89 ; R2
train ¼ 0:88 ; RMStrain ¼ 0:21

R2
ij max ¼ 0:11; o 2:5 ¼ 0 ; R2

rand ¼ 0:37 ; RMSrand ¼ 0:48

R2
loo ¼ 0:85 ; RMSloo ¼ 0:24; R2

l30%o ¼ 0:74 ; RMSl30%o ¼ 0:32
Ntest ¼ 29 ; R2

test ¼ 0:87 ; RMStest ¼ 0:11

In this equation, Rijmax denotes the maximum correlation
coefficient between descriptor pairs, while o2.5 indicates the

number of outlier compounds in the training set having a
residual (difference between experimental and calculated
property) greater than 2.5 times RMStrain.

Equation 1 obtained with the BSM partitioning leads to an
improved QSPR model for predicting logkOH; a plot for the
predictions as a function of the experimental values is
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provided in Fig. 1. The dispersion plot of residuals in Fig. 2
tends to obey a random pattern around the zero line, suggest-
ing that Eq. 1 predicts the whole dataset without systematic
errors or residual bias.

The QSPR represented by Eq. 1 has an acceptable predic-
tive power on the external test set of 29 water micropollutants

according to R2
test and RMStest parameters. Such model ap-

proves the internal validation process of leave-one-out cross-
validation through the exclusion of one molecule at a time.

The Y-randomization technique demonstrates that the model
has RMStrain < RMSrand and R2

rand < R2
train and that a valid

structure-logkOH relationship is established. The recommend-
ed external validation criteria (Golbraikh and Tropsha 2002)
to assure predictive capability are also achieved: 1−R2

0=R
2
test

0:0046ð Þ < 0:1 o r 1−R02
0 =R

2
test 0:0058ð Þ < 0:1; 0 . 8 5 ≤

k(1.0005) ≤ 1.15 or 0.85 ≤ k′(0.9994) ≤ 1.15; R2
m 0:82ð Þ > 0:5.

The prediction performance of our QSPR model on the test
set is found to be Bgood^ by the MAE-based criteria, as it is
satisfied the following condition: MAE ≤ 0.1 tr and MAE +
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Fig. 1 Predicted and experimental logkOH values according to the QSPR
of Eq. 1
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Fig. 2 Dispersion plot of residuals for Eq. 1

Table 1 Themultidimensional QSPR obtained with dataset partitions based on a the property sampling method and b the balanced subset method. The
best models are in bold

PSM splitting

d Descriptors
R2
train R2

test

RMStrain RMStest

1 BIC5 0.62 0.77 0.31 0.33

2 BIC5; K2925 0.74 0.81 0.26 0.30

3 Sub295; K2925; A.CC3 0.86 0.74 0.19 0.36

4 Sub295; K2925; A.CC3; D473 0.89 0.77 0.17 0.34

5 Sub295; K2925; A.CC3; KC3587; AC.OX3 0.91 0.76 0.15 0.34

6 Sub295; K2925; A.CC3; A.CO4; AC.OX3; AC.OX4 0.93 0.76 0.13 0.34

7 Sub295;K312;K2925;A.CC3;A.CO4;AC.OX3; AC.OX4 0.94 0.76 0.12 0.34

7 Published seven-descriptor model (Jin et al. 2015) 0.81 0.79 0.22 0.31

BSM splitting

d Descriptors
R2
train R2

test

RMStrain RMStest

1 BIC5 0.67 0.67 0.35 0.20

2 SIC5; D146 0.77 0.84 0.29 0.13

3 AATS0e; SIC5; KC3738 0.83 0.84 0.25 0.12

4 SIC5; KC3738; D146; D361 0.87 0.84 0.22 0.12

5 AATS0e; SIC5; PC200; KC3738; AC.CX7 0.88 0.87 0.21 0.11

6 AATS0e; SIC5; K2925; KC3738; AC.OX5; D361 0.91 0.88 0.18 0.11

7 Mse; SIC5; MACCS124; K2925; A.PCl4; KC3738; D361 0.93 0.89 0.16 0.11
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3σ ≤ 0.2 tr, where tr is the training set response range (2.5
logarithmic units) and the σ value denotes the standard devi-
ation of the absolute error values for the test set data. In present
case, our QSPR satisfies this condition not only for the whole
test set (MAE = 0.0892 σ = 0.0661) but also after omitting 5%
high residual data points (MAE(95%) = 0.0771, σ(95%) =
0.0495).

