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Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention 
recently. Two previous proposals for these types of equations, corresponding respectively to the Gross–
Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified 
into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms 
characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are 
considered in such a way that the Gross–Pitaievsky equation is recovered in the limit q → 1. A classical 
field theory shows that, due to these nonlinearities, an extra field �(�x, t) (besides the usual one �(�x, t)) 
must be introduced for consistency. The new field can be identified with �∗(�x, t) only when q → 1. For 
q �= 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex 
valued fields �(�x, t) and �(�x, t). These equations reduce to the usual pair of complex-conjugate ones 
only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by �(�x, t) and �(�x, t) exhibit a 
common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that 
naturally emerges within nonextensive statistical mechanics.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A wide variety of phenomena within the realm of complex sys-
tems are nowadays studied by means of nonlinear (NL) partial dif-
ferential evolution equations [1,2]. The computing resources pro-
vided by modern technology have stimulated greatly (and allowed 
for substantial advances in) the investigation of models based on 
this kind of equations, which are rarely analytically tractable. Par-
ticularly in physics, many areas have benefited from these de-
velopments in the study of NL equations, like nonlinear optics, 
superconductivity, plasma physics, and nonequilibrium statistical 
mechanics, since many physical situations in these areas are de-
scribed in terms of these equations.

The NL equations are usually introduced in the literature 
through generalizations of linear ones, so that the later may be 
recovered in certain limit cases. One of the procedures for doing 
this concerns the addition of extra NL terms to a linear equation; 
as an example one has the Gross–Pitaievsky equation (GPE) [3,4]. 
In a three-dimensional space, the GPE is given by
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ih̄
∂�(�x, t)

∂t
= − h̄2

2m
∇2�(�x, t) + K |�(�x, t)|ν �(�x, t) , (1)

where K and ν (ν > 0) are real numbers; this equation recovers 
the linear Schrödinger equation, for a free particle of mass m, by 
taking K = 0. One should notice that, by recourse to the quantum 
mechanical probability density,

ρ(�x, t) = |�(�x, t)|2 , (2)

Eq. (1) may be recast as

ih̄
∂�(�x, t)

∂t
= − h̄2

2m
∇2�(�x, t) + K̃ [ρ(�x, t)]ν/2 �(�x, t) . (3)

The simplest solution of Eq. (1) is the well-known plane wave,

�(�x, t) = �0 exp
[

i(�k · �x − ωt)
]

. (4)

Some of the solutions of Eq. (1) have an associated time-inde-
pendent probability density [1,3,4]. In these cases, the GPE can 
be formally regarded as a linear Schrödinger equation in the pres-
ence of the effective potential V (x) = K̃ [ρ(�x)]ν/2. As an example, 
for the plane-wave solution of Eq. (4), the GPE becomes the linear 
Schrödinger equation in the presence of a constant potential.
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Another common procedure for introducing NL equations con-
sists in modifying exponents of existing linear terms. This recipe 
has been employed, e.g., for NL Fokker–Planck equations [2]; in 
particular, the introduction of a power (2 − q) in the probability 
of the diffusion term [5–7] has been used within the framework 
of nonextensive statistical mechanics [8]. This type of equation 
has led to the possibility of explaining many interesting physi-
cal phenomena related to anomalous diffusion. Along these lines, 
and inspired on nonextensive thermostatistics, the following NL 
Schrödinger equation for a free particle of mass m in a three-
dimensional space has been recently advanced [9],

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − 1

2 − q

h̄2

2m
∇2

[
�(�x, t)

�0

]2−q

. (5)

The real parameter q characterizes the nonlinear aspects of the 
equation, with the linear case being recovered in the particular 
limit q = 1. The index q above is inspired in the entropic index 
that appears in the definition of Tsallis entropy [10]. Here we shall 
restrict our considerations to the range of q-values 1 ≤ q < 3, for 
which the one dimensional q-plane waves have a finite norm (in 
higher dimensional spaces one still has the q-plane wave solu-
tions, but they are localized only in the direction of propagation). 
One significant way in which equation (1) differs from equation 
(5) concerns the amplitude �0, which has to be incorporated to 
the later proposal because the wave function �(�x, t) is raised to a 
real power, in contrast to what happens in (1). The q = 2 case of 
equation (5) deserves a clarification. A cursory glance at (5) may 
suggest that its right hand side is ill defined for that value of the q
parameter. However, it can be verified that for q = 2 equation (5)

is equivalent to ih̄ ∂
∂t

[
�(�x,t)

�0

]
= − h̄2

2m ∇
[

�0
�(�x,t)∇

(
�(�x,t)

�0

)]
.

