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Accurate quantification of components of the water cycle, 
especially precipitation, evapotranspiration (ET) and 
soil moisture, is important in the management of water 
resources, especially in arid and semi-arid regions (Bugan 
et al. 2012). Ground-based measurements are generally 
resource-consuming at large catchment scales. Attempts 
were made in the past to model water variables such as 
rainfall using historic time series (Valipour 2016) and soil 
moisture (Sinclair and Pegram 2010), whilst ET estimates 
are generally based on weather data (Allen et al. 1998). 
Numerous empirical and physical methods to estimate 
reference ET were tested in different climatic conditions 
(Valipour 2012, 2014a, 2014b; Valipour et al. 2017). 
However, it is only with the advancement of remote sensing 
technologies that the coverage of water-cycle components 
at scales appropriate for water resources management 
and high frequency is possible (Bastiaanssen et al. 1998a, 
1998b; Su 2002; Nadler et al. 2005; Allen et al. 2007a, 
2007b; Glenn et al. 2007; Mu et al. 2007).

Amongst the water-cycle components, soil water content 
(SWC) exerts considerable influence on hydrological and 
pedogenic processes (Martinez et al. 2008) and is variable 
in time and space near the surface. The temporal and 
spatial dynamics of SWC are influenced by topography, 
soil properties, vegetation cover, depth to the water table 
and meteorological conditions (Gómez-Plaza et al. 2001). 
Soil water content is also a key variable in understanding 
land–atmosphere interactions, as the transfer of water 

from the soil to the atmosphere via ET influences wet 
and dry anomalies over continental regions (Bosch et al. 
2006). As a result, SWC is a dominant factor in shaping 
an ecosystem’s response to the physical environment 
(Wei 1995), and influences growth of rangeland plants and 
cultivated crops, and the susceptibility of soils to degrada-
tion processes (Tansey et al. 1999) and flooding (Brocca et 
al. 2010; Koster et al. 2010; Brocca et al. 2011). For these 
reasons, soil moisture has been recently listed as one of 
the ‘essential climate variables’ for describing the Earth’s 
climate (GEO 2014).

Approaches for estimating SWC include ground-based 
measurements, estimations based on remote sensing, 
and modelling (Martinez et al. 2008). The direct measure-
ment of SWC is in many cases not feasible due to the high 
degree of spatiotemporal variability of soil characteristics of 
an area, combined with the relatively small volumes investi-
gated (Lacava et al. 2010), which is only a few square 
metres or less (Brocca et al. 2007; Penna et al. 2009). This 
has resulted in a lack of SWC ground-monitoring networks. 
Remote sensing offers a feasible alternative to ground 
measurements of SWC, and provides estimates averaged 
over large areas, and is potentially more cost effective and 
efficient than collecting ground data (Jovanovic et al. 2014).

Amongst the remote sensing methods for the estimation 
of SWC, microwave techniques are promising because they 
offer daily coverage and are capable of providing estimates 
in all weather conditions. Albergal et al. (2009) argued 
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Satellite-based remote sensing of soil water content (SWC) is a promising technology for hydrological applications 
to overcome large spatiotemporal variabilities of SWC. This study investigated the performance of the Advanced 
Scatterometer (ASCAT) soil moisture product on METOP satellite (~12.5 km and downscaled to ~1 km resolution), 
against ground measurements of SWC taken with a Hydrosense II probe along transects of 360–820 m on 
agricultural and natural land at locations in the Western Cape. The ASCAT products estimated fairly accurately 
seasonal trends of SWC; performance was better on lower slopes (R 2 = 0.66) and uniform vegetation. ASCAT 12.5 km 
performed better in estimating SWC than the downscaled product (average concordance coefficient = 0.60 and 0.39, 
and R 2 = 0.84 and 0.74, respectively). ASCAT 12.5 km was more responsive to rainfall events, whilst the downscaled 
product was more sensitive to vegetation characteristics (normalised difference vegetation index  and land surface 
temperature). In situations with ground measurement networks and data availability constraints, remote sensing 
could be a feasible alternative to monitor SWC for hydrological applications at the meso-scale (regional scale). 
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that the L-band (frequency of 1–2 GHz) is the optimal 
microwave wavelength for sensors to detect changes in 
SWC in the top layer of the soil. There are currently several 
satellite sensors operating at or near this frequency, such 
as the Soil Moisture and Ocean Salinity (SMOS), the 
Advanced Microwave Scanning Radiometer for the Earth 
Observing System (AMSR-E) on board the Aqua satellite, 
and the Advanced Scatterometer (ASCAT) on board the 
Meteorological Operational (METOP) satellite. ASCAT, 
which operates in the C-band at a frequency just above the 
L-band (5.255 GHz) offers the best combination of spatial 
(~12.5 km) and temporal (1–2 d) resolution. This product 
was found to perform well compared with ground measure-
ments in several validation studies (Albergal et al. 2009; 
Brocca et al. 2011). However, there have not been studies 
comparing ASCAT SWC estimates with ground measure-
ments in semi-arid areas of South Africa. 

