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In this work, we present a three-dimensional model for the design of wideband piezoelectric polymer
sensors which includes the geometry and the properties of the transducer materials. The model uses
FFT and numerical integration techniques in an explicit, semi-analytical approach. To validate the
model, we made electrical and mechanical measurements on homemade sensors for optoacoustic
applications. Each device was implemented using a polyvinylidene fluoride thin film piezoelectric
polymer with a thickness of 25 µm. The sensors had detection areas in the range between 0.5 mm2

and 35 mm2 and were excited by acoustic pressure pulses of 5 ns (FWHM) from a source with a
diameter around 10 µm. The experimental data obtained from the measurements agree well with the
model results. We discuss the relative importance of the sensor design parameters for optoacoustic
applications and we provide guidelines for the optimization of devices. Published by AIP Publishing.
https://doi.org/10.1063/1.4986771

I. INTRODUCTION

Biomedical imaging using the optoacoustic (OA) effect
is currently in full development, generating new technical
approaches and applications.1 In a typical OA configuration,
the tissue is illuminated by nanosecond laser pulses. Pulse rep-
etition rates are usually in the range of a few tens of Hertz, with
energies around a few millijoules per pulse. For OA imag-
ing, the pressure profiles generated by the optical excitation
are captured with sensors that surround the area of interest.
The image is finally obtained from the measured signal using
reconstruction algorithms. These algorithms are significantly
simplified if the sensor can be considered as an ideal one.
We define an ideal point sensor as the limiting case where
the output signal follows the instantaneous acoustic pressure
(infinite bandwidth), and its characteristic size is much smaller
than the shortest acoustic wavelength of interest. The effects
of a non-ideal sensor on the image-reconstruction algorithms
are quite important. For instance, the use of transducers with
large detecting area can result in conspicuous image blurring
and distortions in the reconstructed images.2,3 In OA imag-
ing, to attain spatial resolution of the order of microns, the
spectral bandwidth of acoustic signals must be large, reach-
ing up to hundreds of MHz. Moreover, in contrast to ultra-
sonic imaging (USI), the amplitudes of the OA signals are
relatively low. In consequence, the use of high performance
sensors is necessary to achieve high quality images in this and
similar applications. In this context, a high performance sen-
sor should have large bandwidth, high spatial resolution, and
adequate sensitivity. There are two types of ultrasonic sen-
sors: resonant and broadband (non-resonant). It follows from
above that broadband sensors are required in OA imaging.
Nevertheless, much of the ultrasound detection technology

used nowadays involves resonating detectors due to the advan-
tage of their higher sensitivity. However, the restriction of
the bandwidth of the measured signal leads to an image
with reduced resolution and artifacts.4 In consequence, in
order to obtain high performance sensors, different approaches
have been implemented, notably the use of piezoelectric
polymers.5–10 It is possible to classified the sensors for OA
applications in two main categories:1 piezoelectric transduc-
ers, in which acoustic pressure is directly transformed into
an electric signal, and optical detectors, which are sensi-
tive to changes in the length of the optical path induced
by pressure waves. The former type is the most com-
monly used and it is based on polymeric (broadband) or
ceramic (resonant) materials such as those widely used in
USI.11,12 This technology has a relative low implementation
cost and can be applied in high sensitivity measurements.
Among piezoelectric polymers, the most popular ones are
polyvinylidene fluoride (PVDF) and its copolymers, which
have properties that are well suited for biological applica-
tions. These polymers have high dielectric and mechanical
losses and relatively low pyro- and piezoelectric coefficients.13

Therefore, their main application is in ultrasound receiving
transducers.14

Models of broadband sensors for OA applications based
on piezoelectric polymers are relatively scarce. We found
a variety of works on the subject. Some of them assume
ideal sensors for image reconstruction,5–7 others propose very
simplified models taking into account the thickness and the
detection surface of the device,8–10 and there are models that
consider the temporal response of the detector.2,15,16 Never-
theless, none of them fully takes into account the detailed
characteristics of the polymeric material such as, the electrical
and mechanical relaxation processes.
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In a previous work,17 we introduced a one-dimensional
sensor model based on a thin film piezoelectric polymer,
where the acoustic propagation is described by an equivalent
transmission line model. In that work, the dependence of the
electrical and mechanical material properties on frequency and
temperature are included. This model provides a more com-
plete description but it is valid under the excitation by plane
acoustic waves and, in consequence, its applicability is limited
to far field OA imaging.