It is worth mentioning here that (5) is not the only quan-
tum evolution law inspired on the nonextensive thermostatisti-
cal formalism that has been proposed. We have, for instance, 
the approaches advanced in [11,12], where the linear and unitary 
character of quantum evolution is preserved at the level of pure 
states, but a nonlinearity is introduced in the equation of mo-
tion of the time evolution operator [11], or at the level of von 
Neumann’s equation of motion for mixed quantum states [12]. 
The q-logarithmic nonlinear Schrödinger equation associated with 
anisentropic gas dynamics recently studied by Rogers and Ruggeri 
[13] constitute another notable example of a nonlinear quantum-
like evolution equation related to the nonextensive thermostatisti-
cal formalism.

A considerable research effort has been devoted in recent years 
to investigate the properties and solutions of Eq. (5). Various types 
of solutions have been explored, both for free-particle dynam-
ics [9,14–16], and for particles in the presence of different po-
tentials [14,15,17,18]. This equation has been analyzed from the 
point of view of the pilot-wave representation of quantum me-
chanics [19], and it has also been extended to two particle sys-
tems, in order to investigate its entanglement-related features [18]. 
Moreover, it was shown to be closely related to the hypergeometric 
differential equation [20]. The evolution equation (5) can be em-
bedded within a classical field theory based upon an appropriate 
Lagrangian [21]. However, to implement this Lagrangian formula-
tion in a consistent way, one has to introduce a new field �(�x, t), 
besides the original field �(�x, t). The new field can be identified 
with �∗(�x, t) only when q → 1. Consequently, for q �= 1, one has 
a pair of wave equations by means of which the two fields �(�x, t)
and �(�x, t) evolve and interact, whereas in the limit q → 1 these 
two equations “collapse” into the usual pair of complex-conjugate 
equations, respectively governing �(�x, t) and �∗(�x, t) [21]. Simi-
lar procedures yielded nonlinear extensions of the basic relativistic 
wave equations, that is, the Dirac [9], the Klein–Gordon [9,22], 
and the Proca [23] equations. In the last two instances, the clas-
sical field theoretical formulation also highlighted the necessity of 
incorporating extra fields [23], analogously to what happened in 
connection with Eq. (5).

The main purpose of the present work is to unify the above-
mentioned previous proposals for nonlinear Schrödinger equations 
[Eqs. (1) and (5)], in view of a solution typical of nonextensive 
statistical mechanics, the so-called q-plane wave [9]. In the next 
section we review the main properties of this solution, as well as 
the classical field theory applied to Eq. (5). Based on this, we pro-
pose a classical Lagrangian density in order to derive the pair of 
equations that unify Eqs. (1) and (5); these equations relate two 
fields, �(�x, t) and �(�x, t), and it is shown that the later field be-
comes �∗(�x, t) when q → 1. Then, the q-plane wave solution is 
analyzed and particularly, how the famous de Broglie and Planck 
relations get modified by the contribution K �= 0 of Eq. (1). Then, 
in Section 3 we present our main conclusions.

2. General nonlinear Schrödinger equation

Generalizations of three important equations of quantum
physics were proposed in Ref. [9], by introducing nonlinear terms, 
through modifications of exponents of existing linear terms; these 
equations were the Schrödinger of Eq. (5), the Klein–Gordon, and 
Dirac ones. All these generalizations presented a common solution, 
given by the q-plane wave,

�(�x, t) = �0 expq

[
i(�k · �x − ωt)

]
, (6)

expressed in terms of the q-exponential function expq(u) that 
emerges in nonextensive statistical mechanics [8]. The mathemat-
ical apparatus associated with the nonextensive thermostatistical 
formalism has been recently applied to the study of a surpris-
ing variety of phenomena including, among others, nuclear matter 
[24–26], quantum chromodynamics [27], and self-gravitating sys-
tems [28]. The q-exponential function is at the core of the mathe-
matical structure associated with the nonextensive thermostatisti-
cal formalism. In the case of a pure imaginary argument ia, where 
a is a real number, the q-exponential is defined by,

expq(ia) = [1 + (1 − q)ia ]
1

1−q . (7)

