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Abstract

Three major problems are faced when mapping natural vegetation with mid-resolution satellite images using conventional supervised

classification techniques: defining the adequate hierarchical level for mapping; defining discrete land cover units discernible by the satellite;

and selecting representative training sites. In order to solve these problems, we developed an approach based on the: (1) definition of

ecologically meaningful units as mosaics or repetitive combinations of structural types, (2) utilization of spectral information (indirectly) to

define the units, (3) exploration of two alternative methods to classify the units once they are defined: the traditional, Maximum Likelihood

method, which was enhanced by analyzing objective ways of selecting the best training sites, and an alternative method using Discriminant

Functions directly obtained from the statistical analysis of signatures. The study was carried out in a heterogeneous mountain rangeland in

central Argentina using Landsat data and 251 field sampling sites. On the basis of our analysis combining terrain information (a matrix of 251

stands� 14 land cover attributes) and satellite data (a matrix of 251 stands� 8 bands), we defined 8 land cover units (mosaics of structural

types) for mapping, emphasizing the structural types which had stronger effects on reflectance. The comparison through field validation of

both methods for mapping units showed that classification based on Discriminant Functions produced better results than the traditional

Maximum Likelihood method (accuracy of 86% vs. 78%).
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1. Introduction tance, while accurate base-line maps are indispensable for
Ecosystems dominated by natural and semi-natural

vegetation occupy large portions of the Earth’s surface,

and provide important ecosystem services that should be

preserved (Balvanera et al., 2001). Such areas are gener-

ally destined to domestic grazing, which has been viewed

as an activity with potential to meeting both goals of

sustainable production and conservation (Bloesch et al.,

2002; Landsberg et al., 2003; Mohamed & Woldu, 2002).

However, negative as well as positive effects of domestic

grazing on biodiversity, primary productivity, and forage

quality have been reported (Milchunas & Lauenroth, 1993;

Oesterheld et al., 1999; Perevolotsky & Seligman, 1998;

West, 1993). Thus, a careful management-planning and

further monitoring of rangelands become of main impor-
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these purposes.

Landsat TM satellite images are a good tool for mapping

vegetation (Jensen, 1996), although conventional supervised

classification techniques have some inherent problems, due

to differences in type and scale of information acquired by

humans and satellites (Cherrill et al., 1994; Keuchel et al.,

2003; Wilkie & Finn, 1996). When the mapping area is

complex and heterogeneous these problems are intensified,

leading to mapping attempts of limited success (Budd,

1996). In rangeland ecosystems these difficulties are most

likely to appear, because the influence of free ranging

grazers combined to natural environmental gradients often

create complex and heterogeneous vegetation patterns

(Adler et al., 2001; McIntyre et al., 2003). Three main types

of such difficulties are faced when attempting to map

rangeland ecosystems.

In the first place, there are problems originated by

the limited spatial resolution of the TM satellite images.
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The main goal of traditional vegetation mapping has been

the identification of plant communities (repetitive combina-

tion of species), or structural types (repetitive combination

of growth forms and other terrain attributes) (e.g. Clark et

al., 2001; McGraw & Tueller, 1983; Tobler et al., 2003;

Wellens et al., 2000; Zak & Cabido, 2002). However, when

communities or structural types are arranged in the land-

scape as patches smaller than the pixel size (30� 30 m for

TM images), attempts to map them are hampered (Clark et

al., 2001). Training sites of adequate size may be impossi-

ble to find and, if found, the results of a supervised

classification using those sites is inaccurate, especially if

mixed pixels represent an important portion of the area.

Therefore, a more realistic approach for mapping this type

of landscape is needed, such as the definition of informa-

tional units (land-cover classes based on terrain attributes)

at a higher hierarchical level, i.e. as combinations (mosaics)

of communities or structural types (Davis et al., 1994).

The second problem is also related to the definition of

informational units for mapping. Once the adequate hierar-

chical level is decided, the problem of defining discrete units

discernible by the satellite still remains. When the basic

components of the units to be defined (e.g. species, growth

forms, community types) vary gradually, and to some extent

independently, in response to multiple environmental and

disturbance factors, the limits of the informational units for

mapping must be imposed arbitrarily by the researcher

(Tanser & Palmer, 2000; Townsend, 2000; Wilkie & Finn,

1996), sometimes with the aid of multivariate classification

techniques (Cingolani et al., 1998; Coker, 2000; Jongman,

1987; Zak & Cabido, 2002). However, the basic components

of the terrain selected by the researcher as variables for

performing the classification may not be detected by the

satellite (Millington & Alexander, 2000). This may lead to

the definition of informational units that are meaningful for

the researcher but cannot be discriminated by the satellite

sensor, so producing inconsistencies due to different under-

lying approaches (Cherrill et al., 1994) and leading to a time

consuming trial and error process until a satisfactory map is

obtained (Clark et al., 2001). This being so, a preliminary

analysis of the association between brightness sensed by the

satellite and the various land-cover components perceived by

the researcher would enhance the definition of land-cover

units for mapping purposes (Armitage et al., 2000).

The third problem is related to the selection of the best

training sites. Sometimes, training sites of adequate size for

the defined land-cover informational units are difficult to find

or recognize in the field. In such cases, several small training

sites must be used to create spectral signatures defining a

single unit (Tobler et al., 2003; Wyatt, 2000). Depending on

their characteristics, the various spectral signatures ought to

be merged, maintained separately, or discarded as outliers, so

leading again to a time-consuming trial and error process,

until an acceptable set of signatures and an accurate final map

are obtained. Even if large enough training sites for the

different units could be obtained, the problem remains on
how to select the most representative ones to perform the

classification. Generally, the process is not straightforward,

and an iterative and long procedure is the common rule to

obtain acceptable results (Wilkie & Finn, 1996).