In this work, we present a three-dimensional model for the
design of wideband piezoelectric polymer sensors that explic-
itly includes the geometry and the properties of the sensor
material. An explicit, semi-analytical approach enables the
model to be simulated at a low computational cost, while main-
taining a reasonable accuracy. This makes it easier to explore
design alternatives for optimization purposes and also to take
into account variations in the material properties and sensor
geometry. This is a significant advantage in comparison to
finite element modeling, which provides high accuracy but at
the expense of a much longer simulation time, particularly
when material relaxation processes are included.18

The paper is organized as follows. In Sec. II, we present a
parametric model which integrates the wave propagation phe-
nomena into the signal processing framework. In Sec. III, we
detail the materials and methods used to validate the model
described in Sec. II. We compare in Sec. IV the experimen-
tal data with the model results. In Sec. V, we explore different
configurations and sensor design alternatives considering three
aspects: the relative position between the acoustic source and
the sensor, material properties, and sensor geometry. Finally,
the conclusions of the work are given in Sec. VI.

II. PARAMETRIC MODEL

The modeled configuration is shown in Fig. 1. The source
emits an acoustic pressure pulse with a gaussian temporal
profile

p(t)=P0 · exp(t2/0.36 · τ2
p ), (1)

where τp is the full width at half maximum characteristic time.
Before reaching the surface of the PVDF film, the acoustic
wave propagates first through the water and then into the glass.
For the acoustic propagation calculations, the source can be
considered as point-like. This is a reasonable assumption when
the characteristic size of the source is much smaller than all
the other relevant characteristics lengths of the problem. For
the determination of the electrical charge q on the electrodes

of the PVDF film as a function of the acoustic pressure p, we
propose the scheme shown in Fig. 2.

During manufacture, the PVDF film is stretched and then
poled by applying an electric field in the direction perpendicu-
lar to the film. The poling direction is customarily indicated as
the reference axis 3 (in this work, the z-axis) and the stretching
direction in the plane of the film (the xy plane) is indicated as
the reference axis 1 (x-axis). It is assumed that the acous-
tic wave only travels perpendicularly to the surface of the
PVDF film behaving as a “normal reaction” material.5 Under
harmonic excitation of angular frequency ω and at constant
temperature, the electromechanical intensive parameters can
be related by19

d33(ω)2/s33(ω)= εF
33(ω) − εB

33(ω), (2)

where d33 is the piezoelectric coefficient, s33 is the elas-
tic compliance at constant electric field, εF

33 is the complex
permittivity at free (zero stress) condition, and εB

33 is the com-
plex permittivity at blocked (zero strain) condition. Assuming
that the polarization instantaneously follows the mechanical
deformation, the difference between the free and blocked per-
mittivities is proportional to the elastic compliance, i.e., d33 is
proportional to s33,20

d33(ω)=σ33s33(ω), (3)

where σ33 is the equivalent surface charge density of remnant
polarization. It is a real constant within the relevant frequency
range. Using the method described in Ref. 20, εF

33, εB
33, andσ33

can be determined. In Ref. 21, we show that the permittivity
of the PVDF can be described by the Havriliak-Negami (HN)
function.22 Therefore, in the frequency range of interest, d33

can be written as

d33(ω)=
ε∞F − ε

∞
B

σ33
+

∆εF
33−∆ε

B
33

σ33

(1 + (iτ0ω)α)β
=

= d∞33 +
∆d33

(1 + (iτ0ω)α)β
, (4)

where ε∞F and ε∞B are the limiting values of the permittivity
at high frequencies, ∆εF

33 and ∆εB
33 are the relaxation strength

(in both cases, the supra-indexes F and B refer to the free and
blocked conditions, respectively), τ0 is the characteristic relax-
ation time, and α and β are shape parameters that describe
the broadening of the relaxation peak. The shape parameters
are related to symmetric (α) and asymmetric (β) broaden-
ing of the relaxation peak, and they are both positive numbers

FIG. 1. Scheme of the modeled config-
uration. The cutaway diagram is not to
scale.
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FIG. 2. Block diagram of the proposed
model to calculate the electric charge on
the sensor.