By recourse to the well known relation limε→0(1 + ε)1/ε = e it can 
be verified that, in the limit q → 1, the q-exponential reduces to 
the standard exponential function,

exp1(ia) ≡ exp(ia). (8)

We provide now a brief summary of the main properties of the 
q-exponential function that we are going to need in the present 
work (a detailed, systematic analysis of the q-exponential and re-
lated functions was given by Borges in [29]). Let us consider the 
real and imaginary parts of a q-exponential function having pure 
imaginary argument,

expq(±ia) = cosq(a) ± i sinq(a). (9)

These real and imaginary components can be conveniently ex-
pressed in terms of the cosq and sinq functions, which are defined 
as,

cosq(a) = rq(a) cos

{
1

q − 1
arctan[(q − 1)a]

}
, (10)

and

sinq(a) = rq(a) sin

{
1

q − 1
arctan[(q − 1)a]

}
, (11)

where
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rq(a) =
[

1 + (1 − q)2a2
]1/[2(1−q)]

. (12)

It is clear from (12) that, for q > 1, rq(a) is a monotonously in-
creasing function of a. It also transpires from (10) and (11) that the 
functions cosq(a) and sinq(a) can not vanish simultaneously. There-
fore, one always has expq(±ia) �= 0. However, the moduli of both 
cosq(a) and sinq(a) (and, consequently, rq(a) as well) tend to zero 
in the limits a → ±∞. Finally, notice that for q > 1 the squared 
modulus of the q-exponential (7), which is given by r2

q (a) =[
1 + (1 − q)2a2

]1/[(1−q)]
, has the shape of a q-Gaussian density. The 

q-Gaussian densities are proportional to 
[
1 − (1 − q)βa2

] 1
1−q , with 

β a real positive constant. For reasons not yet fully understood, 
q-Gaussians seem to be ubiquitous, appearing in a surprisingly di-
verse set of scenarios in physics, biology, economics, among other 
fields. The standard Gaussian distribution corresponds to the q → 1
limit of the q-Gaussian family.

Exponential plane waves and Gaussian distributions play a cen-
tral role in physics. As already mentioned, these mathematical 
objects admit non-trivial generalizations within the mathemati-
cal formalism of nonextensive thermostatistics. Consequently, the 
nonlinear Schrödinger equation (5), admitting q-plane wave solu-
tions, is of interest from the point of view of mathematical physics. 
Moreover, due to the peculiar features of the q-plane waves, these 
solutions might be relevant for the description of complex phe-
nomena related to dark matter, nonlinear quantum optics, plasma 
physics, and others.

The q-plane wave solutions have some basic mathematical 
properties that are physically appealing. It follows from equations 
(9)–(11) that the q-plane waves share the oscillatory character typ-
ical of the standard exponential plane waves. On the other hand, it 
also transpires from (12) that, in contrast with exponential plane 
waves, the q-plane waves are, for q �= 1, localized structures, with 
a degree of localization depending on the value of q. Finally, the 
q-plane waves behave in a soliton-like fashion. Indeed, in the one-
dimensional case one has a soliton-like structure traveling at a 
constant speed v = ω/k, resembling nonlinear excitations with a 
shape constant in time.

The evolution equation (5), together with the associated com-
plex conjugate equation for �∗(�x, t), do not seem to admit a La-
grangian formulation on their own (that is, a formulation based 
on a Lagrangian involving solely the fields � and �∗ and their 
space-time derivatives). Nor do the fields � and �∗ lead to a 
clear probabilistic interpretation. In fact, the norm 

∫ |�|2dx is not 
preserved for general solutions of (5) (see, for instance, [14,16]). 
The norm is, however, preserved for important particular solutions, 
such as the q-plane waves. These difficulties can be ameliorated 
by introducing a second field �(�x, t) (and its complex conjugate). 
It was proved in [21] that there is an appropriate Lagrangian den-
sity

L = L
[
�,�̇, �∇�,�, �̇, �∇�

]
, (13)

involving the fields � and � (and their complex conjugates) and 
the corresponding space-time derivatives, such that the concomi-
tant Euler–Lagrange equation for � leads precisely to the nonlinear 
Schrödinger equation (5). On the other hand, the Euler–Lagrange 
equation for � yields the dynamic law governing the evolution of 
the new field,

ih̄
∂�(�x, t)