Remote sensing products for soil moisture estimation 
with reasonably short revisit times are generally charac-
terised by coarse spatial resolution (>10 km2) (Brocca 
et al. 2011). This spatial resolution may be too coarse for 
certain water management applications at the meso-scale 
level (Schultz 1994), and therefore there is a need to 
investigate downscaling of satellite soil moisture estimates 
to finer resolution. Downscaling of SWC can broadly be 
grouped into stochastic and deterministic approaches. 
One of the major shortcomings of stochastic approaches 
is that the downscaled products are often not derived from 
physically based inputs and therefore can have several 
possible solutions (Kim and Barros 2002; Boucher 2007). 
Deterministic approaches, on the other hand, use estimates 
of land surface attributes for downscaling and thus rely 
on data that have physical meaning. Methods for SWC 
downscaling include the use of fractal interpolation with 
fine-scale surface information (Kim and Barros 2002), 
interpolation of passive microwave data with fine-scale 
active microwave data (Bindlish and Barros 2002; Das et 
al. 2011), distributed hydrological modelling with local 
information on topography (Pellenq et al. 2003), bright-
ness temperature linear regression (Chauhan et al. 2003), 
downscaling using soil evaporative efficiency (Merlin et al. 
2008) and multifractal modelling (Mascaro et al. 2011). 

Studies have established that spatial variations of radiant 
surface temperature strongly depend on surface SWC 
(Merlin et al. 2006), assuming that the higher the soil water 
content, the higher the soil evaporation and the lower the soil 
temperature. Vegetation also plays an important role in this 
relationship, as there is no universal relationship between 
soil moisture and land surface temperature (Chauhan et al. 
2003). Unique relationships between soil moisture availability 
and land surface temperature relative to the corresponding 
normalised difference vegetation index (NDVI) over specific 
climatic conditions and land surface types have been 
established (Carlson et al. 1994; Chauhan et al. 2003). 
Accurate soil moisture estimation from optic/infrared (IR) 
remote sensing techniques is affected by vegetation cover, 
soil texture, organic matter and surface roughness that 
introduce noise and thus complicate the interpretation of 
sensor measurements (Asner 1998; Ben-Dor et al. 1999). A 
method was proposed by Chauhan et al. (2003) to overcome 
these limitations by combining coarse-resolution microwave 

soil moisture retrievals with finer resolution optic/IR remote 
sensing parameters. This was achieved through determining 
relationships between surface soil moisture and surface 
temperature for specific vegetation types and densities, 
which in conjunction with the coarse-resolution microwave 
soil moisture estimates (~12.5 km) were used to obtain soil 
moisture at a higher spatial resolution (~1 km).

This review of the international body of knowledge 
identified that validation of spatiotemporal dynamics of 
SWC against ground data was not sufficiently addressed 
for application of SWC estimates in semi-arid regions, 
especially in southern Africa. In addition, to improve water 
management a downscaling method for coarse-spatial-
resolution satellite SWC estimates should be investigated. 
The objective of this study was therefore to validate ASCAT 
estimates of SWC against ground measurements taken 
along transects in a semi-arid region of the Western Cape 
province, South Africa. We used both coarse-resolution 
(~12.5 km) satellite SWC estimates and values downscaled 
to ~1 km resolution using the brightness temperature linear 
regression model of Chauhan et al. (2003). The goal was 
to explore a critical variable for water management, closely 
linked to ET, in the southern part of Africa where water is a 
constraint for development.

Methods

Study site description
Two study areas in the semi-arid western coastal region of 
the Western Cape province were selected to investigate 
the feasibility of using satellite information to estimate SWC 
(Figure 1). One site was in the vicinity of Malmesbury and 
the other in the Riebeek Valley with different soil charac-
teristics and hydrological properties. The topography of 
the area is gently undulated. The climate is Mediterranean 
with warm dry summers and wet cool winters. Mean daily 
temperatures vary from about 7 °C in July to about 27.9 °C 
in February. Most of the rainfall occurs between April and 
October, and the average annual rainfall is 450 mm y−1. 
Rainfall events occur over a few days with significant periods 
of clear weather in between and are a result of cyclonic and 
frontal activity. The mean annual A-pan evaporation rate 
is estimated to be around 2 150 mm y−1 and the daily rate 
exceeds rainfall for approximately 70% of the time. Daily 
rainfall and temperatures were measured at Malmesbury and 
Riebeek at stations WS1 and WS2 (Figure 1). 

