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ABSTRACT 
The glass transition temperature, Tg, is one of the most important properties 
of amorphous polymers. The ability to predict the Tg value of a polymer 
preceding its synthesis is of enormous value. For this reason it is of great 
value to perform a predictive quantitative structure–property relationships 
analysis of Tg, in this case a new set of halogenated polymers was used for 
this purpose. In addition, to corroborate our previous findings, the best way 
to encode the polymers structure for this type of studies was further tested 
finding that the optimal option is once more to use three monomeric units. 
The best linear model constructed from 153 molecular structures 
incorporated seven molecular descriptors and showed excellent predictive 
ability. Furthermore, the method showed to be very simple and straightfor-
ward for the prediction of Tg since three-dimensional descriptors are not 
required. 
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Introduction 

The glass transition temperature, Tg, is one of the most important properties of amorphous 
polymers.[1] When the temperature of a polymer gets lower than Tg, it starts behaving in an increas-
ingly brittle manner. If the temperature is increased above the Tg, then the polymer recovers its 
rubber-like properties. Consequently, the knowledge of the Tg is crucial in the selection of the 
materials for a given application. In general, Tg values define the domain of elastomers or rigid struc-
tural polymers; having a Tg well below room temperature or above room temperature, respectively.[1] 

In the vicinity of Tg, a polymer experiences an abrupt increase in the rate of molecular motion and, 
thus, undergoes a series of conformational transformations. The torsional oscillations and/or 
rotations of most backbone bonds are activated; this causes a sharp increase in the free volume of 
the system since it is converted from the initial rigid state to a quasi-liquid state.[2] As a consequence, 
many physical properties of polymers change intensely; for example, their coefficients of thermal 
expansion, heat capacities, and viscosities. The Tg is difficult to determine experimentally and predict 
theoretically since the transition takes place over a wide temperature range and is dependent on many 
conditions, such as the measurement method, experiment duration, and pressure.[3,4] Tg is also highly 
dependent on the structural (cross-linking, chain stiffness),[5] constitutional (additives, fillers, 
impurities),[6] and conformational (tacticity) characteristics of polymers.[1,4,7] Consequently, the 
discrepancies between reported values of Tg can be quite high.[8] 
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Numerous researchers have attempted to predict polymers Tg by quantitative structure–property 
relationships (QSPR). According to Katritzky et al.,[8] there are two kinds of approaches, empirical 
and theoretical. Empirical methods attempt to find correlations between the studied property with 
other physical or chemical properties of polymers, for instance, group additive properties (GAP).[1] 

The GAP methodology is a completely empirical approach, restricted to systems made merely of 
functional groups that have previously been investigated. It is an approximate method, since it fails 
to account the presence of neighboring groups or conformational effects. However, the most widely 
referenced theoretical model was proposed by Bicerano[4]; this regression model (R ¼ 0.9749, 
s ¼ 24.65 K) related the Tg with the solubility and the weighted sum of 13 structural parameters 
for a data set of 320 polymers; however the model was not tested on an external set of polymers, 
therefore its validation was not assured. Katritzky et al.[9] developed a mode with R2 of 0.928 using 
22 medium molecular weight polymers consisting of four parameters. Later on, Katritzky et al.[8] used 
COmprehensive DEscriptors for Structural and Statistical Analysis (CODESSA) to predict the Tg for 
88 linear homopolymers using five parameters and generated a QSPR model with a standard error of 
32.9 K for Tg. Cao and Lin[10] tested the same set of 88 polymers using five parameters with clear 
physical meanings, calculated from individual repeating unit structures, finding a model with 
coefficient of determination of R2 ¼ 0.9056 and a standard error of 20.86 K. Once more, the model 
was not properly validated by an external test set. 