This paper addresses the way in which we have solved,

using non-traditional approaches, these three types of

problems obtaining an accurate map (based on Landsat

imagery) of a heterogeneous mountain rangeland in central

Argentina. Our approach was based on the following three

points, each corresponding to one of the above-mentioned

sets of problems: (1) definition of ecologically meaningful

informational units as mosaics of different structural types;

(2) consideration of brightness when defining informational

units; (3) exploration of two alternative methods to perform

the classification: the traditionally used Maximum Likeli-

hood (ML) method, which was enhanced by analyzing

objective ways of selecting the best training sites, and an

alternative method using Discriminant Functions directly

obtained from the statistical analysis of spectral signatures.

Considering these points, the objectives of this study were

to: (1) define land-cover units useful for management pur-

poses in the study area, based on structural attributes linked

to the brightness data of Landsat ETM+ images, (2) explore

objective methods for the selection of the best training sites,

and perform a traditional supervised classification (ML) of

the Landsat data, (3) perform an alternative method of

classification taking maximum advantage of the spectral

information of pixels in each of the spectral bands used,

and (4) compare both classifications through field validation.
2. Material and methods

2.1. Study area

The study was carried out in the upper portion of the

Córdoba mountains (1700 – 2800 m a.s.l., 31j34VS,
64j50VW; 124,700 ha, see Fig. 3), in central Argentina,

comprising different landscape units, including valley bot-

toms and ravines, plateaus with different degree of dissection,

rocky hilly uplands and steep escarpments (Cabido et al.,

1987). Vegetation consists of a mosaic of tussock grasslands,

grazing lawns, granite outcrops, Polylepis australis wood-

lands, and eroded areas with exposed rock surfaces (Cabido,

1985; Cabido & Acosta, 1985; Cingolani et al., 2003a; Funes

& Cabido, 1995). Mean temperature of the coldest and

warmest months are 5.0 and 11.4 jC, respectively, with no

frost-free period. Mean annual precipitation is 840 mm, with

most rainfall concentrated in the warmer months, between

October and April (Cabido, 1985).

The main economic activity in the area is livestock

rearing, which began early in the 17th century and com-

pletely replaced large native herbivores (Lama guanicoe,

and probably Rhea americana) by the beginning of the 20th

century (Dı́az et al., 1994). Due to its intrinsic fragility and

three centuries of domestic grazing and anthropogenic fires,
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this mountain range shows serious erosion problems and

woodland degradation (Cabido & Acosta, 1985, 1986;

Cingolani et al., 2003a; Renison et al., 2002; Renison et

al., in press). These problems are especially alarming since

the area constitutes a biogeographical island (Cabido et al.,

1998) with 41 endemic plant and animal taxa (Cabido et al.,

2003) and because rivers born there provide water to the

lowlands.

In 1997 part of the rangeland (26,000 ha) was expropri-

ated to create the Quebrada del Condorito National Park,

while the private lands surrounding the Park were declared

National and Provincial Water Reserves (12,000 and

117,000 ha, respectively). Domestic livestock was main-

tained in some areas of the National Park to prevent the

excessive dominance of tussock grasslands at the expense of

grazing lawns (Cingolani et al., 2003a; Dı́az et al., 1994;

Pucheta et al., 1998). However, livestock may prevent

erosion control and long term regeneration of Polylepis

woodlands, even at low stocking densities. Meanwhile, in

the surrounding reserve areas, soil erosion and woodland

degradation rates remain high. Due to these problems,
Fig. 1. Simplified outline of the procedure followed for the definition of land cov

using a traditional (Maximum Likelihood) and an alternative (using Discriminant
informed management and monitoring plans for the area

are indispensable.

2.2. Field and image sampling

To perform the field and image samplings, we followed

steps 1 to 3 (Fig. 1) described below.

2.2.1. Step 1. Selection of stands for field sampling

We used a subset of a 1997 Landsat 5 TM image (Path/

Row 229/082) of the first part of the growth season (14

November 1997) which comprised the study area and its

surroundings (364,000 ha). Geo-referencing (to the Gauss

Kruger projection, with Campo Inchauspe datum and the

International 1909 ellipsoid) was carried out using 127 points

taken from eight 1:50,000 topographic maps (Military Geo-

graphic Institute, 1963–1997) together with 103 points

obtained in the field with a Garmin 12 GPS at sites easily

identifiable in the image. A linear resampling with the nearest

neighbor algorithm was performed, achieving a positional

error of 1.42 pixels (40.5 m), with an output pixel size of
 

er informational units, and the subsequent classification of the 2001 image

Functions) method. In grey, the steps that leaded to the final map.
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30� 30m. To stratify the field sampling according to spectral

patterns we then performed an unsupervised classification

with 10 classes (ERDAS, 1995). The number of classes was

decided after visual examination of different band combina-

tions. Among the resulting classes we selected 270 evenly

distributed patches of at least 4� 4 pixels (to cope with

possible geo-location errors). For in-the-field geo-location of

the selected sites, the coordinates of the central point of each

patch were obtained from the classified image.