Malmesbury is situated in the Groen River catchment. 
This area is characterised by deep well-leached, generally 
acidic and coarse sandy soils of marine and aeolian origin. 
The land cover is dominated by cultivated lands and natural 
vegetation. Farming activities include wheat cultivation 
mixed with pastures and vineyards. The natural vegeta-
tion is dominated by Atlantis Sand Plain Fynbos, most of 
which is about 1–1.5 m tall emergent shrubs with a dense 
mid-story of other shrubs and a ground layer of recumbent 
shrubs, herbaceous species, geophytes and grasses with 
occasional succulents (Rebelo et al. 2006). The Riebeek 
Valley is situated in the Berg River catchment. Relatively 
shallow, brownish sandy loam soils are developed on 
Malmesbury shales, which are prone to cracking after 
heavy rains. The topsoil varies in thickness between 

D
ow

nl
oa

de
d 

by
 [

19
0.

22
9.

4.
25

2]
 a

t 1
0:

59
 0

4 
Se

pt
em

be
r 

20
17

 



South African Journal of Plant and Soil 2017: 1–14 3

0.5 and 1 m and is red and yellow in colour. The land cover 
is dominated by cultivated lands and pastures with very little 
natural vegetation. The two sites were deemed sufficiently 
different from each other, but still representative of the 
general environmental conditions of the region. Analysis of 
SWC estimated from remote sensing data was done for two 
12.5 km ASCAT pixels with each pixel covering the selected 
study sites (Figure 1).

Sampling transects
Ground measurements of SWC were taken along hillslope 
transects in order to capture as much as possible of any 
spatial variability in soil moisture. Sampling transects were 
chosen to represent a range of elevations, slopes, land use/
land cover (LU/LC) conditions and soil types within the two 
12.5 km ASCAT pixels. A digital elevation model, produced 
by the Shuttle Radar Topography Mission (SRTM) with a 
spatial resolution of 30 m (SRTM30), was obtained from 
the National Aeronautics and Space Administration (NASA) 
(NASA 2013). Land cover information was generated 
by digitising the various land-cover classes in the open 
source GIS software package ILWIS (Schouwenburg 

2013), using cadastral maps of the area obtained from 
the National Survey General of South Africa (produced 
in May 2012). Cadastral maps were used for this purpose 
as they represented the most accurate LU/LC informa-
tion available in these areas. Digital elevations models 
and land-cover maps of the two 12.5 km ASCAT pixels are 
shown in Figure 2. The total area covered by each of the 
defined land-cover classes are presented in Table 1. Both 
study areas have similar proportion of the area with wheat/
pasture. The Malmesbury site had a higher proportion with 
natural vegetation and a lower percentage of vineyard and 
urban areas than the Riebeek Valley site.

Based on elevation, land cover, soil types and accessibility 
to sites/farms, six sampling transects were selected along 
hillslopes characterised by different land covers (Figure 2, 
bottom panel). The transects varied in length from 360 to 
820 m, and had slopes ranging from 1.7% to 6.3% (Table 2). 
A detailed description of the transects can be found in 
Moller (2014).

There were no appreciable visually discernible differences 
in soil texture and colour along each transect. Soil analyses 
were therefore done for each transect on three composite 

AFRICA

South
Africa

SOUTH
AFRICA

COASTAL REGION
Western Cape

Coastal
Region

Riebeek Valley

Malmesbury

WS1

WS2

0 50 100 km

32° S

34° S

33° S

18° E 19° E 20° E

Figure 1: Study site locations at Malmesbury and Riebeek Valley within the coastal region of the Western Cape province of South Africa. 
Rainfall stations WS1 (South African Weather Services; 33.4720° S, 18.7180° E) and WS2 (Agricultural Research Council; 33.35115° S, 
18.83849° E) are shown. The squares correspond to the 12.5 km pixels of ASCAT
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topsoil samples taken in the upslope and downslope areas, 
and are summarised in Table 3. Soil textural analyses were 
done using the settling or sedimentation method, which then 
allowed for the identification of soil class based on the USDA 
soil textural classification system (Soil Survey Division Staff 
1993). The bulk densities were also determined for three 
soil samples taken with Kopecki cylinders and averaged. 
The Malmesbury transects had mostly sandy soils with 
the exception of the upslope areas at Rondevlei and 
Nieuwepost farms (Table 2), which are loamier due to the 
relatively high amounts of silt. The Riebeek transects had 
predominantly loamy sand and sandy loam, with higher silt 
and clay amounts than Malmesbury transects.  