Mattioni and Jurs[11] developed a 10-descriptor model using the structure of the monomer of 165 
polymers, to predict Tg values using artificial neural networks, the training set root mean square error 
(RMSE) was 10.1 K (R2 ¼ 0.98) and a prediction set (17 polymers) RMSE of 21.7 K (R2 ¼ 0.92). In 
addition, an 11-descriptor model using one repeating unit from 251 different polymers, in this case, 
the training set RMSE was 21.1 K (R2 ¼ 0.96) and a prediction set (25 polymers) RMSE 21.9 K 
(R2 ¼ 0.96). A comprehensive neural network model with 28 descriptors was developed by Chen et al.[12] 

to predict Tg values of six randomly selected polymers from a database containing 71 polymers. The 
network was trained with the remaining 65 polymers, using descriptors calculated from individual 
repeating unit structures, and had training RMSE of 17 K (R2 ¼ 0.95) and prediction average error of 
17 K (R2 ¼ 0.85). Arriving at a presumably good model; however, the number of test set polymers seems 
excessively low and the descriptors used excessively high, hence the predictivity of the model is not 
certain. A support vector machine-based QSPR for the prediction of glass transition temperatures using 
77 polymers was done by Yu.[2] Finding a model with RMSEs for the training (38 polymers), validation 
(18 polymers), and prediction set (21 polymers) of 12.13, 15.58, and 16.22 K, respectively. Polymers were 
represented by one repeating unit end-capped by two hydrogen atoms, to calculate molecular 
descriptors. An artificial neural network prediction of glass transition temperature using 113 polymers 
was done by Liu and Cao,[13] the final optimum neural network with produced a training set RMSE of 
11 K (R ¼ 0.973) and a prediction set RMSE of 17 K (R ¼ 0.955). To calculate the descriptors, the 
polymers were represented by their corresponding monomer. Recently, a study using flexible descriptors 
successfully modeled a different property, the refractive index, using 234 structurally diverse 
polymers.[14] In this case, the best found alternative was to encode the polymers with two repeating units. 

In a recent work, our group has developed a QSPR Tg model based on 126 polyacrylates evaluating 
the optimal number of monomeric units to represent the polymer, since none of the previous studies 
have done so. An eight parameters optimal model found with training set R ¼ 09733 and S ¼ 0.1697, 
the test set values where R ¼ 0.9635 and S ¼ 0.1515. In addition, it was determined that the optimal 
encoding option is to use three monomeric units as representatives of the structure.[15] In the case of 
polymer studies, it is not possible to calculate the molecular descriptors directly from the entire struc-
ture, since polymers possess very high molecular weights; moreover the size of the molecular chains 
may vary from different polymer preparations. Hence, the way to encode the molecules becomes a 
crucial part of a QSPR study involving polymers. Accordingly, the main objective of the present work 
is to further corroborate the best way to encode polymers in QSPR studies in a completely different 
set of polymers. To do so, a data set consisting of 153 halogenated polymers was used, aiming to have 
a structurally similar nonetheless large set, to consequently produce more precise models. 
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Materials and methods 

Data sets 

In this study, a total of 153 halogenated polymers with experimental Tg were taken from a published 
compilation,[16] to our knowledge this set of molecules was never used in this type of study before. 
Only the halogen containing polymers were chosen aiming to produce a more specific and precise 
study. The experimental Tg values and the SMILES structure representation can be found in 
Tables 1S and 2S. SMILES notation allows easily copying the text string to enter it in many chemical 
structure representation software. The data-set was divided into a training set of 102 and a test set of 
51 polymers; it is known that doing this randomly does not lead to a rational selection, since both sets 
should have similar structure–property relationships having representative molecules of the structure 
diversity of the complete dataset. Consequently, the data set separation was performed by the 
balanced subsets method,[17–19] based on the k-means cluster analysis.[20] Following the procedure 
done by of Katritzky et al.[8] and our previous work, Tg/M was used (where M stands for the 
molecular weight of the repeating unit). The experimental measurements of Tg is a problematic task, 
this is exposed in the dispersion of experimental data for some polymers, complicating the correlation 
studies as they rely on the quality of the experimental data set. When more than one value was 
informed for a given polymer an average was used. 