2.2.2. Step 2. Field sampling

From June 2000 to September 2002 we sampled terrain

characteristics in 251 of the 270 selected stands (the remain-

ing 19 stands were inaccessible or too close to human

settlements and therefore discarded). Stands were defined

as areas of 30 x 30 m (equivalent to the TM pixel), around

the point located with the GPS. Based on previous studies,

we recognized in the field 13 ecologically meaningful

structural types (Table 1). As structural types were usually

distributed in patches smaller than the stand size, we visually

estimated the proportion of each structural type within the
Table 1

Cover characteristics of plant communities and other features which form the bas

Structural types Dominan

A Polylepis woodland/shrubland Polylepis

by the tr

hieronym

B Fern community Blechum

sociabilit

C Shrubby tussock grassland Festuca,

(Berberis

Gaulther

alienus)

D Deyeuxia-Festuca tussock

grassland

Mainly D

with Fes

dominan

E Festuca degraded tussock

grassland

Festuca

with Stip

F Poa tussock grassland Poa stuc

short spe

G Eleocharis-Alchemilla

hydromorphic lawn

Alchemil

H Alchemilla-Carex lawn Alchemil

together

or Deyeu

I Sorghastrum-Alchemilla degraded

lawn

Alchemil

peruvian

J Muhlenbergia peruviana lawn Muhlenb

K Rock outcrop Two type

unit: one

Satureja

dominate

argentinu

L Sorghastrum-Stipa eroded stony

grassland

Sorghast

M Erosion pavements of massive rock Few indi

caespitos

cordoben

a Descriptions following Cabido (1985), Cabido and Acosta (1986), Cingolan
stands using categories ranging from 5% to 100% with 5%

intervals. Additionally, we estimated the total percentage of

bare rock (erosion plus natural), considering in a single

measure the rock cover of all structural types within the

stand. From these data we produced a ‘‘structural attributes

matrix’’ of 251 stands� 14 structural attributes (13 structural

types + total bare rock). Additionally, for each stand we

recorded topographic position, slope, aspect, and altitude.

We also recorded the abundance of cattle, sheep and horse

dung depositions in a 30� 1.8 m transect within each stand.

The ratio between dung counts and the proportion of

vegetation in the stand was used as an indicator of grazing

pressure. For a characterization of erosion activity, we

measured the length and average height of each active/

inactive erosion edge (plant cover on their vertical surfaces

< 50%/>50%, respectively) within the stand.

2.2.3. Step 3. Brightness sampling

To extract signatures for statistical analyses and land-

cover mapping, we used a second sub-scene (geographically

co-registered to the 1997 TM sub-scene) of an ETM+ image
ic structural types of the study areaa

t/subdominant species Bare rock and

soil (%)

australis, as trees or shrubs, accompanied

ee Maytenus boaria and the shrub Berberis

i

0–10

penna-marina dominates with high

y forming a continuous cover

0–5

Deyeuxia or Poa tussocks with shrubs

hieronymi, Polylepis australis,

ia poeppigii, sometimes Heterothalamus

0–10

eyeuxia hieronymi, sometimes together

tuca tucumanica, or the latter as the

t

0–10

tucumanica, sometimes sharing dominance

a nidulans or Deyeuxia hieronymi

15–50

kertii, with Alchemilla pinnata and other

cies in the intertussock space

0–5

la pinnata and Eleocharis albibracteata 0–1

la pinnata and Carex fuscula, sometimes

with small tussocks of Festuca tucumanica

xia hieronymi

0–15

la pinnata, Carex fuscula, Mulenbergia

a and Sorghastrum pellitum

15–50

ergia peruviana and Tagetes argentina 1–20

s of rock outcrops were included in this

dominated by Berberis hieronymi and

odora, in larger outcrops, and the other

d by Heterothalamus alienus and Croton

s

60–95

rum pellitum and Stipa juncoides 50–95

viduals of Stipa juncoides, Hypochaeris

a, Plantago brasiliesnsis var.

sis and Noticastrum argenteum

80–100

i et al. (2003a,b), Funes and Cabido (1995).
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from the middle part of the growth season, acquired within

the field sampling period (01 January 2001). Atmospheric

corrections were found unnecessary since we used this

single image for all further analyses and classifications

(Song et al., 2001). Spectral signatures for 3� 3 pixels

surrounding each stand were produced for bands 1, 2, 3, 4,

5, 7 and 8, and for an additional NDVI band calculated as:

(band4� band3)/(band4 + band3). The mean brightness val-

ue of each band at each site was used to produce a data

matrix of 251 stands� 8 bands (‘‘brightness matrix’’).

2.3. Definition of land-cover informational units

To define land-cover informational units for mapping

taking advantage of spectral information (objective 1), we

first produced an ordination based on the land-cover attrib-

utes that best predict general patterns of reflectance (steps 4

to 6). Then, on the basis of that ordination, we classified

land-cover informational units (step 7).

2.3.1. Step 4. Ordination of stands according to brightness

data

The brightness matrix was subjected to a Principal

Component Analysis (Afifi & Clark, 1984) to obtain two

main axes that summarize brightness variation. In this way,

each stand was positioned along the axes according to its

spectral information.

2.3.2. Step 5. Multiple regressions

We analyzed which combination of terrain attributes best

predicts the spectral characteristics of the stands. This was

performed with two separate multiple regression analyses of

the 14 structural attributes on each of the two PCA axes (from

step 4). Significant predictor variables were selected using

forward stepwise linear regression analyses. In this way, we

obtained two multiple regression models (i.e. two linear

combinations of structural attributes), one for each PCA axis.

2.3.3. Step 6. Ordination of stands according to structural

attributes

From the two multiple regression models (step 5), we

calculated the predicted scores along axes 1 and 2 for each

stand, following one of the methodologies proposed by ter

Braak (1988) for the analysis of two interdependent multi-

variate matrices. The two resulting new axes were plotted in

a bidimensional space, so obtaining a new ordination plot

based on terrain data. In this way, the contribution of each

terrain attribute to the ordination is related to its importance

for predicting reflectance.