∂t
= h̄2

2m

[
�(�x, t)

�0

]1−q

∇2�(�x, t) . (14)

The form of the Lagrangian density (13) is such that, for q = 1, 
and making the identification �(�x, t) = �∗(�x, t), it reduces to the 
standard Lagrangian for the linear Schrödinger equation. In this 
case the evolution equation for � coincides with the usual, lin-
ear, evolution equation for �∗ (that is, the complex conjugate of 
the standard Schrödinger equation). For q �= 1 there isn’t, in gen-
eral, such a simple and direct relation between the fields � and �
(or, at least, such a relation is not known). Each of them have to 
be determined as solution of their respective evolution equations, 
which means that the Lagrangian formulation leading to the non-
linear Schrödinger equation (5) entails, for q �= 1, an extra level of 
kinematical and dynamical complexity. This feature can be high-
lighted by rewriting (5) as

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − h̄2

2m
�∇ ·

[(
�(�x, t)

�0

)1−q

∇
(

�(�x, t)

�0

)]
, (15)

and considering a small increment of q around q = 1, i.e., q = 1 +ε
(0 < ε 
 1). One then obtains,

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − h̄2

2m

{
− ε

[
�(�x, t)

�0

]−ε−1 [
∇

(
�(�x, t)

�0

)]2

+
[

�(�x, t)

�0

]−ε

∇2
(

�(�x, t)

�0

)}
, (16)

whereas (14) becomes

ih̄
∂�(�x, t)

∂t
= h̄2

2m

[
�(�x, t)

�0

]−ε

∇2�(�x, t) . (17)

One notices that (17) becomes the complex conjugate of (16) in 
the limit ε → 0, where the factor multiplying the Laplacian terms 
in both equations yields limε→0[�(�x, t)/�0]ε = 1. An important 
aspect of (5), which becomes very clear when this equation is cast 
as (16), is that its nonlinearity has a very different structure than 
the one corresponding to the GPE (1). In the GPE case, the non-
linear contribution K |�(�x, t)|ν is introduced in order to take into 
account a type of mean-field potential due to other particles in 
the system [3,4], while the nonlinear contributions in (16) are ex-
pected to describe other types of physical phenomena, like, e.g., 
dark matter [21]. Hence, a unification of these two quantum equa-
tions should cover wider physical phenomena than those covered 
by the GPE alone.

As already explained, no general relation between the fields �
and �, beyond the one just given by the evolution equation (14), 
is known. However, in the special case of the q-plane wave solu-
tions, such a connection does exist. After substituting the q-plane 
wave solution (6) into the evolution equation (14), it can be veri-
fied that

�(�x, t)

�0
=

{
expq

[
i(�k · �x − ωt)

]}−q =
[

�(�x, t)

�0

]−q

, (18)

constitutes a solution of (14). We shall refer to the joint pair of 
solutions (6) and (18), for the coupled evolution equations govern-
ing � and �, as the “q-plane wave solutions” for these two fields. 
An important property of these q-plane wave solutions is the fact 
that they are compatible with the de Broglie and Planck relations. 
Indeed, if the expressions (6) and (18) satisfy the alluded evolu-

tion equations, one necessarily has h̄ω = h̄2k2

2m , which, by recourse 
to the identifications �p = h̄�k and E = p2

2m , leads (for all values of q) 
to the standard relation between the moment and the energy of a 
non-relativistic free particle, E = p2

2m [9]. The above explained for-
mulation, based on the two fields � and �, suggests to generalize 
Eq. (2) by introducing the probability density,

ρ(�x, t) = 1 [�(�x, t)�(�x, t) + �∗(�x, t)�∗(�x, t)], (19)

2��0�0
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where � is an appropriate constant with dimensions of volume 
corresponding, for q-plane waves, to a probability density normal-
ized within a box of volume �. Indeed, in the case of the q-plane 
wave solutions associated with free particles, this proposal leads 
to ρ(�x, t) = 1/�, immediately yielding [∂ρ(�x, t)/∂t] = 0, as well as 
the nonintegrability feature typical of the usual exponential plane-
wave solutions of the linear Schrödinger equation.