(for physical relaxation processes, the product αβmust always
be less than 1).22

Given the instantaneous pressure p(r, t), the electric dis-
placement D(r, t) can then be calculated by the time convo-
lution between p(r, t) and d33(t), where d33(t) is the impulse
response of the piezoelectric polymer, i.e., the inverse Fourier
transform of Eq. (4). In this work, it is assumed that the pressure
p has most of its energy spectrum concentrated in a frequency
band well within the range where d33 is defined by Eq. (4).

Then, the electric charge density σp can be approximated
by taking the average of D along the z axis. This is possible
because the quasi-static description is appropriate from the
electrical point of view due to the enormous difference between
the velocities of propagation of the electrical and mechanical
disturbances in the material.17

The acoustic reflections at the rear and front surfaces of the
sensor, together with the thickness and acoustic attenuation of
the piezoelectric film, are described by the function w(z) (see
Fig. 3),

w(z, Γa, Γg, δ, aδ)= [Π(
z
δ

) + Γa Π(
z − δ
δ

) +

+ ΓaΓg Π(
z − 2δ
δ

)] e−aδ z, (5)

where δ is the thickness of the film; Π( z
δ ) is a rectangular

window between 0 and δ; Γg and Γa are the reflection coef-
ficients of the interfaces PVDF-glass (front) and PVDF-air
(rear), respectively; and ap is the attenuation factor of acous-
tic propagation through the film. This model assumes that
Γg, Γa, and ap are frequency independent. The successive
reflections of the acoustic wave between the front and rear
faces of the sensor are replaced by the equivalent propagation
through several layers. Equation (5) considers only the first

FIG. 3. Spatial window used to describe the reflections on the rear back
(PVDF-air) and on the front face (PVDF-glass) of the sensor, including the
attenuation of the acoustic signal. Values used in this plot: ap = 0.6; Γa = 0.9;
Γg = 0.62.

two reflections. If necessary, further reflections can be taken
into account in a straightforward way (i.e., for low attenuation
piezoelectrics).

The electric charge density is calculated from D(r, t) and
the function w(z) given by Eq. (5). Since the function w(z) has
bounded support, and assuming that the sound velocity vp in
the film does not depend on the frequency,σp can be calculated
by performing a convolution,

σp((x, y), t)=

=
1
δ

∞∫
−∞

w(t ′vp, Γa, Γg, δ, α) D
(
(x, y, 0), t− t ′

)
vp dt ′.

(6)

In Eq. (6), we made the change of variables t = z/vp. In this
way, σp is expressed as time-domain convolutions between p,
d33, and w.

Given a point source of pressure waves, each point on the
sensor surface is excited by a signal with the same tempo-
ral profile but scaled in amplitude and with a different delay.
Assuming that each point on the surface behaves as a point
sensor and that this detector can be approximated as a linear
and time invariant (LTI) system, it follows that all the points
on the surface of the sensor behave as identical LTI systems.
This allows to calculate σp((x, y), t) for the different values of
x and y, using σp((0, 0), t) from Eq. (6) and applying scaling,
k, and delay, ∆t, functions,

σp((x, y), t)= k(r)σp ((0, 0), t − ∆t(r)) . (7)

As seen from Fig. 4, the (0, 0) point corresponds to the
projection of the source position on the sensor plane. From the
model configuration, k and ∆t may be calculated, under the
geometrical acoustics approximation, using elementary ray-
tracing techniques (see Fig. 4),

∆t(r)=
dG

cos(θG(r)) − dG

vG
+

dW
cos(θW (r)) − dW

vW
, (8)

k(r)=TWG
ro

lW + lG
cos(θG(r))=

=TWG
dW + dG

dG
cos(θG(r)) + dW

cos(θW (r))

cos(θG(r)), (9)

where r = (x2 + y2)1/2; vW and vG are the sound velocity in water
and glass, respectively; θW and θG are the Snell angles of water
and glass interfaces, respectively; and TWG is the transmis-
sion coefficient in pressure at the interface water-glass given
by23

TWG =
2ρGvGcos(θW )

ρW vW cos(θG) + ρGvGcos(θW )
, (10)

where ρG and ρW are the mass densities of glass and water,
respectively. In these expressions, it was assumed that in the
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FIG. 4. Path of the acoustic signal through the water-glass interface. The
source is at a distance r0 from the sensor. A circular cross section sensor is
assumed.

liquid-solid interface, the transmission coefficient of the lon-
gitudinal waves is real and greater than that of the shear waves
and also that practically does not depend on the angle θW .23

These hypotheses are fulfilled for the geometrical and material
parameters of the setup described in this work. As explained
above, the PVDF film behaves as a “normal reaction” material.
Therefore, the cos(θG(r)) factor takes into account the oblique
incidence of the pressure signal.