2.3.4. Step 7. Definition of eight land-cover informational

units

We used the new ordination axes (from step 6) as a basis

for the classification of data into informational land cover

units. The classification of stands was made by subdividing

the continuous array of stands along the two predicted axes
into 8 groups. The number of groups and their boundaries

was decided on the basis of our knowledge of the ecology and

characteristics of the study area, after a careful consideration

of the ordination results. Since the classification was to some

extent subjective, it was validated using Discriminant Anal-

ysis (DA, Afifi & Clark, 1984), with the eight groups as a

priori groups, and the 14 structural attributes as variables.

2.4. Maximum likelihood classification

Once the informational land cover units were defined

(steps 4 to 7), steps 8 to 12 (Fig. 1) were followed to explore

objective methods for the selection of the best training sites,

and to perform a ML classification of the ETM+ sub-scene

(objective 2). These steps included a statistical analyses

leading to the creation, through different criteria, of alter-

native sets of eight final signatures, and the subsequent

selection of the best set to perform the classification.

2.4.1. Step 8. Discriminant analysis using all bands

This analysis was performed using the 251 stands data

set, with the eight informational land cover units as a priori

groups, and the brightness values of each band (from step 3)

as variables.

2.4.2. Step 9. Discriminant analysis using PCA axes

This analysis was performed using the 251 stands data

set, with the eight informational land cover units as a priori

groups, and PCA axes 1 and 2 (from step 4) as variables (i.e.

only the main directions of variation in brightness data were

here considered).

2.4.3. Step 10. Creation of four alternative sets of final

signatures

(a) The first set was constructed without discarding the

outliers, i.e. creating each final signature by merging all

signatures of stands corresponding to the same informational

land cover unit. (b)The second setwas constructedbymerging

the signatures correctly predicted through the first DA (using

all bands as variables, step 8),while the cases inwhich spectral

data did not predict land-cover units correctly were discarded

as outliers. (c) The third set was created using the correctly

classified signatures through the second DA (using the two

PCA axes as variables, step 9), discarding the remaining as

outliers. (d) The observation of the spectral histograms and

ellipses (ERDAS, 1995) of the signatures belonging to the

previous three sets suggested that a combination of signatures

from the second and third sets would improve separability.

Thus, we decided to create a fourth set of eight signatures,

which consisted in the combination of two signatures from the

second and six signatures of the third set (a combination that

showed higher visual separability than the other three sets).

2.4.4. Step 11. Selection of the best set of final signatures

For selecting the best set for classification, we performed

a divergence analysis (ERDAS, 1995) for each of the four



A.M. Cingolani et al. / Remote Sensing of Environment 92 (2004) 84–97 89
sets created, so obtaining separability values for all 28 pairs

of signatures within each set (8 units combined by

pairs = 28). For each set, we calculated the average minimum

separability index as the mean of 8 values, one for each

signature, so representing the divergence from its nearest

neighbor. The set with the highest index was selected.

2.4.5. Step 12. Maximum likelihood classification

A ML classification, which constitutes the most widely

used supervised classification method (Arbia et al., 1999),

was performed based on the set of signatures selected in

step 11.

2.5. Alternative method for classification

To fulfill the third objective of the study, we applied an

alternative method of classification based on the classifica-

tion functions derived from Discriminant Analysis.

2.5.1. Step 13. Classification through discriminant functions

For the alternative classification (hereafter ‘‘DF classifi-

cation’’) of the ETM+ sub-scene we used the Fisher’s

linear classification functions (Norušis, 1992) derived from

the DA performed using all bands as variables (step 8).

These functions consisted of eight linear combinations of

variables (bands in our case), one for each group (land

cover units in our case). To classify a sample (pixel in our

case) according to these functions, each pixel was subjected

to eight linear transformations, one for each function.

Finally, the 8 final values for each pixel were compared,

and the pixel was assigned to the class with the highest

value.

2.6. Comparison of classifications obtained by both

methods

To meet the fourth objective of the study we carried out

the following field sampling and data analyses.

2.6.1. Step 14. Comparison of classifications

To perform the field validation of both classifications

(obtained in steps 12 and 13), we selected 163 new

stands evenly distributed throughout the study area in

patches homogeneous (4� 4 or more pixels belonging to

the same class) in at least one of the classifications. The

assessment of field samples was performed as described

in step 2. Afterwards, field validation stands were classi-

fied into one of the 8 land-cover units previously defined,

using Discriminant Analysis. To reduce unnecessary com-

plexity in the accuracy analysis, 14 sampling stands

intermediate between two classes (i.e. probability of

belonging to a different class >35%, according to DA)

were discarded. Of the remaining 149 field validation

stands, 123 were in areas homogeneous enough for

testing the accuracy of the ML classification, while 134

were adequate for testing the DF classification (108 were
common to both classifications). Confusion matrices were

constructed for both classifications. The Kappa statistic

was calculated for each case, and the best classification

was selected as the final map.
3. Results

3.1. Definition of land-cover informational units

The field sampling confirmed the high within-pixel

heterogeneity of the area. Only 31 (12%) out of the 251

reference stands had a 95% or greater cover of a single

structural type, while 96 (38%) had a 75% or greater cover

of a single type.

The first two PCA axes (step 4) explained 77.5% and

14.1% of the variance in spectral data, respectively (a total

of 91.6%). Axis 1 separated stands with high brightness in

all bands (positive end) from stands with high NDVI

values (negative end). Axis 2 separated stands with high

brightness in band 4 (positive end) from stands with low

brightness in the same band (negative end) (Fig. 2a and c).