Molecular descriptors 

As mentioned in the introduction, it is not feasible calculating descriptors directly from the entire 
polymer structures. Therefore, models consisting of repeating units, end-capped by hydrogen, were 
chosen as small, yet representative structures, to calculate the descriptors [Figure 1 shows an 
example of the structure of poly(2,5-dichlorostyrene) encoded by three monomeric units]. In 
theory, a minimum of three units would be necessary to properly describe the way in which the 
monomers connect to each other. In addition, because several descriptors take into account the 
neighboring atoms and the way in which the structural information propagates through a molecule, 
having three connected monomeric units might serve as a representation of the way the structural 
information spreads thorough the polymer. To verify this assumption, different trials using one, 
two and three monomeric units were completed. Following the same analysis adding four or five 
repeating units may further contribute to better represent the properties of the polymer, thus the 
use of four and five monomeric units were added to the tests. Increasing the number of monomeric 
units in the representative structure greatly increased the descriptor calculation time for polymer 
153 (polyimide of 4,4′-diaminodiphenyloxide and 3,3′,4,4′-tetracarboxydiphenylhexafluoroiso 
propylene), which presents a rather complex structure as is appreciated in Figure 2. The required 
calculation time on a desktop PC (CPU i7-4770 K 3.5 GHz with 8 GB DDR3 1600) is shown in 
Figure 3 where it can be seen the exponential growth of the calculation time with the number of 
monomeric units used. For the rest of the polymer the calculation time was not an issue since it 
was lower than 5 min even for five monomeric units. There is an additional restriction, when using 
four or five monomeric units, depending on the polymer, there might be limitations on the size of 
the structures on the free available version of the descriptor calculating software (Virtual Computa-
tional Chemistry Laboratory)[21] as it allows molecules with a maximum of 150 atoms. 

Figure 1. Example of a trimeric repeating units for poly(2,5-dichlorostyrene).  

INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 3 
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A simple and straightforward descriptor calculation methodology was used. The structures of the 
compounds were written in SMILES notation and directly inputted in Dragon 5.0[22] (available online 
at the Virtual Computational Chemistry Laboratory)[21] which calculates parameters of all types such 
as constitutional, topological, geometrical, molecular walk counts, BCUT descriptors, 2D-autocorre-
lations, aromaticity indices, functional groups. Three dimensional descriptors along with quantum 
chemical and semi-empirical descriptors were excluded; since, as only a small representative part 
of the structure is used, its actual 3D disposition is unknown; this considerably simplifies the descrip-
tor calculation procedure since SMILES notation can be used directly without the need of any pre-
vious optimization. Constant variables were excluded; the final descriptors pools contained 678, 
680, 680, 678 and 692 descriptors for the cases of 1, 2, 3, 4 and 5 monomers unit, respectively. 

Model search 

A model search involves finding an optimal subset d of d descriptor from a set D, containing D 
descriptors, with d <<D, and with minimal standard deviation S, 

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðN � d � 1Þ

XN

i¼1
res2

i

v
u
u
t ð1Þ

by the multivariate linear regression (MLR) technique. In this equation N is the number of molecules 
in the training set, and resi the residual for molecule i, is the difference between the experimental 

Figure 3. Number of monomeric units (m) in the structure vs calculation time (t) in hours. The exponential fit is shown in the graph.  

Figure 2. Monomeric unit structure of polymer 153.  
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property (p) and predicted property (ppred). In other words, it is aimed to obtain the global minimum 
of S(d) where d is a point in a space of size D!/[d!(D � d)!]. A full search (FS) of optimal variables is 
impractical since it requires D!/[d!(D � d)!] linear regressions. Therefore, an alternative method is 
necessary; for that reason, the optimum set of descriptors was selected using a new advanced version 
of the enhanced replacement method (ERM)[23,24] as a search algorithm that produces linear 
regression QSPR models with results similar to the FS, nonetheless with much less computational 
work. This technique approaches the minimum of S by judiciously taking into account the 
relative errors of the coefficients of the least-squares model given by a set of d descriptors 
d ¼ {X1,X2,…,Xd}.[15] The ERM[25] gives models with better statistical parameters than the forward 
stepwise regression procedure,[26] and the more elaborated genetic algorithms.[27] Details about the 
steps involved in the ERM algorithm are available elsewhere.[28] 