Ground measurements of soil water content
Due to the relatively large number of SWC measurements 
required to characterise spatiotemporal variabilities along 
transects, a portable Hydrosense II soil moisture probe 
(Campbell Scientific Inc., Logan, UT, USA) was used to 
record volumetric SWC. This instrument works on the 
principle of time domain reflectometry and it makes use of 
a CS659 soil water sensor. Measurements of SWC were 
made at monthly intervals from 19 July 2013 until 27 January 
2014, which covered the wet and dry seasons. Sampling 
points were at 20–25 m intervals along the transects, which 
enabled the variability in SWC along the hillslopes to be 
determined. Three replicated measurements were taken 

 

 

 

 
 

 

18°33' E 18°36' E 18°51' E 18°54' E 18°57' E

33°18' S

33°21' S

33°24' S

33°27' S

33°30' S

Malmesbury DEM Riebeek Valley DEM

Malmesbury land cover Riebeek Valley land cover

Elevation (m)

939 62

High Low

Transects

Natural vegetation

Urban Vineyards

Wheat and pasture

0 2 4 km

Transect A

Transect B

Transect C

Transect D

Transect E

Transect F

Site
Land-cover type (%)

Wheat/pasture Vineyard Natural vegetation Urban
Malmesbury 48.78 7.32 43.9 0
Riebeek 48.78 13.82 35.77 1.63

Table 1: Land cover as a percentage of the total area for the Malmesbury and Riebeek Valley ASCAT pixels

Figure 2: Digital elevation models (DEMs) for the Malmesbury and Riebeek Valley study sites, corresponding to the ASCAT 12.5 km pixels, 
obtained from NASA’s SRTM30 (NASA 2013) (top panel). Land-cover maps of the Malmesbury and Riebeek Valley study sites, obtained 
from the National Survey General (produced in May 2012), depicting the dominant land-cover types as well as the six sampling transects 
(bottom panel)
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at each sampling point at 0–10 cm soil depth (length of the 
CS659 rods is 12 cm). Measurements were taken at the 
exact same georeferenced points during each sampling 
campaign. The calibration of the Hydrosense II probe 
was adjusted for the soil type of the transects using SWC 
determined through gravimetric sampling (Moller 2014).

Satellite-derived estimations of soil water content
ASCAT has been operating on the METOP satellite 
since 2006 and is a C-band scatterometer (5.255 GHZ, 
VV polarised) with a radiometric accuracy better than 
~0.3 dB (Verspeek et al. 2010). C-band scatterometers are 
used for soil moisture retrieval with the Vienna University 
of Technology (TUWIEN) change detection algorithm 
proposed by Wagner et al. (1999) and improved by Naeimi 
et al. (2009). Soil moisture retrieved using ASCAT has a 
~12.5 km spatial resolution. 

ASCAT is a real-aperture radar instrument, which 
measures radar backscatter on either side of the METOP 
satellite track, and generates two 550 km wide swaths of 
data (Albergal et al. 2009). A triplet of backscattering 
coefficients (σ°) is produced by ASCAT using three 
separate antenna beams on both sides of METOP, by 
averaging several radar signals made at 45°, 90° and 
135° azimuth angles relative to the satellite track. The 
set of backscattering coefficients at different azimuth 

angles allows for the determination of the yearly cycle of 
the backscatter incident relationship, which is essential for 
correcting seasonal vegetation effects (Gelsthorpe et al. 
2000; Bartalis et al. 2007). The backscattering coefficients 
extrapolated to a reference angle at 40° [σ°(40)] are scaled 
using the lowest and highest values of σ°(40) over an 
extended period of time to determine wet and dry limiting 
cases (Wagner et al. 1999). ASCAT-derived soil moisture 
content (θA) is therefore given as:
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where limiting cases are denoted by σ°dry(40, t) for 
backscatter at the dry limit and σ°wet(40, t) for backscatter 
at the wet limit, and t is time. This equation is representa-
tive of the top few centimetres of soil and can be applied 
if the ground is not frozen (Schmugge 1983). Soil moisture 
is given as the degree of saturation in percentages from 
0% (dry) to 100% (saturated). In our case, the dry and 
saturated values were normalised for the absolute minimum 
and maximum readings obtained with the Hydrosense II 
probe at each transect. ASCAT overpass and measure-
ment times are twice per day, in the morning and early 
evening. Jackson (1980) recommended using morning soil 
moisture estimates in order to avoid the daytime decoupling 

Site Transect Location Main 
land cover

Coordinates 
and altitude (m)

Length 
(m)

Change in 
elevation (m)

Slope 
(%)

Malmesbury A Riverlands Natural 
vegetation

33.4892° S, 18.6110° E; 140 m
33.4926° S, 18.6107° E; 130 m

380 10 3.80

B Rondevlei Agricultural 33.4077° S, 18.5763° E; 192 m
33.4053° S, 18.5700° E; 151 m

650 41 6.31

C Nieuwepost Agricultural 33.4689° S, 18.5264° E; 120 m
33.4678° S, 18.5345° E; 108 m

780 12 1.54

Riebeek D Goedetrou Agricultural 33.3155° S, 18.9156° E; 106 m
33.3110° S, 18.9219° E; 84 m

820 22 2.68

E De Gif Agricultural 33.3261° S, 18.8551° E; 231 m
33.3308° S, 18.8527° E; 207 m

560 24 4.29

F De la Gift Natural 
vegetation

33.3725° S, 18.9259° E; 93 m
33.3736° S, 18.9228° E; 87 m

360 6 1.67

Table 2: Characteristics of transects selected for ground measurements of soil moisture