Linear combinations of structural attributes explained 86%

of the variance in PCA Axis 1 (R2 of the multiple

regression = 0.865, p < 0.0001) and 62% of the variance

in PCA Axis 2 (R2 = 0.622, p < 0.0001). From the linear

regression model (i.e. linear combination of the significant

structural attributes) we obtained an ordination of stands

according to terrain attributes (step 6, Fig. 2b). To illus-

trate how the structural variables contribute to predict

reflectance variation, their correlation with the new (pre-

dicted) axes 1 and 2 was plotted in Fig. 2d. Variation of

spectral and structural data along axis 1 indicate that total

bare rock contributes strongly to increase general bright-

ness, while woodlands (type A), Poa grasslands (type F)

and Alchemilla-Carex lawns (type H) decrease general

brightness and increase NDVI. Variation along axis 2

indicates that Alchemilla-Carex lawns (type H) contribute

to increase brightness in band 4, while woodlands (type

A) and outcrops (type K) absorb more light in this band

(Fig. 2c and d).

According to their position along the predicted axes 1

and 2 we classified stands in eight groups (Fig. 2b),

statistically validated through Discriminant Analysis

( p < 0.05 for all canonical Discriminant Functions), which

constituted the eight land cover units for mapping. Their

mean proportion of structural types is shown in Table 2. The

units were as follows.

3.1.1. Unit 1. Woodland

Dominated by Polylepis woodland or closed shrubland

(structural type A), with low total rock cover. Generally

occurred below 2000 m a.s.l on steep slopes in mid to low

topographic positions, but was also found on flat sites in

ravine bottoms or in gentle slopes. Erosion and grazing

pressure were low.



Fig. 2. (a) Location of sampling sites along the two main axis of PCA using bands as variables. (b) Location of sampling sites along the predicted axes

according to structural attributes. For both figures, symbols and numbers represent the eight land cover units: 1—Woodland; 2—Shrubby tussock

grassland with outcrop and woodland; 3—Thick tussock grassland with hydromorphic lawn; 4—Thin tussock grassland; 5—Lawn; 6—Outcrop with

tussock grassland; 7—Outcrop with exposed rock; o 8—Rock pavement. (c) Contribution of bands to PCA axes. (d) Correlation of predicted PCA axes with

total rock cover (�) and structural types (o rock-dominated types, n tussock grasslands, w lawns, E woody types, fern dominated type), which were
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3.1.2. Unit 2. Shrubby tussock grassland with outcrop and

woodland

Dominated by a combination of Polylepis woodland/

shrubland (A), shrubby grassland (C) and rock outcrop

(K). It was found in sites topographically similar to unit 1,

at slightly higher altitudes and more exposed topographic

positions with less steep slopes. Erosion was more active

and grazing pressure higher. It could be totally or partially

derived from unit 1 after burning followed by grazing, as

suggested by fire evidences found on trunks of Polylepis

individuals.

3.1.3. Unit 3. Thick tussock grassland with hydromorphic

lawn

Generally located in low, flat and sometimes flooded

positions. Some stands lack the hydromorphic lawn type

(G), being mostly covered by Poa grassland (F). Propor-

tion of active erosion edges was relatively high, but

restricted to the margins of water courses. Grazing pressure

was variable.

3.1.4. Unit 4. Thin tussock grassland

Dominated by Deyeuxia/Festuca tussocks (D). Generally

found on gentle slopes and flat summits at all altitudes,

although the dominant species shifted with altitude. Below

1900 m Festuca dominated at all topographic positions,

being gradually replaced by Deyeuxia as altitude increased,

labelled with their identification letter (Table 1).
up to 2300 m where this species dominated at all topo-

graphic positions. Erosion activity was low, and livestock

pressure intermediate.

3.1.5. Unit 5. Lawn

Largely dominated by Alchemilla-Carex lawn (H), with

some patches of other types. Rock pavement (M) was

generally found at the bottom of concavities which get

flooded in the rainy season. Located at sites with less than

a 10% slope, usually at high altitudes. Erosion was more

active, and grazing pressure more intense, than in tussock

grasslands (units 3 and 4). Grazing prevents the succession

of lawns towards tussock grasslands (Cingolani et al.,

2003a; Pucheta et al., 1998).

3.1.6. Unit 6. Outcrop with tussock grassland

A mixture of natural outcrops (K), exceptionally reaching

120 m tall, and tussock grasslands (C, D, E), together with

small patches of other types, including Polylepis woodlands

or shrublands (A). Mainly located on mid and upper steep

slopes. Erosion activity was intermediate, and grazing

pressure low.

3.1.7. Unit 7. Outcrop with exposed rock

Dominated by rock (types K, L and M), with small

vegetation patches. Found at similar topographic positions

than unit 6, although at somewhat higher altitudes in more



Table 2

Percentage of each structural type (names are abbreviated) and total rock

cover within each informational land cover unit defined

Structural Land cover unita

type
1 2 3 4 5 6 7 8

A Polylepis

woodland

77 24 – – – 3 + –

B Fern

community

4 3 – – – 2 + +

C Shrubby grassland 6 31 – + – 7 3 +

D Deyeuxia-Festuca

grassland

3 9 15 73 5 22 7 1

E Festuca degraded

grassland

1 2 – 2 – 10 2 3

F Poa tussock

grassland

2 6 52 4 5 2 + –

G Hydromorphic

lawn

– + 20 + + + – –

H Alchemilla-Carex

lawn

+ 1 12 10 81 1 4 2

I Sorghastrum

degraded lawn

+ 1 – 2 1 3 5 3

J Muhlenbergia

lawn

+ + + 1 1 1 1 1

K Rock outcrop 6 22 + 3 2 39 27 8

L Eroded stony

grassland

+ 1 – 1 1 3 18 7

M Erosion

pavements

+ 2 1 4 4 8 34 77

Total rock cover 6 23 1 8 6 49 74 91

+, < 0.5 %; – , absence.
a See description in text.