With the purpose of unifying both Eqs. (1) and (5), herein we 
will consider the following Lagrangian density,

L = A′

�0�0

{
ih̄ �(�x, t)�̇(�x, t) − h̄2

2m

[
�(�x, t)

�0

]1−q

· [ �∇�(�x, t)] · [ �∇�(�x, t)]
− b�(�x, t)�(�x, t)

[
�(�x, t)

�0

�(�x, t)

�0

]δ−1 [
�(�x, t)

�0

]α

− b�∗(�x, t)�∗(�x, t)

[
�∗(�x, t)

�0

�∗(�x, t)

�0

]δ−1 [
�∗(�x, t)

�0

]α

− ih̄ �∗(�x, t)�̇∗(�x, t) − h̄2

2m

[
�∗(�x, t)

�0

]1−q

· [ �∇�∗(�x, t)] · [ �∇�∗(�x, t)]
}

, (20)

where A′ is a constant, whereas b, δ, and α represent real parame-
ters. In this way, the Euler–Lagrange equation for the field � yields

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − 1

2 − q

h̄2

2m
∇2

[
�(�x, t)

�0

]2−q

+ bδ

[
�(�x, t)

�0

�(�x, t)

�0

]δ−1 [
�(�x, t)

�0

]α+1

, (21)

whereas the Euler–Lagrange equation for the field � leads to

ih̄
∂

∂t

[
�(�x, t)

�0

]
= h̄2

2m

[
�(�x, t)

�0

]1−q

∇2
[

�(�x, t)

�0

]

− b(δ + α)

[
�(�x, t)

�0

�(�x, t)

�0

]δ [
�(�x, t)

�0

]α−1

.

(22)

The q-plane wave solution of Eq. (6), together with Eq. (18), are 
still solutions of Eqs. (21) and (22) provided that the real parame-
ter α satisfies α = δ(q −1). In this case, the pair of equations above 
become

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − 1

2 − q

h̄2

2m
∇2

[
�(�x, t)

�0

]2−q

+ K

[
�(�x, t)

�0

�(�x, t)

�0

]δ−1 [
�(�x, t)

�0

][δ(q−1)+1]
,

(23)

whereas the Euler–Lagrange equation for the field � leads to

ih̄
∂

∂t

[
�(�x, t)

�0

]
= h̄2

2m

[
�(�x, t)

�0

]1−q

∇2
[

�(�x, t)

�0

]

− Kq

[
�(�x, t)

�0

�(�x, t)

�0

]δ [
�(�x, t)

�0

][δ(q−1)−1]
,

(24)

where we have defined K = bδ. One sees that the equations above 
recover Eqs. (5) and (14) respectively, by setting K = 0. Moreover, 
in the particular limit q = 1 one has �(�x, t) = �∗(�x, t) [cf. Eq. (18)] 
so that Eqs. (23) and (24) recover Eq. (1) and its complex conjugate 
by identifying ν ↔ (δ − 1).
Notice that the general structure of the pair of evolution equa-
tions (23)–(24) is considerably more complex than the structure 
of the pair (5) and (14). Indeed, one sees that equation (5) is au-
tonomous, involving only the original field � , while equation (14)
involves both fields � and �, being linear in the second field �. 
On the other hand, both evolution equations (23)–(24) depend on 
the two fields � and �, and, moreover, both equations depend 
nonlinearly on each of these two fields. The autonomous nature of 
the field equation (5) (which is one of the two field equations cor-
responding to the case K = 0) allows for the dynamics of the field 
� to be studied independently of the dynamics of the field �. In 
other words, in this case the evolution given by equation (5) con-
stitutes a subject worth of investigation on its own right. Indeed, 
the wave equation (5) for � was first introduced without any ref-
erence to the field � [9]. The situation is completely different in 
the general, K �= 0 scenario. In this case the evolution of the two 
fields is more intertwined and nonlinear than in the K = 0 case.

One readily sees that by substituting the q-plane wave solution 
of Eq. (6) [together with Eq. (18)] in Eqs. (23) and (24), one obtains 
the following dispersion relation

h̄ω = h̄2k2

2m
+ K ; ⇒ E = p2

2m
+ K ; (∀q), (25)

where in the last equality we have made the identifications �k →
�p/h̄ and ω → E/h̄. Hence, by means of the q-plane wave solution, 
the energy of the free particle increases by a constant value K , so 
that one may define modified quantities, like momentum �̃p and 
wave vector �̃k,

p̃2 = p2 + 2mK ; k̃2 = k2 + 2mK

h̄2
; (∀q), (26)

in order to keep the form of de Broglie relation, �̃p = h̄�̃k. Moreover, 
inserting these solutions in Eq. (19), one gets ρ(�x, t) = 1/� (and, 
of course, [∂ρ(�x, t)/∂t] = 0) with the continuity equation clearly 
satisfied. It is remarkable that the q-plane waves constitute exact 
solutions of the coupled and highly nonlinear pair of field equa-
tions (23)–(24).