Transect
Particle size (%)

Soil texture Bulk density
 (g cm−3)Silt Clay Sand

A upslope 2.94 2.35 94.71 Sandy 1.38
A downslope 3.71 3.71 92.59 Sandy 1.46
B upslope 6.54 4.62 88.84 Loamy sand 1.52
B downslope 3.84 4.42 91.75 Sandy 1.52
C upslope 6.07 5.69 88.25 Loamy sand 1.92
C downslope 3.47 5.01 91.53 Sandy 1.98
D upslope 22.99 10.55 66.46 Sandy loam 1.45
D downslope 32.10 18.59 49.31 Loam 1.58
E upslope 22.42 17.60 59.99 Sandy loam 1.56
E downslope 12.14 6.70 81.16 Loamy sand 1.66
F upslope 21.35 3.42 75.24 Loamy sand 1.46
F downslope 51.26 0.00 48.74 Silty loam 1.50

Table 3: Results of soil analyses for samples collected along the transects used for ground measurements of soil moisture
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Moller, Jovanovic, Garcia, Bugan and Mazvimavi6

effect between the top few centimetres of soil and the layer 
beneath it. 

Downscaling coarse-resolution soil moisture estimates 
(~12.5 km) to a finer spatial resolution (~1 km) was done 
using the method proposed by Chauhan et al. (2003). Land 
surface temperature and near-surface soil moisture are 
spatially related because evaporation from the soil surface 
keeps the land surface temperature low (Merlin et al. 2006). 
The NDVI was used to empirically calibrate the correla-
tion between land surface temperature and soil moisture 
content for various vegetation covers. These relationships 
are referred to as the ‘universal triangle’. The regression 
relationships between land surface temperature, NDVI and 
SWC can be determined from Equations 2 to 4:
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where T is land surface temperature (°C), the subscripts 
S and 0 stand for maximum and minimum values, and the 
superscript * indicates prime (dimensionless). Carlson et 
al. (1994) expressed the relationship between SWC, NDVI* 
and T* through a regression formula:
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where i and j indicate the order of the polynomial. Equation 4 
can be written in the form of a second-order polynomial:

   SWC(t) = α00 + α10NDVI* + α20NDVI*2 + α01T* + α02T*2 +
α11NDVI*T* + α21NDVI*2T* + α12NDVI*T*2 + α22NDVI*2T*2  (5)

Third-order terms are negligible and they can be ignored 
(Chauhan et al. 2003). For the calibration of the coefficients 
α00 to α22, coarse-resolution soil moisture (SWCc) is 
substituted into the left-hand side of Equation 5, while the 
corresponding T* and NDVI* values for the same resolution 
are substituted on the right-hand side. Once the coefficients 
are determined, fine resolution T* and NDVI* values are 
substituted on the right-hand side of the equation, which 
enables estimation of SWC at fine resolution (SWCF).

This approach can be employed only on cloudless 
days as this uses optic/IR data. The assumption is that 
these regression relationships are constant over the 
entire microwave soil-moisture pixel, which may not be 
valid especially in areas with high surface and meteoro-
logical heterogeneity. For this reason, one of the criteria for 
selection of pixels and transects was the homogeneity of 
the agricultural areas, so as to minimise effects of surface 
and microclimatic heterogeneity within the coarse-resolution 
satellite soil-moisture pixels. The data sets of T and NDVI 
used for the downscaling algorithm at ~1 km resolution 
were acquired from NASA (MODIS satellite) through their 
data dissemination portal (US Geological Survey 2014).

Data processing and statistical analyses
To understand how transects are related to each other and 

to the ASCAT pixels, a principal component analysis (PCA) 
was performed using all transect characteristics. The first 
two components were graphed using a bi-plot (Gabriel 
1971) to facilitate interpretation of results.

Validation of satellite estimates of SWC (both coarse-
resolution and downscaled fine-resolution ASCAT 
estimates) was done by comparison with ground 
measurements obtained with the Hydrosense II probe. 
Spatiotemporal trends of ground measurements of SWC 
and ASCAT-derived SWC were analysed using Pearson’s 
correlation coefficient and concordance analysis (Lin 1989, 
2000). While the Pearson’s coefficient (Pcc) measures the 
agreement in the temporal behaviour between observed 
and estimated pairs, the concordance coefficient (Ccc) 
provides the degree to which pairs deviate from a 1:1 
behaviour (a 45° line through the origin in a graph) and thus 
evaluates both the precision and the accuracy of different 
methods over the same sample. Normally, to test if the 
Pearson correlation between estimated and observed data 
is statistically significant, a linear regression is used. Due to 
the small sample size, linear regression assumptions were 
not met; instead a simple linear mixed model that accounts 
for autocorrelation was used to determine the p value 
(limiting significance at P < 0.05). 