Table 3

Divergence Index (DI) between each spectral signature and its nearest

neighbour (NN), for the four final sets created by merging signatures

according to various criteria

Final First seta Second setb Third setc Fourth setd

signature
DI NN n DI NN n DI NN n DI NN n

1 13 2 31 20 2 27 30 2 21 30 2 21

2 5 4 26 11 4 20 29 4 12 29 4 12

3 28 1 26 31 1 24 38 1 20 38 1 20

4 5 2 50 11 2 38 18 6 29 18 6 29

5 7 4 36 21 4 26 28 4 27 28 4 27

6 8 7 36 15 4 34 14 7 32 18 4 32

7 8 6 36 16 8 30 10 8 21 16 8 30

8 9 7 10 16 7 9 10 7 10 16 7 9

Average 10.4 17.6 22.1 24.1

The number of signatures merged in each case is indicated in the column

headed by n. The average minimum divergence index is indicated in the last

row.
a Created by merging all the signatures.
b Created by merging the 208 (83%) properly classified signatures

obtained through the DA described in step 8 (Fig. 1).
c Created by merging the 172 (69%) properly classified samples

obtained through the DA described in step 9 (Fig. 1).
d Combination of the second and the third set.
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exposed and northerly sites. Activity of erosion and grazing

pressure were high. This unit could be derived from unit 6,

after erosion processes eliminated most vegetation.

3.1.8. Unit 8. Rock pavement

Its bare rock cover was higher than 80%, most of which

was exposed due to erosion (L and M). Generally located in

flat sites with high erosion activity. The grazing pressure on

the few remaining vegetation patches was very intense.

3.2. Image classifications

Two discriminant analyses were involved in the process

of signature creation for the ML classification. The first,

performed with the eight land-cover units as a priori groups

and the 8 bands as variables (step 8) was significant for most

of its canonical axes (6 out of 7 axes, p < 0.05). This

analysis showed that the combination of the 8 bands cor-

rectly predicted the land-cover unit for 83% of the stands.

The second DA, performed with the eight land-cover units

as a priori groups and the two main PCA axes as variables

(step 9) was significant for its unique canonical axis

( p < 0.05). This analysis showed that the combination of

the two main PCA axes correctly predicted the land-cover

unit in 69% of the stands.

The four alternative sets of spectral signatures (step 10)

showed different average minimum separability indices
(Table 3). The lowest index was obtained for the first set

(constructed without discarding outliers), while the second

and third sets (constructed by selecting signatures through

DA) showed higher indices. As expected, the fourth set

(a combination of signatures 1–6 taken from the third set

and signatures 7 and 8 taken from the second set) had the

highest separability index, and was hence used for the ML

classification of the Landsat ETM+ sub-scene (Fig. 3C).

The discriminant functions derived from the first DA

(using all bands as variables, step 8) were used for

performing the DF classification (Table 4, Fig. 3B and D)

as they had higher predictive power than the discriminant

functions using PCA axes (83% and 69%, respectively).

3.3. Field validation and comparison between classifications

Both classifications (ML and DF) showed a coincidence

(i.e. identical patterns) of 71%. Of the 149 validation sites,

107 corresponded to homogeneous areas belonging to the

same class in both classifications, 1 corresponded to homo-

geneous areas but belonging to different classes in each

classification, while the 41 remaining sites consisted of

homogeneous areas in one of the classifications and a

mosaic-like pattern (i.e. few contiguous pixels belonging to

the same class) in the other.

The ML classification showed lower accuracy values

than the DF classification (78% and 86% respectively,

Tables 5 and 6) and lower kappa indices (0.745 vs.

0.836). For the latter, the unit with the lowest producer’s

accuracy (sensu Congalton & Green, 1999) was the outcrop

with tussock grassland (unit 6), which was sometimes

classified as outcrop with exposed rock (unit 7) or as

shrubby tussock grassland with outcrop and woodland (unit



Fig. 3. (A) Location of the protected area under study in the Córdoba Province, Argentina. (B) Final map of the protected area, scale 1:774,684 subdivided

according to their jurisdiction and land-tenure: (1) Quebrada del Condorito National Park, (2) Quebrada del Condorito National Reserve and (3) Pampa de

Achala Provincial Water Reserve. (C) Detail of the ML classification (scale 1:45,190). (D) Detail of the DF classification (same area and scale than C). The

legend indicates the land-cover units and total % of area occupied by each one in ML/DF classifications (between brackets).
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Table 4

Classification functions obtained through DA, used for the alternative (DF) method of classification

Layer Land cover unit

1 2 3 4 5 6 7 8

Band 1 25.96 25.12 24.30 24.71 24.37 25.47 26.15 25.22

Band 2 � 6.14 � 5.41 � 4.67 � 5.53 � 4.60 � 5.12 � 4.21 � 3.83

Band 3 � 0.98 � 2.03 � 1.53 � 1.56 � 2.44 � 2.85 � 2.53 � 0.70

Band 4 0.31 1.51 1.53 2.14 2.82 2.11 0.92 � 0.45

Band 5 � 0.98 � 1.11 � 1.03 � 0.79 � 1.09 � 1.33 � 1.21 � 1.66

Band 7a 12.32 12.48 12.53 12.65 12.65 12.54 12.14 11.90

Band 8b � 5.51 � 5.54 � 5.99 � 6.35 � 6.01 � 5.22 � 4.94 � 4.17

NDVI 272.39 34.95 66.49 � 40.06 � 102.83 � 73.89 139.68 410.63

Constant � 1540.75 � 1532.74 � 1545.61 � 1578.05 � 1600.61 � 1576.75 � 1621.34 � 1603.23

a Thermal.
b Equivalent to TM band 7.
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2). The class with the lowest user’s accuracy was the

outcrop with exposed rock (unit 7), which in the terrain

was sometimes outcrop with tussock grassland (unit 6) or

rock pavement (unit 8). Meanwhile, the most accurately

classified unit from the producer’s standpoint was woodland

(unit 1), always classified as such, while from the user’s

standpoint, the best classified class was thin tussock grass-

land (unit 4) (Table 6). The ML classification showed lower

to similar accuracy values for all classes (Table 5).
4. Discussion

4.1. Land-cover patterns

The high within-pixel heterogeneity in our study area is

the result of the interaction of disturbance factors (such as

fire and grazing) with complex topographical and geomor-

phological patterns, which produce different communities

and mosaic types (Cabido, 1985; Cabido & Acosta, 1986;