In the case of a circular sensor not aligned with the pres-
sure source, a radial positioning parameter os (see Fig. 4) is
defined. For the case of a non-circular sensor, two parameters,
osx and osy, are defined to represent the positioning on each
axis separately (see Fig. 5).

Finally, q(t) is calculated by the following integral:

q(t)=
"

A

σp((x, y), t) dx dy. (11)

FIG. 5. Scheme of the positioning parameters for the case of a non-circular
sensor.

It is important to remark that the model presented in this
work involves explicit, mostly analytical calculations. This
simplifies the treatment of material relaxation processes and
significantly speeds up the simulations.

III. MATERIALS AND METHODS

To validate the model, we made several sensors of dif-
ferent detection areas in the range between 0.5 mm2 and 35
mm2. Each sensor was implemented using a PVDF thin film
piezoelectric polymer (PIEZOTECH CORP, 25 µm thick, met-
alized on both sides) attached to a spectroscopy-quality quartz
cuvette and encapsulated in a standard BNC (see Fig. 6). In all
the measurements, the cuvette was filled with deionized water
and its temperature was monitored using a calibrated thermo-
couple. The water temperature was kept at 300.0 K ± 0.1 K
and the room temperature at 300 K ± 1 K. A transimpedance
amplifier (Femto HCA-100M-50K-C) was used to amplify the
signal detected by the sensor.

Electrical and acoustic measurements were carried out
on each sensor. The material properties and sensor assembly
were checked by measuring its electrical admittance. These
measurements were made with a bridge circuit excited by
a synthesized signal generator (Agilent N9310) in the range
from 100 kHz to 90 MHz. The output signals from the bridge
were captured by a fast digitizer (Agilent U2702, 0.5 Gs/s,
200 MHz) and processed with an FFT routine. The bridge was
calibrated with measurements in the “open” condition and also
with a reference capacitor (ceramic C0G dielectric, 47 pF).
The low-loss reference capacitor was previously character-
ized with a vector network analyzer to ensure that its self-
resonant frequency was over 250 MHz, well above the intended
measurement range. The details of the measurement method
and the calibration procedures are given in Ref. 21.

The frequency response of the amplifier was indepen-
dently determined at frequencies up to 200 MHz using a
network analyzer. Moreover, the frequency response of each
sensor connected to the amplifier was also measured, to check
that it was not affected. In all cases, the bandwidth of the
amplifier exceeded the frequency range of interest and, in con-
sequence, its gain and phase response could be considered as
ideal.

Optoacoustic measurements employed a setup similar to
that used on the study of laser-induced bubble generation on
gold nanoparticles.24,25 A Nd:YAG laser with a second har-
monic generator (Continuum Minilite I, 532 nm, 5 ns, 10 Hz)
and a converging lens (10 mm) were used to generate a gaus-
sian pressure signal on a target submerged in the cuvette. The
target is a copper wire with a diameter around 10 µm. Its posi-
tion in the cuvette is adjusted using a XYZ translation stage.
The lens focuses the laser beam on the copper wire, into a spot
with a diameter of 10 µm, thus providing a roughly spherical
irradiated volume. In this way, as indicated in Sec. II, within
the range of frequency studied in this work, the irradiated target
may be regarded as a point source of pressure waves. The tem-
poral profile of the pressure pulses was checked by a wideband
interferometric method described in the work of Riobo et al.26

The sensor output was amplified with the transimpedance
amplifier, digitized by an oscilloscope (Tektronix TDS 2024,
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FIG. 6. Left: out-of-scale sensor
scheme. Right: picture of one of the
sensors implemented.

2 GS/s, 200 MHz) and processed on a personal computer.
The oscilloscope trigger signal was obtained from the laser
Q-switch pulse. A sample of the main laser beam was taken
by a beamsplitter to measure the laser pulse energy with a
pyroelectric detector (Coherent LMP10).

The numerical simulations were carried out with a pro-
gram developed in the Wolfram Mathematica (WA) environ-
ment.