The five conformation-independent molecular descriptors
appearing in the proposed quantitative structure-OH oxidation
rate relationship are readily calculated from the molecular
structure, and such variables belong to different classes
(Diudea 2001; Katritzky and Goordeva 1993; Todeschini
and Consonni 2009):

& An autocorrelation of the topological structure descriptor:
AATS0e, the average Broto-Moreau autocorrelation-lag 0/
weighted by Sanderson electronegativities. The structural
variables introduced by Broto-Moreau are bidimensional
autocorrelations between atom pairs (i, j) in a molecule,
with the main purpose of capturing the degree of interac-
tion between them. The nature of atoms is considered
through a given property as atomic weight (w), i.e., atomic
mass, polarizability, electronegativity, or volume. These
indices are calculated from the graph by summing prod-
ucts of terms wi ⋅wj including terminal atomic contribu-
tions in all the paths of a prescribed length (lag). For the
case of AATS0e, the variable considers in its calculation
the a tomic compos i t i on and the Sande r son
electronegativity.

& An information content descriptor: SIC5, the structural
information content index (neighborhood symmetry of
five-order). The information theory descriptors measure
the molecular complexity as the diversity of elements
present in the structure, such as atoms, bonds, cycles,
symmetry, and centricity. In the present case, the descrip-
tor expresses the five-order neighborhood symmetry for
all the vertexes in the chemical graph.

Also, the next descriptors have a straightforward
structural interpretation:

& A 2D atom pair fingerprint descriptor: AC.CX7, the count
of C-X at topological distance 7, where X is an halogen
atom (Cl, Br, and I).

& A Pubchem fingerprint descriptor: PC200, the presence of
greater than or equal to 4 (saturated or aromatic) carbon-
only ring size 6.

& A Klekota-Roth fingerprint descriptor: KC3738, indicat-
ing the count of the SMARTS pattern CCCCOC═O.

The molecular descriptors of Eq. 1 have positive numerical
values, and thus, the sign of their regression coefficients in the
linear model determines whether their contributions increase or
decrease the predicted logkOH values. High numerical values of
SIC5 and low values for AATS0e, PC200, KC3738, and AC .
CX7 tend to lead to high predicted logkOH values. After standard-
ization, the most important descriptors for predicting the hydrox-
yl radical rate constants of organic micropollutants are SIC5
(bsj ¼ 0:67 ) and AATS0e (bsj ¼ 0:45 ), whose numerical values

change most in accordance with the numerical variations of the
experimental property (Table 2). The remaining descriptors
KC3738 (bsj ¼ 0:25 ), PC200 (bsj ¼ 0:22 ), and AC . CX7
(bsj ¼ 0:11 ) complement each other inside the linear equation

and have a comparable relevance. Some additional model prop-
erties of the selected molecular descriptors are provided in
Table 2.

It is possible to draw a mechanistic interpretation of the
descriptors participating in the QSPR model of Eq. 1. For
instance, the AATS0e descriptor has a straightforward cor-
relation to the mean atomic Sanderson electronegativity
(Mse) with an intercorrelation coefficient Rij = 0.9995.
This is in line with the observations of Jin’s work (Jin
et al. 2015), which state that a molecule with a high elec-
tronegativity requires a high energy to remove its elec-
trons, thereby making it difficult the OH radical induced
electron transfer and impeding oxidation by OH radicals.
In other words, AATS0e is negatively correlated to logkOH
in Eq. 1. The AC.CX7 descriptor involves the presence
of halogen atoms (Cl, Br, and I) and thus considers the
presence of electron withdrawing groups, making the C