Amongst many other approaches to address this challenge, principle component regression, partial 
least squares (PLS) and artificial neural networks analyses provide highly predictive QSPRs, however 
they are difficult to interpret for being abstract, and to implement, for not yielding an equation. A 
combination of GA and MLR has shown to produce simple, less sophisticated models with better 
performance on external testing set predictions than PLS.[29] In addition, on an extensive contrast 
work, ERM has shown to further improve the performance of the obtained models when compared 
to GA[27]; and since ERM provides the same type of models in terms of simplicity compared to GA, 
ERM was selected for this work. To evade common errors and pitfalls as presented in the review 
article by Le et al.,[30] numerous tests were performed: the use of uninformative descriptors was 
checked through the correlation matrix; possible overfitting was tested using a theoretical validation, 
and more importantly using a test set external validation; chance correlations were checked using a 
widely used y-randomization procedure[31]; and the domain of applicability of the models was 
informed using a Williams plot (Figure 5). 

Figure 4. Predicted [Equation (4)] vs experimental Tg/M for the training (circles) and test (rhombus) sets.  

INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 5 
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The theoretically, validation of the models was done with the well-known leave-one-out (loo) and 
the leave-more-out cross-validation procedures (l-n%-o),[32] where n% accounts for the number of 
molecules removed from the training set. The number of cases for the removal of 20 random mole-
cules was 1,000,000 in the case of leave-more-out. Calculations were done using the computational 
environment Matlab 5.0 (MathWorks, Natick, Massachusetts, USA). The predictive ability of the 
model was further evaluated by r2 � r2

0
� �

=r2, r2 � r020
� �

=r2, k and k′.[33,34] The applicability domain 
(AD) for the QSPR models was analysed to obtain reliable predictions for external samples. The 
AD is a theoretical region in the chemical space, defined by the model descriptors and modeled 
response, and thus by the nature of the chemicals in the training set, as represented in each model 
by specific molecular descriptors.[35] The AD can be characterized in various ways such as the lever-
age approach,[36] which permits verifying whether a new chemical can be considered as interpolated 
and with reduced uncertainty or extrapolated outside the domain. If it is outside the model domain, a 
warning must be given. The leverage (h)[36] is defined as: 

hi ¼ xiðXTXÞ� 1xT
i ði ¼ 1; . . . ;MÞ ð2Þ

where xi is the 1 � d descriptor row-vector of compound i, M is the number of compounds in the 
dataset, and X is the N � d matrix of the training set (d is the number of model descriptors, and 
N is the number of training set samples). The leverage is suitable for evaluating the degree of extra-
polation, its limit of normal values is set as h* ¼ 3(N þ 1)/M ¼ 3(Σhi þ 1)/M, and a leverage greater 
than h* for the training set means that the chemical is highly influential in determining the model, 
while for the test set, it means that the prediction is the result of substantial extrapolation of the model 
and may not be reliable. 

The definition of the standardized residual (σ) for molecule i is: 

ri ¼
resi

Str
ð3Þ

Figure 5. Williams plot of the Equation (4) showing the application domain for the training (circles) and test (rhombus) sets. 
The vertical dashed line indicates the limiting leverage h*.  
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where resi is the residual of molecule i and Str is the standard deviation of the training set. To visualize 
the AD of a QSPR model a Williams plot of standardized residuals (σ) vs leverage values (h) can be 
used to get an immediate and simple graphical detection of both: response outliers (Y outliers) and 
structurally influential chemicals (X outliers) of a model. 

Results and discussion 

Using the ERM we searched the five different pools of descriptors (structures represented by 1–5 
monomeric units) for models containing 1–10 molecular descriptors; finding that the optimal 
number of descriptors for this dataset is 7. The optimal models obtained using Tg/M are presented 
in Table 1, where it can be seen that models using three and four monomeric units are very close 
in terms of the results. The statistical parameters of both models are comparable and some are better 
for model number 3 and some for model 4. It is clear that the model found by encoding the polymers 
using one monomeric unit is the worst, adding a second and a third monomeric unit improves the 
predictability of the models. These results verify that the way to represent the structure of the poly-
mers requires at least three monomers to properly indicate the way the monomeric unit connect with 
each other, which is also an additional proof that a true correlation between the structure and the 
measures property is present. 