IV. SIMULATIONS AND EXPERIMENTAL VALIDATION

The sensors described in Sec. III were modeled using the
parameter values from Table I. The adjustable parameters were
chosen to give the best fitting to experimental results (in the
least square sense). The initial values related to the PVDF film
parameters were obtained from Ref. 20. The initial value of vp

is an average sound speed in the PVDF film, weighted by the
spectral energy density of the source pulse (in the frequency
range of interest). The initial values of the acoustic reflection
coefficients were calculated from the PVDF properties given
in Ref. 20, assuming plane waves. The initial value of vG was
determined from direct measurements in the cuvettes used in
this paper.

For the sake of computational efficiency, the time-domain
convolution between p, d33, and w [Eq. (6)] is calculated as
a product in the frequency domain and then the Inverse Fast
Fourier Transform (IFFT) algorithm is used to obtain the result

TABLE I. Fixed and adjustable parameters used in the simulation where ρ0
is the PVDF density, vA is the air sound velocity, and rs and ls are the radius
or side of the sensor, respectively.

Fixed parameters Adjustable parameters

Reference value Initial value

δ 25 µm τ0 140 ns
∆d33 34.5 pC/N vp 2200 m/s
d∞33 1.1 pC/N Γg 0.65
α 0.5 Γa 0.99
β 0.68 ap 0.66
σ33 7.7 µC/cm2 vG 3570 m/s
vA 347 m/s dW 2.5 mm
vW 1500 m/s τp 5 ns
ρ0 1780 kg/m3 rs, ls ≥0.8 mm, ≤4 mm
dG 1 mm os, osx , osy <2 mm

in the time domain. In the IFFT algorithm, we choose a maxi-
mum frequency of at least five times the spectral width of the
pressure pulse (more than 99% of its energy). The frequency-
domain sampling interval is chosen as 1/(40τ0). This ensures
that the calculated time-domain response is in all cases much
longer than the relaxation time of the piezoelectric response.
The integral of Eq. (11) was calculated using the NIntegrate
WA function.

As explained in Sec. III, the transimpedance amplifier in
this work may be considered as ideal. Therefore, the measured
value of the charge, q(t), may be obtained as the time integral
of the output signal of the amplifier.

In order to ensure the consistency of the results, all param-
eter fittings were performed following the same sequential
procedure, as shown in Fig. 7 for the case of a square sensor:
(A) the size of the sensor was estimated based on the relative
distance between the positive peak and the midpoint between
the negative peaks; (B) the positioning parameters, osx and
osy, were adjusted to provide the correct spacing between the
negative peaks; (C) the widths of the positive and the negative
peaks were fitted by varying the value of vp; and (D) the sig-
nal amplitude was fitted by carefully adjusting the reflection
and attenuation coefficients. This fitting sequence was chosen
based on the influence that the parameters have on the sensor
response as described in Sec. V. It must be stressed that in all
cases, the fitted values of the adjustable parameters were very
close to their initial values.

FIG. 7. Fitting steps for a square sensor. This example assumes osx < osy.
In this way, the distances b1 and b2 can be adjusted through osx and osy,
respectively.
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FIG. 8. Simulated (solid) and measured (dots) values of the normalized elec-
tric charge for a square sensor with a side length of 0.8 mm. The response of
an ideal point sensor is also shown (dashes).

Figures 8–11 show the experimental data (dots) and the
simulated response (solid) together with the response of an
ideal point sensor (dashes), for different sensor sizes and
source positions.

The smallest sensor studied was square, with a side length
of 0.8 mm (see Fig. 8). The final values of the fitted parameters
are ls = 0.8 mm; τ0 = 140 ns; vp = 2240 m/s; ap = 0.6; Γa = 0.99;
Γg = 0.55; vG = 3603 m/s; τp = 5 ns; dW = 2.69 mm; osx =
0.42 mm; osy = 0 mm. The adjusted values of the positioning
on each axis agree well with those measured directly from the
translation stage.