It is worth to consider in some detail the behavior of equation 
(23) and its q-plane wave solutions for q-values q = 1 + ε close 
to 1 (continuing with the discussion started in connection with 
equation (16)). Writing � = exp(A) and � = exp(B) one can recast 
(in one dimension) equation (23), to first order in ε , as,

ih̄
∂ A

∂t
= − h̄2

2m

[(
∂ A

∂x

)2

+ ∂2 A

∂x2

]

+ ε
h̄2

2m

[(
∂ A

∂x

)2

+ A

(
∂ A

∂x

)2

+ A
∂2 A

∂x2

]

+ K (1 + εδA)exp[(δ − 1)(A + B)]. (27)

The solution to this equation corresponding to a first order expan-
sion of the q-plane wave solution around the plane wave solution 
associated with q = 1 is,

A = i(kx − ωt) − 1

2
ε(kx − ωt)2,

B = −i(kx − ωt) − iε(kx − ωt) + 1

2
ε(kx − ωt)2. (28)

These solutions correspond to

� = exp

[
i(kx − ωt) − 1

2
ε(kx − ωt)2

]
. (29)

Interestingly, we see that the first order expansion of the q-plane 
wave solution has the form of a Gaussian wave packet that travels 
keeping a constant width.
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So far we have considered the unified nonlinear evolution equa-
tions in the absence of an external potential V (�x). We shall now 
briefly discuss a possible extension of the field equations (23)–(24)
that incorporates the effects of an external potential. Let us con-
sider the wave equations,

ih̄
∂

∂t

[
�(�x, t)

�0

]
= − 1

2 − q

h̄2

2m
∇2

[
�(�x, t)

�0

]2−q

+ K

[
�(�x, t)

�0

�(�x, t)

�0

]δ−1 [
�(�x, t)

�0

][δ(q−1)+1]

+ V (�x)
[

�(�x, t)

�0

]q

, (30)

and

ih̄
∂

∂t

[
�(�x, t)

�0

]
= h̄2

2m

[
�(�x, t)

�0

]1−q

∇2
[

�(�x, t)

�0

]

− Kq

[
�(�x, t)

�0

�(�x, t)

�0

]δ [
�(�x, t)

�0

][δ(q−1)−1]

+ V (�x)
[

�(�x, t)

�0

]q−1
�(�x, t)

�0
. (31)

There are several reasons indicating that the evolution equa-
tions (30)–(31) have the appropriate structure in order to take 
into account an external potential V (�x). First of all, in the K → 0
limit the equations (30)–(31) reduce to the appropriate ones in the 
presence of an external potential corresponding to the equations 
(5) and (14) (see a discussion on this issue in [15]). It is physi-
cally reasonable that the effect of an external potential is given by 
an additive term whose structure does not depend on the Gross–
Pitaievsky-like nonlinearity given by the second terms on the right 
hand sides of (23)–(24). If one considers the particular case of a 
constant potential V (�x) = V 0, it can be verified after some alge-
bra that the q-plane waves are still solutions, provided that the 
following relation is satisfied,

h̄ω = h̄2k2

2m
+ K + V 0 ; ⇒ E = p2

2m
+ K + V 0 ; (∀q). (32)

The above relation has an immediate physical interpretation: the 
constant potential gives rise to an additive contribution to the en-
ergy.