The model obtained using four monomers, is comparable to the model with three monomers, 
however is presents a much higher correlation between the descriptors. Adding a fifth monomer 
to the structure deteriorates all statistical parameters. If the previously mentioned limitations on 
the size of molecules by the descriptor calculating software and the calculation time are taken into 
account, for the present data set adding using three monomeric units is advisable. 

The model that better predicts the Tg/M using three monomers (third model of Table 1) is the 
following: 

Tg=M ¼ 2:245ð�1Þ � 5:576ð�0:6ÞMe � 15:601ð�2ÞX4A
� 3:587ð�0:4ÞX2Av þ 1:998ð�0:3ÞBELp1
� 0:0279ð�0:007ÞSEigmþ 24:76ð�0:9ÞVEe2þ 0:1434ð�0:04ÞnCR3X

ð4Þ

N ¼ 102;R ¼ 0:9786; S ¼ 0:1703; FIT ¼ 14:07; p < 2� 10� 4Rloo ¼ 0:9723;
Sloo ¼ 0:1934;Rl� 25%� o ¼ 0:9504; Sl� 25%� o ¼ 0:2711 RTS ¼ 0:9801; STS ¼ 0:1595 

here, the standard errors of the regression coefficients are given in parentheses; p is the significance of 
the model, FIT the Kubinyi function, loo and l-25%-o stand for the leave-one-out and leave-more-out 
cross validation techniques respectively and TS stands for test set. Table 2 presents the meaning of the 
descriptors involved in Equation (4). By observing the regression coefficient of the test set, it can be 
seen that the predictive ability of the model is either comparable or better than most previously 
published models. To prove that Equation (4) is not the result of happenstance, we used 
y-randomization[31] as a common method to establish the robustness of the model. It basically 
consists of scrambling the experimental p property, so that activities do not correspond to the 
respective compounds. After analysing 1,000,000 cases of y-randomization, the smallest S value 

Table 1. Results of the best models found using different number of monomeric units to represent the polymers. Where Cmax is 
the maximum correlation between any two descriptors in the model (please refer to Table 3). Boldface indicates the best results. 

Monomers d S R FIT Sloo Rloo Stest Rtest Cmax  

1 7  0.1843  0.9753  12.124  0.2016  0.9703  0.2584  0.9513  0.9144 
2 7  0.1739  0.9779  13.643  0.2038  0.9696  0.2436  0.9563  0.9384 
3 7  0.1703  0.9786  14.071  0.1934  0.9723  0.1595  0.9801  0.6528 
4 7  0.1722  0.9792  14.515  0.1971  0.9727  0.1485  0.9811  0.8744 
5 7  0.1793  0.9750  11.999  0.1994  0.9690  0.1923  0.9735  0.9612   
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obtained in this way was 0.6693, which is much larger than the one coming from the true calibration 
(0.1703). These results suggest that the model is robust, that the calibration was not a fortuitous, and 
that a reliable structure–activity relationship was found. 

The plot of predicted by Equation (4) vs experimental Tg/M presented in Figure 4 suggests that 
the 102 compounds from the training set and 51 from the test set tend to follow a straight line. 
The predicted values given by Equation (4) for the training and test sets are shown in Table 1S. 
The Williams plot of the standardized residual vs the leverages illustrated in Figure 5 indicates that 
most compounds rest within the AD of Equation (4) and hence were calculated correctly, this is in 
line with the fact that a restricted series of compounds (halogenated polymers) was used. Compounds 
135, 120 and 93 are training set X outliers reinforcing the model[36]; chemical 89 has a standardized 
residual higher than 3σ and can be considered an outlier, however it belongs to the AD; this abnormal 
behavior could probably be attributed to wrong experimental data rather than to the molecular struc-
ture. The correlation matrix of the model was presented in Table 3, descriptors IDDM and piPC01 
show a relevant degree of inter-correlation, however the calibration and validation results indicate 
that they are important for the prediction of the activity. 