Table 2 Model properties of the
selected molecular descriptors Descriptor Regression

coefficient
Standard
error

Standardized
coefficient

Probability
level

VIF Correlation
to logkOH
R2
train

� �

Intercept 11.91 0.340 0.00 < 0.0001 – –

AATS0e − 0.43 0.039 − 0.45 < 0.0001 1.03 0.36

SIC5 1.50 0.089 0.67 < 0.0001 1.01 0.65

PC200 − 0.91 0.160 − 0.22 < 0.0001 1.00 0.01

KC3738 − 0.33 0.050 − 0.25 < 0.0001 1.00 0.02

AC.CX7 − 0.03 0.011 − 0.11 0.0059 1.00 6.10−3
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atom electrophilic and prone to attack by nucleophiles.
Therefore, compounds posing halogens are less likely to
be attacked by OH radicals, which are electrophiles. In
this way, AC.CX7 is negatively correlated to logkOH in
Eq. 1 and this observation also agrees with the reported
result (Jin et al. 2015).

The remaining SIC5, PC200, and KC3738 contribut-
ing descriptors clearly reflex the importance of the to-
pological structure description for the molecules under
study.

The model’s squared correlation matrix is provided in
Table 4S, showing the absence of high correlations be-
tween descriptors pairs. We also calculate the variance
inflation factor (VIF), a parameter that measures the
multicollinearity among descriptors. A VIF of 1 for a
specific descriptor means that there is no correlation
between this descriptor and all the remaining descriptors
of the model, and a VIF exceeding 10 indicates that
multicollinearity is a problem in the dataset (Roy and
Roy 2009). From Table 2, it is demonstrated that the
VIF parameter for each descriptor of Eq. 1 is near to 1.
The numerical descriptor values are given in Table 5S.

Now we demonstrate that the proposed QSPR of Eq. 1 is
generalizable and useful for application, that is to say, our
model is not determined only by the training set composition
due to the specific dataset partitioning of BSM. In Table 3, Eq.
1 derived with the BSM splitting is applied to the PSM split-
ting of Jin’s work (Jin et al. 2015) and vice versa. It is clearly
appreciated that in both the PSM and the BSM splittings, our
proposed QSPR has a better predictive capability on the test

set according to the R2
test and RMSEtest parameters.

In addition, we perform 100 different random splittings and
recalculate the statistics of the model obtained by Jin et al. and
the one proposed by us in the present work. As shown by
Table 6S, Eq. 1 leads to R2

test for the 100 external test sets
ranging from 0.58 to 0.95 and RMStest ranging from 0.15 to

0.26, while for the Jin’s seven-descriptor model, R2
test ranges

from 0.35 to 0.94 and RMStest ranges from 0.17 to 0.40. These
findings suggest that the final model of Eq. 1 has a better
stability of its predictive ability than the previous reported

model. The good predictivity of our QSPR model on the test
set does not result by chance, and the molecular descriptors
involved in Eq. 1 work satisfactorily on the different training-
test set partitionings.

The analysis of the AD for the QSPR of Eq. 1 reveals that
five training set compounds have high leverages exceeding
the h∗ limit (0.202) such as: 54, 38, 101, 117, and 75.
However, it is found that all the 29 test set compounds belong
to the AD. The Williams plot (standardized residuals as func-
tion of hi values) for Eq. 1 is provided in Fig. 3, while the
leverages for the 118 compounds are reported in Table 1S. It is
known the fact that a compound with a high leverage would
reinforce the model if the compound is in the training set
(good leverage), but such a compound in the test set could
have unreliable predicted data, the result of substantial extrap-
olation of the model (bad leverage) (Gramatica 2007;
Jaworska et al. 2005). Thus, the five training set compounds
lying outside the AD reinforce Eq. 1, while their high hi values
may be purely attributed to the structurally heterogeneous
dataset being studied. The results obtained with the leverage
approach coincide with the ones obtained by using the

Table 3 Performance of Jin’s
model (Jin et al. 2015) and pro-
posed model in the PSM and
BSM-based splittings. The best
models are in bold