The field equations (30)–(31) look quite formidable. It seems 
uniquely that exact analytical can be obtained. However, it is pos-
sible that such solutions exist for some particular potentials. Here 
we shall consider, as an illustration, one particular, stationary so-
lution of a shifted delta potential in one spatial dimension. Let us 
consider the following shifted attractive delta potential,

V (x) = V 0 − Dδ(x), (33)

where V 0 and D are positive constants and δ(x) is Dirac’s delta 
function. It can be verified that the wave functions

�

�0
= expq(−β|x|),

�

�0
= exp−q

q (−β|x|), (34)

where β is a real, positive parameter, constitute stationary solu-
tions of (30)–(31), provided that the following relations are satis-
fied,

D = h̄2β

m
, (35)

V 0 + K = h̄2β2

. (36)

2m
The wave functions � and � given by (34) satisfy the equations 
obtained by setting in (30)–(31) the time derivatives equal to zero. 
In the q → 1 limit with K = 0, this solution corresponds to the 
ground state of a shifted delta potential whose ground state energy 
vanishes (consequently, the time dependent phase associated with 
the stationary solution is zero, and the solution is strictly time in-
dependent). The solution (34) is not, strictly speaking, a q-plane 
wave. But formally it is closely related to q-plane waves. It can be 
regarded as a q-plane wave with a vanishing frequency (ω = 0) 
and an imaginary wave number k = iβ . The degree of localization 
of the solution (34) is given by the parameter β . Increasing values 
of β correspond to increasing localization. It follows then from (35)
that the degree of localization increases both with the strength of 
the attractive delta well (given by the parameter D) and with the 
mass m of the particle. It is interesting that the relations (35)–(36)
do not depend on the parameter q.

3. Conclusions

We have developed an exact classical field theory with the pur-
pose of unifying two previous proposals for nonlinear Schrödinger 
equations, corresponding respectively, to the Gross–Pitaievsky 
equation and to the one associated with nonextensive statistical 
mechanics. We have shown that, due to the nonlinear aspects of 
this later contribution, besides the usual �(�x, t), an extra field 
�(�x, t) must be introduced for consistency; this later field be-
comes �∗(�x, t) only when q → 1. Consequently, for q �= 1, we have 
derived a pair of quantum equations by means of which the two 
fields �(�x, t) and �(�x, t) are related, whereas in the limit q → 1
they become the usual pair of complex-conjugate equations.

These equations present a common, soliton-like, traveling so-
lution, which is written in terms of the q-exponential function 
that naturally emerges within nonextensive statistical mechanics. 
By considering this q-plane wave solution, we have shown that the 
total energy of the free particle gets increased by a constant value, 
so that the de Broglie and Planck relations are preserved for all 
values of q. We also advanced a pair of nonlinear evolution equa-
tions for the fields �(�x, t) and �(�x, t) that incorporate the effects 
of an external potential V (�x).

There is observational and theoretical evidence indicating that 
nonextensive thermostatistics may be relevant for the description 
of dark matter [30,31]. On the other hand, it has been suggested 
that the dark matter consists of Bose–Einstein condensates [32,33]. 
This raises the intriguing possibility that the nonlinear Schrödinger 
equations advanced here, that unifies the Gross–Pitaievskii equa-
tion and the nonlinear one related to the q-thermostatistical for-
malism, might describe dark matter particles. The possible con-
nection between the nonlinear Schrödinger equations associated 
with the q-statistics [9] and dark matter has also been pointed 
out in [21], on the basis of formal properties of this equation. In 
order to appropriately explore this possibility it would be neces-
sary to develop techniques to obtain more general solutions of the 
nonlinear equations explored in this work, beyond the analytical 
ones presented here. Given the fact that the nature of dark matter 
constitutes one of the most pressing open questions in contempo-
rary physics and astronomy [34], this speculation may deserve to 
be further explored.

As a final comment, notice that the q → 1 limit of the nonlin-
ear Schrödinger equation considered here is itself nonlinear. This 
suggests the possibility that other types of nonlinear wave equa-
tions may also admit sensible generalizations within the context of 
the nonextensive thermostatistical theory. Unfortunately, no gen-
eral procedure or algorithm is known to obtain these extensions. 
Consequently, these kind of generalizations have to be investigated 
individually, on a case-by-case basis. Possible venues of exploration 
that may be worth pursuing would be to investigate the existence 
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of extensions, based or inspired on nonextensive thermostatistical 
mechanics, of the nonlinear, nonlocal Schrödinger wave equations 
proposed in [35], or of Schrödinger equations with logarithmic 
nonlinearities [36,37]. It would also be interesting to investigate if 
the nonlinear extensions inspired on the nonextensive thermosta-
tistical formalism have a connection with the deformed dynamics 
advanced in [38]. Any further elucidation of these or related issues 
would be very welcome.
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