Results and discussion

Spatiotemporal variations in ground measurements of 
soil water content
A PCA was performed to summarise the transect charac-
teristics regarding the soil properties and location attributes 
(Figure 3). The first two components explained 72% of the 
total variability. The first component clearly differentiated 
transects from the two sites, showing a high correlation 
of the Malmesbury site with the sand content of the soil 
and the strong silt imprint of the Riebeek site. The second 
component sorted transects in relation to their length, soil 
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Figure 3: Principal component analysis summarising the transect 
characteristics (soil properties and location attributes)
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density and clay soil content. Overall, the analysis showed 
that both sites could be differentiated by soil properties and 
that transects were evenly distributed within the two sites to 
cover a similar range of internal variability (from the ASCAT 
12.5 km perspective). 

The SWC measured using the Hydrosense II probe 
increased during the wet season from July to September 
2013, and then decreased during the dry season (Figure 4). 
The example in Figure 4 is for transect D, which was 

characterised by average slope and bulk density, and a 
fair distribution of particle sizes compared with the other 
transects (Tables 2 and 3). The SWC was fairly uniform 
along transect D on all sampling days (Figure 4), with 
a similar response observed in transects C and E. The 
SWC showed large variation along transects A, B and 
F, and with a tendency for SWC to increase towards the 
downslope part, due to the presence of shallow ground-
water. Figure 4 also shows a peak in SWC in the middle 
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Figure 4: Volumetric soil water content (SWC) measured with a Hydrosense II probe along Transect D from 25 July 2013 to 22 January 
2014 (solid line). The ground elevation is also shown (dashed line). The error bars indicate the standard deviation of three measurements of 
SWC at each sampling point
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Moller, Jovanovic, Garcia, Bugan and Mazvimavi8

of the transect during winter; this is due to an elevation 
anomaly represented by a man-made anti-erosion contour. 
This land management feature retards overland flow and 
causes water to pond on its upslope side. The variability 
of SWC at each sampling point (Figure 4) was large during 
the rainy season and low during the dry season. Transect 
D is in agricultural land and during the wet winter water 
redistributes in the soil unevenly due to land management 
and forms ponds on the soil surface. Soils were completely 
dry in January 2014 with little variability along the hillslopes 
and between sampling points. The SWC values were 
generally high along the sandier Malmesbury transects 
during the wet periods, but low during the dry periods 
in comparison with the Riebeek site with generally loamy 
soils. Transects A and F, which had natural vegetation, 
had higher SWC during the wet periods compared with 
agricultural land in their respective pixels.   

Downscaling ASCAT 12.5 km to a 1 km SWC product
In order to calibrate the coefficients α00 to α22 in the 
downscaling calculation (Equation 5), all NDVI pixel values 
were plotted against T values for the entire study period to 
produce the universal triangle. A triangle was produced for 
each 12.5 km ASCAT pixel at each study site (Figure 5). 
From these triangles, the maximum and minimum NDVI 
and T values needed in the downscaling algorithm were 
determined. The universal triangles for Malmesbury and 
Riebeek (Figure 5) were very similar with regards to 
maximum and minimum values for T and NDVI as depicted 
by the dashed lines on the top, bottom and left sides of 
Figure 5. The top left corners of the triangles represent 
wet conditions where T is low and NDVI values are high 
as experienced during late July until early September. The 
bottom right-hand corner of the triangles is indicative of pixel 
values that are dry with high T and low NDVI. Three groups 
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Figure 5: Universal triangle depicting the normalised difference vegetation index (NDVI) and land surface temperature (°C) at Malmesbury 
(top) and Riebeek Valley (bottom)
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of values are formed generally representing wet, drying 
and dry conditions as outlined by A, B and C (Figure 5). 
Some extreme values exceeding 50 °C were recorded. The 
MODIS T product is reported to give surface temperature 
values within 1 °C accuracy (Wang and Liang 2009).   

Maximum and minimum T and NDVI values were then 
used to determine their scaled values using Equations 2 
and 3. Scaled T* and NDVI* values were then used in 
Equation 5, and coefficients α00 to α22 were calibrated 
by inserting ASCAT SWC in the left-hand side of the 
equation. The calibration was done using the least two 
squares method. Calibrated coefficients were obtained 
for each pixel, as each pixel had a unique relationship 
between T–NDVI and SWC. The calibrated coefficients are 
summarised in Table 4.