QSPR model
R2
train R2

test

RMStrain RMStest

PSM splitting

Jin’s seven-descriptor model 0.81 0.79 0.22 0.31

Proposed model (Eq. 1) 0.86 0.92 0.19 0.26

BSM splitting

Jin’s seven-descriptors
model

0.81 0.48 0.26 0.22

Proposed model (Eq. 1) 0.88 0.87 0.21 0.11
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Fig. 3 Williams plot for Eq. 1
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standardization approach, as the two conditions smax
ik ≤3 or

snewi ≤3 are followed by all the test set compounds. Thus, the
predicted logkOH values for the test set compounds can be
considered as reliable.

Finally, it is noteworthy that an improved result is achieved
in the published seven-descriptor model (Jin et al. 2015) when
removing compounds 51 (Dalapon) and 54 (di(2-ethylhexyl)
phthalate). The removal of such two high residual compounds
in the reported QSPR leads to Ntrain = 88 and Ntest = 28, and

the following quality: R2
train ¼ 0:86, R2

test ¼ 0:87, RMStrain =
0.18, and RMStest = 0.26. In the present study, we consider that
our proposed QSPR of Eq. 1 represents an improvement over
the reported Jin’s models due to the next main reasons:

i. Equation 1 has a better predictive capability on the test set;
R2
test ¼ 0:87, RMStest = 0.11, compared to the published

R2
test ¼ 0:87, RMStest = 0.26.

ii. Outlier compounds are not removed by Eq. 1, contrary to
the published result that removes two compounds.

iii. Equation 1 is a simpler model as it involves five descrip-
tors instead of seven from Jin’s work.

iv. Our linear QSPR only involves molecular descriptors that
do not depend on the three-dimensional conformations of
the organic micropollutants, making easier its application
for predicting kOH values for new compounds.

The conformation-independent QSPR approach employed
in this work has as main advantage that the only experimental
input required for designing the QSPR models is the experi-
mental property being analyzed (Jagiello et al. 2016; Aranda
et al. 2016; Duchowicz et al. 2014; Duchowicz et al. 2012),
the experimental kOH values in the present case. No further
experimental information is needed, such as, i.e., the experi-
mental X-ray crystal structure for each compound’s confor-
mation. It is well-known that additional more accurate and
specific experimental information is always required when a
microscopic and more sophisticated type of modeling meth-
odology is involved in the study of a considered property
(Jagiello et al. 2016). However, such specific experimental
details are usually unavailable for any chemical system under
study. In this work, we achieve our goal by predicting the
hydroxyl radical rate constant in water without the need of
additional experimental information in an approach that con-
siders only constitutional and topological representations of
the chemical structures.

Conclusions

The removal efficiency of contaminants from drinking water,
distribution systems, and tap water can be assessed with the
knowledge of their susceptibility toward oxidation in water

treatment processes, in other words, by predicting the hydrox-
yl radical rate constant of organic micropollutants. Such ex-
perimental kinetic data, which are considered useful for the
water industry when screening contaminants for their suscep-
tibility to AOPs, are often unavailable for many emerging
micropollutants. It is possible to assess the feasibility of an
AOP for a specific compound in a specific natural water, by
combining the kOH predictions with the ROH,UV model
(Rosenfeldt and Linden 2007). In addition, it is possible to
estimate the removal of contaminants in natural water by
ozonation treatment using the Rct model (Elovitz and von
Gunten 1999), which requires rate constants for each
micropollutant screened as input.

In terms of model’s size and conformation indepen-
dence, our established QSPR models outperform previ-
ous published results. In addition, the proposed models
are obtained after the simultaneous analysis of a large
number of molecular descriptors calculated through free-
ly available softwares like PaDEL, Mold2, and Epi
Suite. The consideration of the constitutional and topo-
logical aspects of the molecular structures in the
conformation-independent QSPR approach achieves
once more acceptable results, and new results on other
physicochemical and biological properties of interest
will be published soon elsewhere.
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