The simulation agrees very well with the experimental
data up to the end of the main (positive) pulse. The negative
part of the signal is mainly due to the reflection at the back
of the sensor (PVDF-air interface). It can be seen that in the
latter part of the negative pulse, the amplitude of the simulated
response differs from the experimental data. This is due to the
reflections of the acoustic wave on the lateral boundaries of
the sensor, which are superimposed with the main reflection
coming from the back of the sensor. This edge effect is not
included in the present model; for instance, the elastic and
piezoelectric anisotropy of PVDF is neglected. The effect of
the edge reflections is clearly seen in larger sensors. Figure 9
shows the experimental and simulation data of the electric

FIG. 9. Simulated (solid) and measured (dots) values of the normalized elec-
tric charge for a square sensor with a side length of 4 mm. The positioning
parameters are osx = 0.66 mm and osy = 0.2 mm. The response of an ideal
point sensor is also shown (dashes).

FIG. 10. Simulated (solid) and measured (dots) values of the normalized elec-
tric charge for a square sensor with a side length of 4 mm. The positioning
parameters are osx = 0.9 mm and osy = 0.26 mm. The response of an ideal
point sensor is also shown (dashes).

charge in a square sensor with a side of 4 mm. The adjusted
parameter values are ls = 3.5 mm; τ0 = 140 ns; vp = 2209 m/s;
ap = 0.65; Γa = 0.99; Γg = 0.65; vG = 4547 m/s; τp = 5 ns;
dW = 2.22 mm; osx = 0.66 mm; osy = 0.2 mm. As indicated
above, these values are very close to the initial values and those
of the previous example. The difference of the value of vG is
due the use of a quartz cuvette instead of optical glass.

The agreement between the experimental data and the
simulation is very good in the initial part of the signal (positive
pulse). In the latter part, the effect of the reflections on the four
sides of the sensor is clearly seen. The measured timing of the
reflections agrees well with the simulation, but the amplitudes
are clearly different. The limitations in the modeling of the
edge effects are also indicated by the difference between the
geometrical length of the sensor side (4 mm) and the adjusted
value (ls = 3.5 mm). As an additional check, the same sen-
sor was measured and simulated in different positions relative
to the acoustic source (i.e., changing the positioning param-
eters). The results are shown in Figs. 10 and 11. It must be
remarked that, after the adjustment process, the values of the
other simulation parameters remained practically unchanged.
The modifications of the relative position between the sensor
and the source originate changes on the reflections times that
are adequately predicted by the model.

FIG. 11. Simulated (solid) and measured (dots) values of the normalized elec-
tric charge for a square sensor with a side length of 4 mm. The positioning
parameters are osx = 0.55 mm and osy = 0 mm. The response of an ideal point
sensor is also shown (dashes).
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As it may be seen from Figs. 8–11, the response of the
devices clearly differs from the limiting case of an ideal point
sensor. This is due to the finite size, relaxation processes,
and acoustic reflections that are unavoidable in a physical
realizable piezoelectric sensor.

V. DISCUSSION

The model presented in Sec. II makes it possible to
explore different configurations and sensor design alternatives.
In this work, three aspects are considered: the relative position
between the acoustic source and the sensor, material prop-
erties, and sensor geometry. Unless indicated, the simulation
parameters are the same of Table I.

A. Acoustic source-sensor relative position

Figure 12 plots the response of a circular sensor (rs =
1.5 mm) for three values of the radial positioning parameter
os. From the figure it may be seen that the initial part of the
signal (positive pulse) is not altered by changes in this param-
eter for this sensor size (we will discuss this later). However,
the effect of the reflections at the boundaries of the sensor is
clearly modified. When os = 0 mm, there is a single reflected
pulse (the incident acoustic wave reaches all the points at the
sensor boundary simultaneously). When os increases, there
are two reflected pulses, originated by reflections at opposite
sides of the sensor (the two points that are closest and farthest
from (0, 0)).

B. Material properties

The relaxation time of the piezoelectric polymer has a
direct impact on the amplitude of the output signal. The plot
(dots) in Fig. 13 describes the response of a circular sensor
made of a material of negligible relaxation time (τ0 = 0 ns),
and its other properties being the same as those of PVDF. In
the same figure, the calculated response for τ0 = 20 ns (dashes)
and τ0 = 140 ns (solid) is also shown. The effect on the high
frequency components of the output signal is noticeable, both
on the amplitude and the trailing edges.

Ultrasonic attenuation is another important material
parameter for the sensor design. As the attenuation increases,

FIG. 12. Simulation of the variation of q(t) on a circular sensor (rs = 1.5 mm)
as a function of the positioning between the sensor and the acoustic source.