Testing 12.5 km ASCAT and downscaled 1 km SWC at 
transect scale
The comparison of ASCAT SWC (12.5 km), downscaled 
SWC (1 km) and average ground measurements of 
SWC is presented in Figure 6 for each transect on days 
when ground measurements were taken. During the 
wet period (July–September 2013), the 12.5 km ASCAT 
SWC estimates varied between 11.3% and 29.2% for 
the Malmesbury site, and between 6.6% and 26.7% at 
the Riebeek site. This was followed by a drying period 
(October–November 2013), which stabilised around 
December, when values were generally <5% at all 
transects. The 12.5 km ASCAT SWC estimates at both 
sites showed high sensitivity to rainfall, resulting in high 
peaks of soil moisture corresponding to rainfall events on 

Site α00 α01 α10 α11 α02 α20 α12 α21 α22

Riebeek Valley 4.76 −3.8 4.75 16.09 −2.04 5.19 −4.43 4.17 −1.14
Malmesbury 9.91 −8.94 12.69 17.21 −3.91 2.33 −2.47 4.05 −2.28

Table 4: Calibrated coefficients for the brightness temperature linear regression model for the Malmesbury and Riebeek Valley study sites
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Moller, Jovanovic, Garcia, Bugan and Mazvimavi10

31 October 2013, 16 November 2013 and 8 January 2014 
(Figure 7).

All downscaled SWC estimates decreased from the wet 
winter to the dry summer. A comparison with rainfall data 
(Figure 7), however, showed that downscaled SWC values 
were less responsive to rainfall compared with 12.5 km 
ASCAT SWC. This means that, in general, the ASCAT 
SWC estimates were more aligned to the measured 
SWC time series (Figure 6), whilst the downscaled SWC 
responded to temperature and NDVI, and to a lesser extent 
to individual rainfall events.

Two tests based on a pair comparison (Pcc and Ccc) 
were performed to determine which remotely sensed SWC 
provided a better representation of the SWC measured in 
the transects (Table 5). The Pcc is a more commonly used 
index that evaluates the linear relationships for the two 
methods, and shows how two data sets co-vary but cannot 
detect systematic bias (Krause et al. 2005). In that regard, 
the Ccc offered a more robust way to evaluate the accuracy 
of the ASCAT (12.5 km and downscaled) estimation of 
SWC. For example, transect C showed high Pcc correla-
tions (Pearson) for both products, but the Ccc showed 
a better performance of the original ASCAT to estimate 

SWC (see also Figure 6c for the sub- and supra-bias). 
The combined analysis with the two methods helped to 
identify the best performance product for each transect. For 
all other transects except transect A, the SWC estimated 
by the 12.5 km ASCAT was closer to the field-measured 
values than those estimated using the downscaling 
algorithm. In addition, it can be noted that transects with the 
worst performance in estimating SWC were B and E. These 
two transects are the ones that exhibit the greatest slope. In 
general, the higher correlation coefficients between 12.5 km 
ASCAT SWC and measured SWC (Figure 8) related to 
transects with smaller slopes. This clearly indicates that the 
accuracy of satellite estimations of SWC (according to two 
indicators) decreases with increasing slope.

Chauhan et al. (2003) suggested that there are two 
possible sources of error attributed to the brightness 
temperature linear regression model: (1) regression errors 
based on the coarse-resolution SWC estimates and 
transferred to downscaled estimates via the regression 
coefficients αij and (2) precision errors attributed to 
inaccuracies of T and NDVI values. Regression errors for 
these two study sites, in terms of coarse-resolution SWC 
inputs for calibration of αij, were within acceptable accuracy 

SWC product
Transect

A B C D E F
Pearson correlation coefficient (Pcc)

ASCAT 12.5 km 0.74 0.60 0.96* 0.92* 0.92* 0.88*
ASCAT 1 km 0.98* 0.61 0.95* 0.80* 0.88* 0.22

Concordance coefficient (Ccc)
ASCAT 12.5 km 0.71 0.37 0.62 0.73 0.37 0.85
ASCAT 1 km 0.64 0.24 0.22 0.75 0.38 0.11
* p < 0.05

Table 5: Performance comparison of the 12.5 km ASCAT and downscaled 1 km soil water content (SWC) estimates

Figure 7: Daily rainfall at Malmesbury and Riebeek during the study period (July 2013 to January 2014)
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ranges as these estimates were found to represent 
average moisture conditions reasonably well at both 
sites for the duration of the study. There were, however, 
some concerns about the accuracy of the ASCAT product 
during the dry period, but based on the method of calibra-
tion (least difference of two squares method), low values 
were likely to have small effects on the calibration of the 
regression coefficients. 

Precision errors of the T and NDVI products (at 1 km 
scale) were assumed to have a small effect, as the 
accuracy of these products was well validated and also 
scaled values were used to reduce possible errors. It was, 
however, noted that some T values were extremely high 
at both study areas during the summer period (>50 °C). 
The issue of precision error does arise with regard to 
homogeneity or heterogeneity of land cover, as well as 
local topography along the various transects and their 
immediate surrounding areas covering the 1 km pixel. 
The lower the vegetation cover and the slope, the higher 
the expected accuracy of T and NDVI at high resolution 
(Walker et al. 2003). In our case, the downscaled 1 
km SWC method performed best on the transect with 
moderate vegetation cover in a flat area (transect A) and 
on the transect with uniform grassland on a moderate 
slope (transect D, Ccc in Table 5). Chauhan et al. (2003) 
proposed the use of albedo to strengthen the relation-
ship between T–NDVI and SWC. This, however, may not 
account for fine-scale land surface heterogeneities. The 
downscaled method was also less responsive to rainfall 
than the coarse-resolution ASCAT (Figure 6). There 
were slight variations in daily T values that may have 
been influenced by rainfall events, but NDVI showed no 
daily response to rainfall and thus downscaled 1 km SWC 

showed less daily variations compared with 12.5 km 
ASCAT SWC.