Cabido et al., 1987; Cingolani et al., 2003a,b; Enrico et al.,

2004; Funes & Cabido, 1995; Pucheta et al., 1998; Renison
Table 5

Confusion matrix for ML classification

Spectral Land cover unitsa

classes
1 2 3 4 5 6 7 8 %

1 7 1 87.5

2 7 2 77.8

3 12 1 2 80.0

4 1 14 6 1 63.6

5 3 1 16 80.0

6 19 1 95.5

7 4 11 2 64.7

8 2 10 83.3

% 100.0 87.5 75.5 87.5 66.7 73.1 78.6 83.3 78.0

Land cover units 1 to 8 refer to stands classified according to terrain

information, while spectral classes 1 to 8 refer to the classification of those

stands according to spectral information.
a 1—Woodland, 2—Shrubby tussock grassland with outcrop and

woodland, 3—Thick tussock grassland with hydromorphic lawn, 4—Thin

tussock grassland, 5—Lawn, 6—Outcrop with tussock grassland, 7—

Outcrop with exposed rock, 8—Rock pavement.
et al., 2002). Polylepis woodland occurs mainly on steep

escarpments and deep ravines and valleys, conforming units

1 or 2. Grassland units (3, 4 and 5) occurred mainly on low

to moderately dissected undulated plains with few outcrops.

Rock dominated units (6, 7 and 8) are found in different

types of landscapes, although they prevail in rocky and hilly

uplands. From these general patterns, three main land-cover

domains can be defined: the woodland domain (units 1 and

2), the grassland domain (3,4 and 5) and the rock domain (6,

7 and 8). The partial association of these groups with

geomorphological units suggests that different geoforms

have different resource availability patterns and susceptibil-

ity to disturbance, as was observed in other ecosystems (e.g.

Anchorena & Cingolani, 2002; Bridge & Johnson, 2000;

Collantes et al., 1999; McIntyre et al., 2003).

The association of the mapped units with disturbance and

physical factors, and the spatial proximity and interactions

among their components (structural types) highlight the

ecological meaning of the units defined, giving insights

about their adequate management (Cingolani & Falczuk,

2003). For example, the presence of a small amount of

massive rock pavements in lawns (unit 5) indicate incipient
Table 6

Confusion matrix for DF classification

Spectral Land cover unitsa

classes
1 2 3 4 5 6 7 8 %

1 9 1 90.0

2 8 2 80.0

3 16 2 2 80.0

4 21 1 95.4

5 2 1 17 85.0

6 18 1 94.7

7 3 16 2 76.2

8 2 10 83.3

% 100.0 88.9 88.9 87.5 85.0 78.3 84.2 83.3 85.8

Land cover units 1 to 8 refer to stands classified according to terrain

information, while spectral classes 1 to 8 refer to the classification of those

stands according to spectral information.
a 1—Woodland, 2—Shrubby tussock grassland with outcrop and

woodland, 3—Thick tussock grassland with hydromorphic lawn, 4—Thin

tussock grassland, 5—Lawn, 6—Outcrop with tussock grassland, 7—

Outcrop with exposed rock, 8—Rock pavement.
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erosion processes, and suggest that this unit, at present

under high grazing pressure, must be carefully managed to

prevent a complete transformation into unit 8 (rock pave-

ment). Other examples are units 2 and 6, where rock

outcrops are combined with grasslands and/or woodlands.

These units are extremely important for avian diversity

(Garcı́a et al., unpublished data), which is higher than in

units where only one of those structural types dominate (e.g.

unit 1 or 4). Additionally, grasslands (mainly structural type

D) within units 2 and 6 are clearly different, in terms of

livestock accessibility and utilization, than grasslands in less

patchy units (3, 4 and 5), even when species composition is

similar. These, as well as other examples (Cingolani &

Falczuk, 2003; Renison et al., in press) show that units

defined as mosaics not only solve an important technical

problem, but also have an emergent ecological meaning,

being therefore ideal for management purposes in markedly

heterogeneous areas.

4.2. Advantages of the method

By defining land-cover units on the basis of terrain and

spectral data relations, we arrived to an a priori trade-off

between human criteria and satellite capabilities. The 14

variables of interest (13 structural types + total bare rock)

were selected on the basis of ecological criteria, but it was

their relation with spectral data what determined which of

them were significant for defining the final map units.

Thus, we avoided the trial and error process usually

necessary when only one approach is considered (human

criteria for traditional supervised classification and spectral

data for unsupervised classification, Clark et al., 2001).

Additionally, we increased the likelihood of obtaining an

accurate map, often difficult for natural vegetation mapping

using more traditional methods of defining units (Cherrill

et al., 1994). A similar multivariate analysis for depicting

the relation between reflectance and land-cover character-

istics was performed by Armitage et al. (2000) as a prior

step to satellite based vegetation mapping of semi-natural

upland areas.

Once land-cover units were defined, the use of functions

derived from Discriminant Analysis (DF classification)

showed more accurate than ML classification. Discriminant

Functions derived from Discriminant Analysis were widely

used in other environmental sciences applications (e.g.