FIG. 13. Simulation of the variation of q(t) on a circular sensor (rs = 1.5 mm)
as a function of the characteristic relaxation time of the PVDF film.

the peak amplitude of the signal decreases, together with the
effect of the reflections on the back of the sensor. The sim-
ulation results for different values of the average attenuation
coefficient are shown in Fig. 14.

C. Sensor geometry

The thickness of the piezoelectric film is a critical param-
eter for the sensor impulse response. Roughly speaking, the
characteristic time of the impulse response, in the limit of high
reflections (Γa→ 1), is determined by the propagation delay of
the acoustic wave through the piezoelectric film, tp (i.e., the
ratio between the film thickness and the average sound veloc-
ity in it). The responses for several values of δ are presented
in Fig. 15 for Γa = 0.99, where it can be seen that the main
pulse width increases with the sensor thickness. Moreover, the
rise time and the delay to the peak of the main pulse show the
same trend.

In the limit Γa→ 1, the reflections of the lateral boundaries
of the sensor have a noticeable effect on the initial response
for sensors of small radii (rs < 1 mm), as shown in Fig. 16.
For larger sizes, the reflections occur after the main pulse has
ended and therefore, the main pulse is not superimposed with
the reflections.

The acoustic reflections at the back of the sensor influ-
ence the overall response regardless of its size. As discussed
above, in the limit of high reflection (Γa→ 1), the width of the

FIG. 14. Simulation of the variation of q(t) on a circular sensor (rs = 1.5 mm)
as a function of the acoustic attenuation.
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FIG. 15. Simulation of the variation of q(t) on a circular sensor (rs = 1.5 mm)
as a function of the thickness of the PVDF film.

initial (positive) pulse depends on the film thickness and the
lateral reflections. With an adequate design and selection of
the backing material, Γa can be substantially reduced. In that
case, the impulse response of the sensor is determined by its
lateral dimensions. This may be seen by taking the limit Γa→ 0
in Eq. (5), where the width of the time convolution window
depends only on the film thickness,

w(z, 0, Γg, δ, aδ)=Π(
z
δ

)e−aδ z. (12)

FIG. 16. Simulation of the variation of q(t) on a sensor as a function of its
radius.

FIG. 17. Simulation of the variation of q(t) on a circular sensor (rs = 1.5 mm)
as a function of the reflection coefficient of the back face of the sensor.

FIG. 18. Simulation of the variation of q(t) on a sensor as a function of its
radius with a suitable backing (Γa = 0.1).

Therefore, the output signal depends on the sensor geom-
etry through the integral of the response over the sensor area,
Eq. (11). This is clearly seen in Fig. 17.

The influence of the piezoelectric film thickness is more
noticeable as the lateral dimension of the sensor decreases.
In most applications, however, the lateral dimensions will be
substantially greater than the film thickness, thus being the lim-
iting parameter for the temporal width of the impulse response
(Fig. 18).

VI. CONCLUSIONS

The analysis and design of optoacoustic imaging systems
involve wave propagation and signal processing aspects. The
model presented in this work integrates the wave propaga-
tion phenomena into the signal processing framework through
an explicit, mostly analytic approach. In this way, the influ-
ence of the material parameters and sensor geometry may be
explored to provide design criteria, with a significantly lower
computational effort compared with finite element methods.
Furthermore, parametric modeling together with Monte Carlo
methods makes it straightforward to take into account the
statistical dispersion of material properties27–29 and physical
dimensions of the devices. This will be the subject of future
works.

The model was validated by measurements in sensors of
different sizes. The simulations and experimental results high-
light the differences with the response of an ideal point sensor,
due to finite size, relaxation processes, and acoustic reflec-
tions. From the parametric modeling, it follows that acoustic
reflections (in the back and edges of the sensor) have a direct
impact on the response. However, the ultimate limits of the
sensor performance are given by the material properties: ultra-
sonic attenuation and piezoelectric relaxation. Interestingly,
the effects of the acoustic reflections in the rear of the sensor
may be reduced not only by a suitable backing but also taking
into account the ultrasonic attenuations and thickness of the
piezoelectric film. The properties of piezoelectric polymers,
such as PVDF, make unnecessary the complete elimination
of the reflections (“perfect” backing) to achieve satisfactory
performance. In contrast, this is often an issue in ceramic
transducers.30
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In summary, the model makes possible to ascertain the
relative importance of the sensor design parameters for a
given application and also provides a guide for the device
optimization.
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