In each 12.5 km ASCAT pixel, there were three 
transects measured with the Hydrosense II probe and 
three downscaled pixels coinciding with each transect 
(Figures 1 and 2). The values of the field-measured SWC 
for the three transects were averaged and compared with 
the 12.5 km ASCAT pixel SWC value. This comparison 
(Figure 9, Table 6) showed that the 12.5 km ASCAT is 
generally a better estimator of SWC than the downscaled 
product. Moreover, it is interesting to note in Figure 9 
that downscaled estimates of SWC present a constant 
downward trend, something noticeable also in Figure 6, and 
do not reflect the peaks during the rainy season (Figure 7). 
This is a clear indication that a dominant variable in the 
algorithm producing the downscaled product is the vegeta-
tion (captured by NDVI). This raises a concern about 
the downscaling technique for SWC estimation, as the 
estimation seems to be dependent on land cover/phenology 
changes, represented by land use, and affected by factors 
such as fires, vegetation greenness and root depths.

Conclusions

In this study, the estimation of SWC using remote 
sensing data was investigated as an alternative to time- 
and resource-consuming ground measurements in the 
semi-arid regions of the Western Cape province of South 
Africa. The results of the comparison of ASCAT SWC 
estimates and ground measurements demonstrated that 
the coarse-resolution (12.5 km) ASCAT does estimate 
soil moisture with an acceptable accuracy level and is 
capable of detecting changes in SWC caused by rainfall 

Figure 8: Performance coefficients of the 12.5 km ASCAT vs measured soil water contents as a function of the transect slope
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SWC product
Pearson correlation coefficient (Pcc) Concordance coefficient (Ccc)

Malmesbury Riebeek Valley Malmesbury Riebeek Valley
ASCAT 12.5 km 0.93* 0.89* 0.89 0.74
ASCAT 1 km average 0.96* 0.66 0.51 0.66
* p < 0.05

Table 6: Performance comparison of averaged 12.5 km ASCAT and averaged downscaled 1 km soil water content (SWC) estimates
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events. The accuracy of SWC derived from ASCAT is, 
however, low during dry periods, possibly as a result of 
increased topographic effects on backscatter sensitivity 
and reduced microwave penetration of the soil surface in 
drier conditions. Satellite-derived SWC performance was 
associated with slope, and it was the most accurate in 
areas with low to moderate slopes and uniform vegetation. 
Nevertheless, additional studies with more sampling units 
are recommended to test the effect of the slope on satellite-
derived SWC estimation. The main sources of error were 
linked to the fine-scale surface heterogeneities, such as 
non-uniform vegetation, slopes or man-made features. 
Differences between satellite-derived SWC estimates 
and ground measurements were also partly due to the 
comparison of different depths of SWC measured by the 
soil moisture probe and estimated remotely. Downscaling 
of soil moisture estimates to 1 km resolution also provided 
reasonable results when examining general seasonal 
SWC variability, but the performance was generally poorer 
than the 12.5 km ASCAT product due to the dependency 
of the downscaling method on vegetation characteristics 
(NDVI and land surface temperature). Further research 
needs to be conducted to improve understanding of spatial 
aggregation effects of land surface parameters and to 
develop more accurate methods for downscaling coarse-
resolution SWC satellite data. 

Due to the lack of ground measurement networks and 
data availability constraints, remote sensing may be a 
feasible approach to monitor SWC for hydrological applica-
tions at the meso-scale (regional scale). The performance 
of ASCAT in this study suggests that in the semi-arid 
regions of southern Africa this product can be a useful 
alternative to other data sources. Nevertheless, land slope 
should be considered and further studies are recommended 
in other types of climate and regions. Application of ASCAT 
can also aid in obtaining information on the spatiotemporal 
variability of soil moisture. It is also possible to calibrate the 
satellite-derived SWC against specific points on the ground. 
However, where high-precision estimates are needed, such 
as applications in agricultural irrigation, remote sensing 
data may not be adequate. In situ SWC monitoring still 
provides crucial information needed to better understand 
remote sensing-derived records and for downscaling 
remotely sensed data.
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Figure 9: Comparison of the time series (measured, 12.5 km ASCAT and downscaled 1 km soil water content SWC) for Malmesbury and 
Riebeek (left graphs). Measured vs estimated SWC pairwise view (right graphs)
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