Allen & Wilson, 1991; Anchorena & Cingolani, 2002),

and were also used to discriminate classes in digital high

resolution aerial photographs (Lobo et al., 1998). Our

results suggest that they could also become a powerful

tool for the classification of satellite data such as Landsat

pixels. Additionally, this method is more direct and objec-

tive, because the classification functions optimize the

available information about the discriminating capability

of bands.

The use of fuzzy logic (Jensen, 1996; Millington &

Alexander, 2000), or the modeling to generate quantitative
and spatially explicit estimates of subpixel biophysical

characteristics (Ju et al., 2003; Luoto et al., 2002; Millington

& Alexander, 2000; Wyatt, 2000) could also be alternative

approaches for dealing with heterogeneous areas with a high

within-pixel variation. However, such methods are difficult

to apply when vegetation is complex and highly variable

(Townsend, 2000), while the outputs of such techniques are

more difficult to interpret for most end-users, as compared

to a single map summarizing most land-cover information

(Millington & Alexander, 2000).

Our alternative (DF) classification showed a high accu-

racy, compared to other studies using various classification

methodologies for Landsat data. For example, a classifica-

tion of 15 purely natural land-cover units in a savanna

rangeland in Tanzania (Tobler et al., 2003) using ML

classification showed a similar accuracy (77%, kap-

pa = 0.75) than our ML classification (78%, k = 0.74) but

markedly lower than our DF classification (86%, k = 0.84).

Clark et al. (2001), performed a ML classification of eight

units for a sagebrush mountain rangeland in Idaho (four

sagebrush types, two woodland types, and two types of

cultivated lands) obtaining a similar (although slightly

lower) accuracy than our DA classification (83.74%,

k = 0.814), after using ancillary (altitude) data to correct

misclassified pixels. Haapanen et al. (2004), classified three

land cover types (forest, non-forest and water) in the Great

Lake’s region of the United States using a non-parametric

estimation approach (k-Nearest Neighbor), obtaining an

overall accuracy slightly higher than our DA classifica-

tion (88%), but with a fairly lower kappa index (0.70).

Keuchel et al. (2003) classified 10 natural and cultural

vegetation units in Tenerife using three methods, including

ML. Their best method (Support Vector Machines) pro-

duced a higher accuracy (93%, k = 0.92) than ours. How-

ever, this was also achieved by including ancillary

(altitude) information, which greatly enhanced the classifi-

cation of a vegetation cover distributed in belts. According

to these and other examples analyzed (e.g. Lewis, 1998;

Oetter et al., 2000; Tanser & Palmer, 2000) we understand

that it is very difficult to obtain better accuracy and kappa

index values than ours by only using single date Landsat

spectral information.

4.3. Sources of error

Classification errors between domains (woodland, grass-

land and rock) were very low. The DF classification showed

an error of 1.5% between domains, while the ML classifi-

cation showed an error of 2.4%. Errors were due to confusion

between units 6 and 2, which are relatively similar in their

tussock cover and rock outcrops. Additionally, the ML

classification confused unit 6 with 4, because both share a

relatively high proportion of Festuca/Deyeuxia tussock

grassland and a small proportion of rock (see Table 2).

Errors of classification within each domain account for

most of the global error in both classifications, although the
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DF classification method performed better. Greatest error

was found within the rock domain, with unit 7 confused

either with units 6 or 8. Variability in the type and shape of

rock outcrops, age of the exposed rock (rocks exposed

longer have darker, outcrop-like color), together with differ-

ences in lichen composition and cover on rock surfaces, are

probable causes for the confusions. It is well known that soil

and rock color strongly influence reflectance in sites with

sparse vegetation (Post et al., 1994). Errors within the

grassland domain could be due to high precipitation during

the summer, which floods flat lawns during short periods,

thus reflecting light like hydromorphic lawns. Additionally,

some confusion among grassland units could be caused by

the sub-dominance of Poa stuckertii in some Deyeuxia

tussock grasslands, and vice-versa. An additional source

of differences could be the uncoupling between satellite and

validation field sampling (up to 2 years), since transforma-

tions among grassland types could be rapid after drastic

changes in management, as was the case in some areas after

the exclusion of cattle from the National Park (personal

observation). Units of the woodland domain show little

confusion. As shown by our results and other studies

(Guyot, 1990; Haapanen et al., 2004; Huete et al., 1985;

Zak & Cabido, 2002), both rock and woody cover have

strong effects on reflectance. The opening of the woodland

cover, exposing granite outcrops previously covered by the

tree canopy, and the partial replacement of trees and shrubs

by tussock grasses, converts unit 1 into unit 2, with the

associated changes in spectral values, allowing the differ-

entiation of both units. In none of the misclassified cases,

validation stands were located in atypical topographic

positions or expositions, indicating that topography is not

a source of error in this map.
5. Conclusions

Our approach proved useful for mapping land-cover

units in a heterogeneous area where an accurate map was

needed but was impossible to obtain using traditional

classification methodologies. The procedures used for def-

inition and classification of land-cover units resulted in a

map showing an accuracy of 87% (k = 0.84), where

mosaics resulting from the interaction of natural and human

factors are clearly recognized. The final map (Fig. 3B) was

later entered as a thematic layer in a GIS (Cingolani et al.,

2003b) presently used by the National Parks Administra-

tion for integrated conservation planning and monitoring

of the whole protected area, and as a communication tool

(Cabido et al., 2003; Cingolani & Falczuk, 2003). The

wide acceptance and utilization of the map clearly indicate

that the results here reported have been somehow critical

for the future conservation of the area. Our approach (gray

steps in Fig. 1) is therefore highly recommendable for areas

where more traditional approaches are not possible or

unsuccessful.
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