The predictive power of the linear model is satisfactory as revealed by its stability upon the 
inclusion and/or exclusion of compounds, measured by the statistical parameter 
Rloo ¼ 0:9723ðR2

loo ¼ 0:9454Þ and Rl� 25%� o ¼ 0:9504ðR2
l� 25%� o ¼ 0:9033Þ. As general rule 

Rl� n%� oðQÞ should be higher than 0.71 (Q2 > 0.5) to have a validated model.[34,37] The model was 
further validated by the following conditions: R2

TS ¼ 0:9605>0.6; k ¼ 0.9970; k′ ¼ 0.9945 (0.85 
<k or k′ < 1.15); r2 � r2

0
� �

=r2 ¼ � 0.0410 < 0.1; r2 � r020
� �

=r2 ¼ � 0.0409 < 0.1. The standardization 
of their regression coefficients of Equation (4) allows assigning greater importance to the molecular 
descriptors that exhibit the largest absolute standardized coefficients.[26] In this case we have: 

VEe2ð1:410Þ > Með0:5505Þ > X2Avð0:3343Þ > X4Að0:3060Þ > BELp1ð0:2308Þ >
SEigmð0:1779Þ > nCR3Xð0:08499Þ

ð5Þ

By looking at this order we can see that the most significant descriptor is the 2D matrix descriptor 
VEe2, followed by the constitutional index Me and the connectivity indices X2Av and X4A. Although 
a physical interpretation of the descriptors is normally not straight forward, the classes and some 
details of the most relevant descriptors appearing in Equation (4) are given below. The Barysz 

Table 2. Symbols for molecular descriptors involved in the best model. 
Molecular descriptor Type Description  

Me Constitutional indices Mean atomic Sanderson electronegativity (scaled on carbon atom) 
X4A Connectivity indices Average connectivity index of order 4 
X2Av Connectivity indices Average valence connectivity index of order 2 
BELp1 BCUT Lowest eigenvalue n. 1 of Burden matrix/weighted by atomic  

polarizabilities 
SEigm 2D matrix Spectral moment of order 1 from Barysz matrix weighted by mass 
VEe2 2D matrix Average coefficient of the last eigenvector from Barysz matrix weighted  

by Sanderson electronegativity 
nCR3X Functional group counts number of CR3X   

Table 3. Correlation matrix for descriptors of Equation (4) (N = 102).  
Me X4A X2Av BELp1 SEigm VEe2 nCR3X  

Me 1  0.3940  0.5343  0.3821  0.4940  0.1540  0.0059 
X4A  1  0.4764  0.3850  0.4662  0.5185  0.0345 
X2Av   1  0.2786  0.2849  0.2590  0.0185 
BELp1    1  0.1224  0.6528  0.0388 
Seigm     1  0.5792  0.2113 
VEe2      1  0.2496 
nCR3X       1   
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distance matrix Dz is a weighted distance matrix accounting simultaneously for the presence of 
heteroatoms and multiple bonds in the molecule. It is defined as: 

DZ� �

ij¼ 1 �
ZC

Zi
ð6Þ

were Z is the atomic number, ZC obviously is the atomic number of carbon. For the case of VEe2 is 
the average coefficient of the last eigenvector from Barysz matrix weighted by Sanderson electrone-
gativity. Constitutional indices are OD-descriptors, independent from molecular connectivity and 
conformations. In the case of Me is the mean of atomic electronegativities. Connectivity indices 
are topological molecular descriptors calculated from the vertex degree of the atoms in the H-depleted 
molecular graph. In the case of X2Av is the average valence connectivity index of order 2 and in the 
case of X4A average connectivity index of order 4. 

Conclusion 

In this paper we constructed a QSPR model of the Tg/M built by a new set of 153 halogenated 
polymers using seven molecular descriptors. The study showed that once more the optimal way to 
encode polymer structures is to use three monomeric units. The presented model exhibited great 
predictive ability established by theoretical and external set validations; showing to be of higher 
quality than most previously published models. The presented model can be used in a very 
straightforward manner since it does not require any structure optimization as is not based in 3D 
descriptors. Nevertheless, it is advisable to use it specifically for halogenated polymers to have a 
higher chance of using the model in its applicability domain, hence avoiding extrapolations. We 
assume that the proposed model will represent a useful tool for the prediction of Tg, in a rapid 
and costless manner, for any forthcoming studies that might need an estimation of this important 
property of halogenated polymers. 
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